An Improved Preisach Model for Magnetic Hysteresis of Grain-Oriented Silicon Steel under PWM Excitation
Abstract
:1. Introduction
2. Magnetic Hysteresis Model
2.1. Classical Preisach Model
2.2. Improved Preisach Model
3. Experimental Verification
3.1. Experimental Principles and Platform Construction
3.2. Experimental Principles and Platform Construction
3.2.1. Demagnetization Signal Generation
3.2.2. Excitation Signal Generation Function
3.2.3. Data Acquisition and Processing
- (a)
- Acquisition and calculation of magnetic induction and magnetic field strength signals
- (b)
- Reference Magnetic Induction Waveform Selection
- (c)
- Waveform Iteration of Output Voltage
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Cao, S. Research on Loss Calculation Method of Ferromagnetic Materials under Non-Sinusoidal Excitation. Master’s Thesis, Zhejiang University, Hangzhou, China, 2017. [Google Scholar]
- Zhao, Z.; Zhang, P.; Ma, X.; Hu, X.; Xu, M. Simulation of magnetic properties of electrical steel sheet based on improved Preisach model. High Volt. Technol. 2021, 47, 2149–2157. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, X.; Xiao, F.; Liu, Y. Simulation of DC bias magnetic hysteresis and loss characteristics of oriented silicon steel sheet based on Preisach model. J. Electrotechnol. 2020, 35, 1849–1857. [Google Scholar] [CrossRef]
- Li, G. 100th anniversary of the discovery of hysteresis phenomenon. Instrum. Mater. 1981, 12, 40–50. [Google Scholar]
- Zhao, H.; Zhang, D.; Wang, Y.; Xu, G.; Zhan, Y.; Liu, X.; Luo, Y. Characteristics of no-load iron consumption distribution of induction motor under variable frequency power supply condition and its refinement analysis. Chin. J. Electr. Eng. 2016, 36, 2260–2269. [Google Scholar] [CrossRef]
- IEC60404-2:1996; Magnetic Materials: Part 2: Methods of Measurement of the Magnetic Properties of Electrical Steel Sheet and Strip by Means of an Epstein Frame. International Electrotechnical Commission: Geneva, Switzerland, 1996.
- Yamamoto, T.; Ohya, Y. Single sheet tester for measuring core losses and permeabilities in a silicon steel sheet. IEEE Trans. Magn. 1974, 10, 157–159. [Google Scholar] [CrossRef]
- Tumanski, S.; Zhao, S.; Ge, Y. Handbook of Magnetic Measurements: Handbook of Magnetic Measurements; Machinery Industry Press: Norwalk, CT, USA, 2014; pp. 126–129. [Google Scholar]
- Lee, J.; Hyun, D. Hysteresis characteristics computation on PWM fed synchronous reluctance motor using coupled FEM and Preisach modeling. IEEE Trans. Magn. 2000, 36, 1209–1213. [Google Scholar] [CrossRef]
- Duan, N.; Xu, W.; Li, Y.; Wang, S.; Guo, Y.; Zhu, J. Comparison of Limiting Loop Model and Elemental Operator Model for Magnetic Hysteresis of Ferromagnetic Materials. IEEE Trans. Magn. 2017, 53, 7301504. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, H.; Li, Y.; Zhou, L.; Liu, X.; Zhao, H.; Liu, Y.; Yuan, D. Improved Preisach Model for the Vector Magnetic Hysteresis Property of Soft Magnetic Composite Materials Based on the Hybrid Technique of SA-NMS. IEEE Trans. Ind. Appl. 2021, 57, 5. [Google Scholar] [CrossRef]
- Antonio, S.; Ghanim, A.; Faba, A.; Laudani, A. Numerical simulations of vector magnetic hysteresis processes via the Preisach model and the Energy Based Model: An application to Fe-Si laminated alloys. J. Magn. Magn. Mater. 2021, 539. [Google Scholar] [CrossRef]
- Maxwell, J. A Treatise on Electricity and Magnetism, 3rd ed.; Clarendon: Oxford, UK, 1892; Volume 2, pp. 68–73. [Google Scholar]
- Preisach, F. Über die magnetische Nachwirkung. Z. Phys. 1935, 94, 277–302. [Google Scholar] [CrossRef]
- Jiles, D.; Atherton, D. Ferromagnetic hysteresis. IEEE Trans. Magn. 1983, 19, 2183–2185. [Google Scholar] [CrossRef]
- Stoner, E.; Wohlfarth, E. A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans. Magn. 1991, 27, 3475–3518. [Google Scholar] [CrossRef]
- Enokizono, M.; Soda, N. A new modeling of vector magnetic properties for magnetic field analysis. Stud. Appl. Electromagn. Mechan. 1998, 13, 418–421. [Google Scholar]
- Li, D.; Qiao, Z.; Yang, N.; Song, Y.; Li, Y. Study on vector magnetic properties of magnetic materials using hybrid hysteresis model. CES Trans. Electr. Mach. Syst. 2019, 3, 292–296. [Google Scholar] [CrossRef]
- Venegas, P.; Gomez, D.; Arrinda, M.; Oyarbide, M.; Macicior, H.; Bermúdez, A. Kalman filter and classical Preisach magnetic hysteresis model applied to the state of charge battery estimation. Comput. Math. Appl. 2022, 118, 74–84. [Google Scholar] [CrossRef]
- Roussel, R.; Edelen, A.; Ratner, D.; Dubey, K.; Gonzalez-Aguilera, J.P.; Kim, Y.K.; Kuklev, N. Differentiable Preisach Modeling for Characterization and Optimization of Particle Accelerator Systems with Magnetic Hysteresis. Phys. Rev. Lett. 2022, 128, 20. [Google Scholar] [CrossRef] [PubMed]
- Hui, S.; Zhu, J.; Ramsden, V. A generalized dynamic circuit model of magnetic cores for low- and high-frequency applications. II. Circuit model formulation and implementation. IEEE Trans. Power Electron. 1996, 11, 251–259. [Google Scholar] [CrossRef]
- Duan, N.; Xu, W.; Wang, S.; Zhu, J.; Guo, Y. Hysteresis Modeling of High-Temperature Superconductor Using Simplified Preisach Model. IEEE Trans. Magn. 2015, 51, 7300904. [Google Scholar] [CrossRef]
- Hui, S.; Zhu, J. Numerical modelling and simulation of hysteresis effects in magnetic cores using transmission-line modelling and the Preisach theory. IEEE Proc. Electr. Power Appl. 1995, 142, 57–62. [Google Scholar] [CrossRef]
- Mayergoyz, I.; Keim, T. Superconducting hysteresis and the Preisach model. J. Appl. Phys. 1990, 67, 5466–5468. [Google Scholar] [CrossRef]
- Fuzi, J. Analytical approximation of Preisach distribution functions. IEEE Trans. Magn. 2003, 39, 1357–1360. [Google Scholar] [CrossRef]
- Hussain, S.; Lowther, D. The prediction of iron losses under PWM excitation using the classical Preisach model. COMPEL Int. J. Comput. Math. Elect. Elect. Eng. 2006, 35, 1996–2006. [Google Scholar] [CrossRef]
- Torre, E. Existence of magnetization-dependent Preisach models. IEEE Trans. Magn. 1991, 27, 3697–3699. [Google Scholar] [CrossRef]
- Adly, A.; Abd-El-Hafiz, S. Using neural networks in the identification of Preisach-type hysteresis models. IEEE Trans. Magn. 1998, 34, 629–635. [Google Scholar] [CrossRef]
- Bowes, S.; Mount, M. Microprocessor control of PWM inverters. IEEE Proc. B Electr. Power Appl. 1981, 128, 293–305. [Google Scholar] [CrossRef]
Magnetic Hysteresis Models | Advantages | Disadvantages |
---|---|---|
Preisach Model | Based on the original model, the proposed simplified Preisach model is easy to compute and has a wide range of applications | Interactions between particles and specific magnetization processes are not considered |
J-A Model | The principle is simple and easy to improve | The number of unknowns is high, and the parameter identification process is complex and computationally intensive |
S-W Model | Analyzed from the energy point of view, it can reflect the nature of the magnetic hysteresis phenomenon | Limited scope of application |
E&S Model | Vectors B and H and gives the relation to establish technological vector magnetic properties. Considers the anisotropic properties of ferromagnetic materials | Relies on a large amount of experimental data |
A | B | C | D | E | F | Area S | Magnetic Circuit l |
---|---|---|---|---|---|---|---|
18.0 mm | 25.0 mm | 84.0 mm | 30.0 mm | 62.0 mm | 122.0 mm | 5.4 cm2 | 264 mm |
Technical Parameters | Model/Value |
---|---|
Silicon steel grade | B27R085 |
Manufacturer | BAOSHAN IRON & STEEL Co., Ltd. |
Expected Bs/T | 1.5 |
Conductivity of silicon steel/S·m−1 | 2.22 × 106 |
Density of silicon steel/kg·dm−3 | 7.65 |
N1/N2 | 10 |
Area S/cm2 | A × D |
Stacking factor/% | 97.5 |
Type of Coating | Inorganic |
Hardness (HV1) | 200 |
Equipment Name | Model Number |
---|---|
Isolation Amplifier | Nanjing Hongbin Weak Signal Inspection Co., Nanjing, China. HB-814A |
Power Amplifier | Aigtek, Xi’an, China. ATA-308 |
Modulation Ratio K | Method | Br/T | eBr% | Bm/T | eBm% |
---|---|---|---|---|---|
K = 1.5 | Experimental results | 1.087 | / | 1.479 | / |
Classical Preisach model | 1.119 | 2.94 | 1.548 | 4.67 | |
Improved Preisach model | 1.103 | 1.472 | 1.514 | 2.366 | |
K = 1.3 | Experimental results | 1.115 | / | 1.456 | / |
Classical Preisach model | 1.149 | 3.050 | 1.524 | 4.67 | |
Improved Preisach model | 1.132 | 1.525 | 1.491 | 2.404 | |
K = 1.1 | Experimental results | 1.171 | / | 1.415 | / |
Classical Preisach model | 1.228 | 4.867 | 1.481 | 4.664 | |
Improved Preisach model | 1.183 | 1.024 | 1.448 | 2.332 | |
K = 0.9 | Experimental results | 1.185 | / | 1.365 | / |
Classical Preisach model | 1.251 | 5.495 | 1.524 | 11.60 | |
Improved Preisach model | 1.201 | 1.332 | 1.403 | 2.564 | |
K = 0.7 | Experimental results | 1.216 | / | 1.359 | / |
Classical Preisach model | 1.148 | 5.592 | 1.427 | 11.11 | |
Improved Preisach model | 1.204 | 1.002 | 1.397 | 2.796 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, N.; Gao, X.; Zhang, L.; Xu, W.; Huang, S.; Lu, M.; Wang, S. An Improved Preisach Model for Magnetic Hysteresis of Grain-Oriented Silicon Steel under PWM Excitation. Appl. Sci. 2024, 14, 321. https://doi.org/10.3390/app14010321
Duan N, Gao X, Zhang L, Xu W, Huang S, Lu M, Wang S. An Improved Preisach Model for Magnetic Hysteresis of Grain-Oriented Silicon Steel under PWM Excitation. Applied Sciences. 2024; 14(1):321. https://doi.org/10.3390/app14010321
Chicago/Turabian StyleDuan, Nana, Xinyang Gao, Lingjia Zhang, Weijie Xu, Song Huang, Mengxue Lu, and Shuhong Wang. 2024. "An Improved Preisach Model for Magnetic Hysteresis of Grain-Oriented Silicon Steel under PWM Excitation" Applied Sciences 14, no. 1: 321. https://doi.org/10.3390/app14010321
APA StyleDuan, N., Gao, X., Zhang, L., Xu, W., Huang, S., Lu, M., & Wang, S. (2024). An Improved Preisach Model for Magnetic Hysteresis of Grain-Oriented Silicon Steel under PWM Excitation. Applied Sciences, 14(1), 321. https://doi.org/10.3390/app14010321