Quantum Information with Integrated Photonics
Abstract
:1. Introduction
2. The Beginning of Integrated Quantum Photonics
3. Integrated Quantum Photonics Systems
4. New Challenges for Quantum Photonics
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CMOS | complementary metal–oxide semiconductor |
CNOT | controlled NOT |
FPGA | field-programmable gate array |
KLM | Knill–Laflamme–Milburn |
LOQC | linear-optics quantum computation |
MMI | multimode interferometer |
QKD | quantum key distribution |
SOI | silicon-on-insulator |
References
- Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 10–12 December 1984. [Google Scholar]
- Bennett, C.H.; Wiesner, S.J. Communication via One- and Two-Particle Operators on Einstein-Podolsky-Rosen States. Phys. Rev. Lett. 1992, 69, 2881–2884. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett. 1993, 70, 1895–1899. [Google Scholar] [CrossRef] [PubMed]
- Grover Lov, K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. STOC ’96, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219. [Google Scholar]
- Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 1997, 26, 1484–1509. [Google Scholar] [CrossRef]
- DiVincenzo, D.P. The Physical Implementation of Quantum Computation. Fortschritte Der Phys. 2000, 48, 771–783. [Google Scholar] [CrossRef]
- Nakamura, Y.; Pashkin Yu., A.; Tsai J., S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 1999, 398, 786–788. [Google Scholar] [CrossRef]
- Wineland, D.J.; Monroe, C.; Itano, W.M.; Leibfried, D.; King, B.E.; Meekhof, D.M. Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions. J. Res. Natl. Inst. Stand. Technol. 1998, 103, 259–328. [Google Scholar] [CrossRef]
- Braunstein, S.L.; van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 2005, 77, 513–577. [Google Scholar] [CrossRef]
- O’Brien, J.L.; Furusawa, A.; Vučković, J. Photonic Quantum Technologies. Nat. Photonics 2009, 3, 687–695. [Google Scholar] [CrossRef]
- Kim, Y.; Eddins, A.; Anand, S.; Wei, K.X.; Van Den Berg, E.; Rosenblatt, S.; Nayfeh, H.; Wu, Y.; Zaletel, M.; Temme, K.; et al. Evidence for the Utility of Quantum Computing before Fault Tolerance. Nature 2023, 618, 500–505. [Google Scholar] [CrossRef]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Primavera, B.A.; Chiles, J.; McCaughan, A.N.; Buckley, S.M.; Tait, A.N.; Lita, A.; Biesecker, J.; Fox, A.; Olaya, D.; et al. Superconducting Optoelectronic Single-Photon Synapses. Nat. Electron. 2022, 5, 650–659. [Google Scholar] [CrossRef]
- Schuck, C.; Guo, X.; Fan, L.; Ma, X.; Poot, M.; Tang, H.X. Quantum Interference in Heterogeneous Superconducting-Photonic Circuits on a Silicon Chip. Nat. Commun. 2016, 7, 10352. [Google Scholar] [CrossRef] [PubMed]
- Gyger, S.; Zichi, J.; Schweickert, L.; Elshaari, A.W.; Steinhauer, S.; Covre Da Silva, S.F.; Rastelli, A.; Zwiller, V.; Jöns, K.D.; Errando-Herranz, C. Reconfigurable Photonics with On-Chip Single-Photon Detectors. Nat. Commun. 2021, 12, 1408. [Google Scholar] [CrossRef] [PubMed]
- Youssefi, A.; Shomroni, I.; Joshi, Y.J.; Bernier, N.R.; Lukashchuk, A.; Uhrich, P.; Qiu, L.; Kippenberg, T.J. A Cryogenic Electro-Optic Interconnect for Superconducting Devices. Nat. Electron. 2021, 4, 326–332. [Google Scholar] [CrossRef]
- Lecocq, F.; Quinlan, F.; Cicak, K.; Aumentado, J.; Diddams, S.A.; Teufel, J.D. Control and Readout of a Superconducting Qubit Using a Photonic Link. Nature 2021, 591, 575–579. [Google Scholar] [CrossRef]
- Flamini, F.; Spagnolo, N.; Sciarrino, F. Photonic Quantum Information Processing: A Review. Rep. Prog. Phys. 2019, 82, 016001. [Google Scholar] [CrossRef]
- Wang, J.; Sciarrino, F.; Laing, A.; Thompson, M.G. Integrated Photonic Quantum Technologies. Nat. Photonics 2020, 14, 273–284. [Google Scholar] [CrossRef]
- Elshaari, A.W.; Pernice, W.; Srinivasan, K.; Benson, O.; Zwiller, V. Hybrid Integrated Quantum Photonic Circuits. Nat. Photonics 2020, 2020 14, 285–298. [Google Scholar] [CrossRef]
- Knill, E.; Laflamme, R.; Milburn G., J. A Scheme for Efficient Quantum Computation with Linear Optics. Nature 2001, 409, 46–52. [Google Scholar] [CrossRef]
- Ralph, T.C.; Langford, N.K.; Bell, T.B.; White, A.G. Linear optical controlled—NOT gate in the coincidence basis. Phys. Rev. A 2002, 65, 062324. [Google Scholar] [CrossRef]
- Available online: https://www.quandela.com/ (accessed on 8 August 2023).
- Available online: https://www.quixquantum.com/ (accessed on 8 August 2023).
- Available online: https://www.psiquantum.com/ (accessed on 8 August 2023).
- O’Brien, J.L.; Pryde, G.J.; White, A.G.; Ralph, T.C.; Branning, D. Demonstration of an All-Optical Quantum Controlled-NOT Gate. Nature 2003, 426, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Crespi, A.; Osellame, R.; Ramponi, R.; Bentivegna, M.; Flamini, F.; Spagnolo, N.; Viggianiello, N.; Innocenti, L.; Mataloni, P.; Sciarrino, F. Suppression Law of Quantum States in a 3D Photonic Fast Fourier Transform Chip. Nat. Commun. 2016, 7, 10469. [Google Scholar] [CrossRef] [PubMed]
- Politi, A.; Cryan, M.J.; Rarity, J.G.; Yu, S.; O’Brien, J.L. Silica-on-Silicon Waveguide Quantum Circuits. Science 2008, 320, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.C.F.; Politi, A.; Stefanov, A.; O’Brien, J.L. Manipulation of Multiphoton Entanglement in Waveguide Quantum Circuits. Nat. Photonics 2009, 3, 346–350. [Google Scholar] [CrossRef]
- Politi, A.; Matthews, J.C.F.; O’Brien, J.L. Shor’s Quantum Factoring Algorithm on a Photonic Chip. Science 2009, 325, 1221. [Google Scholar] [CrossRef] [PubMed]
- Shadbolt, P.J.; Verde, M.R.; Peruzzo, A.; Politi, A.; Laing, A.; Lobino, M.; Matthews, J.C.F.; Thompson, M.G.; O’Brien, J.L. Generating, Manipulating and Measuring Entanglement and Mixture with a Reconfigurable Photonic Circuit. Nat. Photonics 2012, 6, 45–49. [Google Scholar] [CrossRef]
- Silverstone, J.W.; Bonneau, D.; Ohira, K.; Suzuki, N.; Yoshida, H.; Iizuka, N.; Ezaki, M.; Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H.; et al. On-Chip Quantum Interference between Silicon Photon-Pair Sources. Nat. Photonics 2014, 8, 104–108. [Google Scholar] [CrossRef]
- Crespi, A.; Osellame, R.; Ramponi, R.; Brod, D.J.; Galvão, E.F.; Spagnolo, N.; Vitelli, C.; Maiorino, E.; Mataloni, P.; Sciarrino, F. Integrated Multimode Interferometers with Arbitrary Designs for Photonic Boson Sampling. Nat. Photonics 2013, 7, 545–549. [Google Scholar] [CrossRef]
- Tillmann, M.; Dakić, B.; Heilmann, R.; Nolte, S.; Szameit, A.; Walther, P. Experimental Boson Sampling. Nat. Photonics 2013, 7, 540–544. [Google Scholar] [CrossRef]
- Carolan, J.; Meinecke, J.D.A.; Shadbolt, P.J.; Russell, N.J.; Ismail, N.; Wörhoff, K.; Rudolph, T.; Thompson, M.G.; O’Brien, J.L.; Matthews, J.C.F.; et al. On the Experimental Verification of Quantum Complexity in Linear Optics. Nat. Photonics 2014, 8, 621–626. [Google Scholar] [CrossRef]
- Broome, M.A.; Fedrizzi, A.; Rahimi-Keshari, S.; Dove, J.; Aaronson, S.; Ralph, T.C.; White, A.G. Photonic Boson Sampling in a Tunable Circuit. Science 2013, 339, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Spring, J.B.; Metcalf, B.J.; Humphreys, P.C.; Kolthammer, W.S.; Jin, X.-M.; Barbieri, M.; Datta, A.; Thomas-Peter, N.; Langford, N.K.; Kundys, D.; et al. Boson Sampling on a Photonic Chip. Science 2013, 339, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Carolan, J.; Harrold, C.; Sparrow, C.; Martín-López, E.; Russell, N.J.; Silverstone, J.W.; Shadbolt, P.J.; Matsuda, N.; Oguma, M.; Itoh, M.; et al. Universal Linear Optics. Science 2015, 349, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Ciampini, M.A.; Orieux, A.; Paesani, S.; Sciarrino, F.; Corrielli, G.; Crespi, A.; Ramponi, R.; Osellame, R.; Mataloni, P. Path-Polarization Hyperentangled and Cluster States of Photons on a Chip. Light Sci. Appl. 2016, 5, e16064. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Paesani, S.; Santagati, R.; Knauer, S.; Gentile, A.A.; Wiebe, N.; Petruzzella, M.; O’Brien, J.L.; Rarity, J.G.; Laing, A.; et al. Experimental Quantum Hamiltonian Learning. Nat. Phys. 2017, 13, 551–555. [Google Scholar] [CrossRef]
- Wang, J.; Paesani, S.; Ding, Y.; Santagati, R.; Skrzypczyk, P.; Salavrakos, A.; Tura, J.; Augusiak, R.; Mančinska, L.; Bacco, D.; et al. Multidimensional Quantum Entanglement with Large-Scale Integrated Optics. Science 2018, 360, 285–291. [Google Scholar] [CrossRef]
- Arrazola, J.M.; Bergholm, V.; Brádler, K.; Bromley, T.R.; Collins, M.J.; Dhand, I.; Fumagalli, A.; Gerrits, T.; Goussev, A.; Helt, L.G.; et al. Quantum Circuits with Many Photons on a Programmable Nanophotonic Chip. Nature 2021, 591, 54–60. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, L.; Li, M.; Chen, Y.; Zhang, L.; He, D.; Guo, G.; Guo, G.; Ren, X.; Dai, D. Supercompact Photonic Quantum Logic Gate on a Silicon Chip. Phys. Rev. Lett. 2021, 126, 130501. [Google Scholar] [CrossRef]
- Chi, Y.; Huang, J.; Zhang, Z.; Mao, J.; Zhou, Z.; Chen, X.; Zhai, C.; Bao, J.; Dai, T.; Yuan, H.; et al. A Programmable Qudit-Based Quantum Processor. Nat. Commun. 2022, 13, 1166. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhai, C.; Liu, D.; Mao, J.; Chen, X.; Dai, T.; Huang, J.; Bao, J.; Fu, Z.; Tong, Y.; et al. Multichip Multidimensional Quantum Networks with Entanglement Retrievability. Science 2023, 381, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Ono, T.; Roga, W.; Wakui, K.; Fujiwara, M.; Miki, S.; Terai, H.; Takeoka, M. Demonstration of a Bosonic Quantum Classifier with Data Reuploading. Phys. Rev. Lett. 2023, 131, 013601. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Fu, Z.; Pramanik, T.; Mao, J.; Chi, Y.; Cao, Y.; Zhai, C.; Mao, Y.; Dai, T.; Chen, X.; et al. Very-Large-Scale Integrated Quantum Graph Photonics. Nat. Photonics 2023, 17, 573–581. [Google Scholar] [CrossRef]
- Santagati, R.; Silverstone, J.W.; Strain, M.J.; Sorel, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M.G.; et al. Silicon Photonic Processor of Two-Qubit Entangling Quantum Logic. J. Opt. 2017, 19, 114006. [Google Scholar] [CrossRef]
- Aaronson, S.; Arkhipov, A. The Computational Complexity of Linear Optics. Theory Comput. 2013, 9, 143–252. [Google Scholar] [CrossRef]
- Hamilton, C.S.; Kruse, R.; Sansoni, L.; Barkhofen, S.; Silberhorn, C.; Jex, I. Gaussian Boson Sampling. Phys. Rev. Lett. 2017, 119, 170501. [Google Scholar] [CrossRef]
- Harris, N.C.; Steinbrecher, G.R.; Prabhu, M.; Lahini, Y.; Mower, J.; Bunandar, D.; Chen, C.; Wong, F.N.C.; Baehr-Jones, T.; Hochberg, M.; et al. Quantum Transport Simulations in a Programmable Nanophotonic Processor. Nat. Photonics 2017, 11, 447–452. [Google Scholar] [CrossRef]
- Qiang, X.; Zhou, X.; Wang, J.; Wilkes, C.M.; Loke, T.; O’Gara, S.; Kling, L.; Marshall, G.D.; Santagati, R.; Ralph, T.C.; et al. Large-Scale Silicon Quantum Photonics Implementing Arbitrary Two-Qubit Processing. Nat. Photonics 2018, 12, 534–539. [Google Scholar] [CrossRef]
- Huh, J.; Guerreschi, G.G.; Peropadre, B.; McClean, J.R.; Aspuru-Guzik, A. Boson Sampling for Molecular Vibronic Spectra. Nat. Photonics 2015, 9, 615–620. [Google Scholar] [CrossRef]
- Chen, X.; Deng, Y.; Liu, S.; Pramanik, T.; Mao, J.; Bao, J.; Zhai, C.; Dai, T.; Yuan, H.; Guo, J.; et al. A Generalized Multipath Delayed-Choice Experiment on a Large-Scale Quantum Nanophotonic Chip. Nat. Commun. 2021, 12, 2712. [Google Scholar] [CrossRef]
- Somhorst, F.H.B.; Van Der Meer, R.; Correa Anguita, M.; Schadow, R.; Snijders, H.J.; De Goede, M.; Kassenberg, B.; Venderbosch, P.; Taballione, C.; Epping, J.P.; et al. Quantum Simulation of Thermodynamics in an Integrated Quantum Photonic Processor. Nat. Commun. 2023, 14, 3895. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, N.; Vitelli, C.; Aparo, L.; Mataloni, P.; Sciarrino, F.; Crespi, A.; Ramponi, R.; Osellame, R. Three-Photon Bosonic Coalescence in an Integrated Tritter. Nat. Commun. 2013, 4, 1606. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, N.; Vitelli, C.; Bentivegna, M.; Brod, D.J.; Crespi, A.; Flamini, F.; Giacomini, S.; Milani, G.; Ramponi, R.; Mataloni, P.; et al. Experimental Validation of Photonic Boson Sampling. Nat. Photonics 2014, 8, 615–620. [Google Scholar] [CrossRef]
- Madsen, L.S.; Laudenbach, F.; Askarani, M. Falamarzi.; Rortais, F.; Vincent, T.; Bulmer, J.F.F.; Miatto, F.M.; Neuhaus, L.; Helt, L.G.; Collins, M.J.; et al. Quantum Computational Advantage with a Programmable Photonic Processor. Nature 2022, 606, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Brod, D.J.; Galvão, E.F.; Crespi, A.; Osellame, R.; Spagnolo, N.; Sciarrino, F. Photonic Implementation of Boson Sampling: A Review. Adv. Photonics 2019, 1, 1. [Google Scholar]
- Sax, R.; Boaron, A.; Boso, G.; Atzeni, S.; Crespi, A.; Grünenfelder, F.; Rusca, D.; Al-Saadi, A.; Bronzi, D.; Kupijai, S.; et al. High-Speed Integrated QKD System. Photonics Res. 2023, 11, 1007. [Google Scholar] [CrossRef]
- Tasker, J.F.; Frazer, J.; Ferranti, G.; Allen, E.J.; Brunel, L.F.; Tanzilli, S.; D’Auria, V.; Matthews, J.C.F. Silicon Photonics Interfaced with Integrated Electronics for 9 GHz Measurement of Squeezed Light. Nat. Photonics 2021, 15, 11–15. [Google Scholar] [CrossRef]
- Yu, M.; Cheng, R.; Reimer, C.; He, L.; Luke, K.; Puma, E.; Shao, L.; Shams-Ansari, A.; Ren, X.; Grant, H.R.; et al. Integrated Electro-Optic Isolator on Thin-Film Lithium Niobate. Nat. Photonics 2023, 17, 666–671. [Google Scholar] [CrossRef]
- Feng, L.-T.; Zhang, M.; Xiong, X.; Liu, D.; Cheng, Y.-J.; Jing, F.-M.; Qi, X.-Z.; Chen, Y.; He, D.-Y.; Guo, G.-P.; et al. Transverse Mode-Encoded Quantum Gate on a Silicon Photonic Chip. Phys. Rev. Lett. 2022, 128, 060501. [Google Scholar] [CrossRef]
- Cheng, X.; Chang, K.-C.; Xie, Z.; Sarihan, M.C.; Lee, Y.S.; Li, Y.; Xu, X.; Vinod, A.K.; Kocaman, S.; Yu, M.; et al. A Chip-Scale Polarization-Spatial-Momentum Quantum SWAP Gate in Silicon Nanophotonics. Nat. Photonics 2023, 17, 656–665. [Google Scholar] [CrossRef]
- Wang, J.; Bonneau, D.; Villa, M.; Silverstone, J.W.; Santagati, R.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; et al. Chip-to-Chip Quantum Photonic Interconnect by Path-Polarization Interconversion. Optica 2016, 3, 407–413. [Google Scholar] [CrossRef]
- Chen, L.; Lu, L.; Xia, L.; Lu, Y.; Zhu, S.; Ma, X. On-Chip Generation and Collectively Coherent Control of the Superposition of the Whole Family of Dicke States. Phys. Rev. Lett. 2023, 130, 223601. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.P.; Salazar-Serrano, L.J. Weak Value Amplification: A View from Quantum Estimation Theory That Highlights What It Is and What Isn’t. Sci. Rep. 2016, 6, 19702. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.E. Cramming More Components onto Integrated Circuits. Proc. IEEE 1998, 86, 82. [Google Scholar] [CrossRef]
- Su, Y.; He, Y.; Guo, X.; Xie, W.; Ji, X.; Wang, H.; Cai, X.; Tong, L.; Yu, S. Scalability of Large-Scale Photonic Integrated Circuits. ACS Photonics 2023, 10, 2020–2030. [Google Scholar] [CrossRef]
- Wang, Y.; Faurby, C.F.D.; Ruf, F.; Sund, P.I.; Nielsen, K.; Volet, N.; Heck, M.J.R.; Bart, N.; Wieck, A.D.; Ludwig, A.; et al. Deterministic Photon Source Interfaced with a Programmable Silicon-Nitride Integrated Circuit. NPJ Quantum Inf. 2023, 9, 94. [Google Scholar] [CrossRef]
- Bonneau, D.; Engin, E.; Ohira, K.; Suzuki, N.; Yoshida, H.; Iizuka, N.; Ezaki, M.; Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H.; et al. Quantum Interference and Manipulation of Entanglement in Silicon Wire Waveguide Quantum Circuits. New J. Phys. 2012, 14, 045003. [Google Scholar] [CrossRef]
- Silverstone, J.W.; Santagati, R.; Bonneau, D.; Strain, M.J.; Sorel, M.; O’Brien, J.L.; Thompson, M.G. Qubit Entanglement between Ring-Resonator Photon-Pair Sources on a Silicon Chip. Nat. Commun. 2015, 6, 7948. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piergentili, P.; Amanti, F.; Andrini, G.; Armani, F.; Bellani, V.; Bonaiuto, V.; Cammarata, S.; Campostrini, M.; Cornia, S.; Dao, T.H.; et al. Quantum Information with Integrated Photonics. Appl. Sci. 2024, 14, 387. https://doi.org/10.3390/app14010387
Piergentili P, Amanti F, Andrini G, Armani F, Bellani V, Bonaiuto V, Cammarata S, Campostrini M, Cornia S, Dao TH, et al. Quantum Information with Integrated Photonics. Applied Sciences. 2024; 14(1):387. https://doi.org/10.3390/app14010387
Chicago/Turabian StylePiergentili, Paolo, Francesco Amanti, Greta Andrini, Fabrizio Armani, Vittorio Bellani, Vincenzo Bonaiuto, Simone Cammarata, Matteo Campostrini, Samuele Cornia, Thu Ha Dao, and et al. 2024. "Quantum Information with Integrated Photonics" Applied Sciences 14, no. 1: 387. https://doi.org/10.3390/app14010387
APA StylePiergentili, P., Amanti, F., Andrini, G., Armani, F., Bellani, V., Bonaiuto, V., Cammarata, S., Campostrini, M., Cornia, S., Dao, T. H., De Matteis, F., Demontis, V., Di Giuseppe, G., Ditalia Tchernij, S., Donati, S., Fontana, A., Forneris, J., Francini, R., Frontini, L., ... Vitali, V. (2024). Quantum Information with Integrated Photonics. Applied Sciences, 14(1), 387. https://doi.org/10.3390/app14010387