Special Issue on Recent Advances and Future Trends in Nanophotonics II
1. Introduction
2. An Overview of Published Articles
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Kaps, F.G.; Kehr, S.C.; Eng, L.M. Polarization Sensitivity in Scattering-Type Scanning Near-Field Optical Microscopy—Towards Nanoellipsometry. Appl. Sci. 2023, 13, 10429. https://doi.org/10.3390/app131810429.
- Menahem, J.; Malka, D. A Two-Channel Silicon Nitride Multimode Interference Coupler with Low Back Reflection. Appl. Sci. 2022, 12, 11812. https://doi.org/10.3390/app122211812.
- Hatifi, M.; Mara, D.; Bokic, B.; Van Deun, R.; Stout, B.; Lassalle, E.; Kolaric, B.; Durt, T. Fluorimetry in the Strong-Coupling Regime: From a Fundamental Perspective to Engineering New Tools for Tracing and Marking Materials and Objects. Appl. Sci. 2022, 12, 9238. https://doi.org/10.3390/app12189238.
- Jia, Z.; Asiri, S.; Elsharif, A.; Alamoudi, W.; Al-Suhaimi, E.; Kim, S.-G. Design of Inverted Nano-Cone Arrayed SERS Substrate for Rapid Detection of Pathogens. Appl. Sci. 2021, 11, 8067. https://doi.org/10.3390/app11178067.
- Piergentili, P.; Amanti, F.; Andrini, G.; Armani, F.; Bellani, V.; Bonaiuto, V.; Cammarata, S.; Campostrini, M.; Cornia, S.; Dao, T.H.; et al. Quantum Information with Integrated Photonics. Appl. Sci. 2024, 14, 387. https://doi.org/10.3390/app14010387.
References
- Richard, R.; Xinzhong, C.; Mengkun, L. High-efficiency scattering probe design for s-polarized near-field microscopy. Appl. Phys. Express 2021, 14, 022002. [Google Scholar]
- Park, K.D.; Raschke, M.B. Polarization Control with Plasmonic Antenna Tips: A Universal Approach to Optical Nanocrystallography and Vector-Field Imaging. Nano Lett. 2018, 18, 2912–2917. [Google Scholar] [CrossRef]
- Yao, Z.; Chen, X.; Wehmeier, L.; Xu, S.; Shao, Y.; Zeng, Z.; Liu, F.; Mcleod, A.S.; Gilbert Corder, S.N.; Tsuneto, M.; et al. Probing subwavelength in-plane anisotropy with antenna-assisted infrared nano-spectroscopy. Nat. Commun. 2021, 12, 2649. [Google Scholar] [CrossRef] [PubMed]
- Aminpour, H.; Eng, L.M.; Kehr, S.C. Spatially confined vector fields at material-induced resonances in near-field-coupled systems. Opt. Express 2020, 28, 32316. [Google Scholar] [CrossRef] [PubMed]
- Wehmeier, L.; Lang, D.; Liu, Y.; Zhang, X.; Winnerl, S.; Eng, L.M.; Kehr, S.C. Polarization-dependent near-field phonon nanoscopy of oxides: SrTiO3, LiNbO3, and PbZr0.2Ti0.8O3. Phys. Rev. B 2019, 100, 47–52. [Google Scholar] [CrossRef]
- Huber, A.J.; Ziegler, A.; Köck, T.; Hillenbrand, R. Infrared nanoscopy of strained semiconductors. Nat. Nanotechnol. 2009, 4, 153–157. [Google Scholar] [CrossRef]
- Wehmeier, L.; Nörenberg, T.; De Oliveira, T.V.; Klopf, J.M.; Yang, S.Y.; Martin, L.W.; Ramesh, R.; Eng, L.M.; Kehr, S.C. Phonon-induced near-field resonances in multiferroic BiFeO3 thin films at infrared and THz wavelengths. Appl. Phys. Lett. 2020, 116, 071103. [Google Scholar] [CrossRef]
- Döring, J.; Lang, D.; Wehmeier, L.; Kuschewski, F.; Nörenberg, T.; Kehr, S.C.; Eng, L.M. Low-temperature nanospectroscopy of the structural ferroelectric phases in single-crystalline barium titanate. Nanoscale 2018, 10, 18074–18079. [Google Scholar] [CrossRef]
- Ioudashkin, E.; Malka, D. A Three Demultiplexer C-Band Using Angled Multimode Interference in GaN–SiO2 Slot Waveguide Structures. Nanomaterials 2020, 10, 2338. [Google Scholar] [CrossRef]
- Dadabayev, R.; Malka, D. A visible light RGB wavelength demultiplexer based on polycarbonate multicore polymer optical fiber. Opt. Laser Technol. 2019, 116, 239–245. [Google Scholar] [CrossRef]
- Gelkop, B.; Aichnboim, L.; Malka, D. RGB wavelength multiplexer based on polycarbonate multicore polymer optical fiber. Opt. Fiber Technol. 2021, 61, 102441. [Google Scholar] [CrossRef]
- Gindi, M.; Melamed, A.; Malka, D. A four green-light demultiplexer using a multi gallium nitride slot-waveguide structure. Photonics Nanostruct.-Fundam. Appl. 2020, 42, 100855. [Google Scholar] [CrossRef]
- Shoresh, T.; Katanov, N.; Malka, D. 1× 4 MMI visible light wavelength demultiplexer based on a GaN slot-waveguide structure. Photonics Nanostruct.-Fundam. Appl. 2018, 30, 45–49. [Google Scholar] [CrossRef]
- Ben Zaken, B.B.; Zanzury, T.; Malka, D. An 8-channel wavelength MMI demultiplexer in slot waveguide structures. Materials 2016, 9, 881. [Google Scholar] [CrossRef] [PubMed]
- Menahem, J.; Malka, D. 1 × 4 Wavelength Demultiplexer C-Band Using Cascaded Multimode Interference on SiN Buried Waveguide Structure. Materials 2022, 15, 5067. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P.; Khanra, K.; Chowdhury, A.R.; Datta, P. Lab-on-a-chip sensing devices for biomedical applications. In Bioelectronics and Medical Devices from Materials to Devices—Fabrication, Applications and Reliability, 1st ed.; Pal, K., Kraatz, H.-B., Khasnobish, A., Bag, S., Banerjee, I., Kuruganti, U., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 47–95. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006; pp. 623–740. [Google Scholar]
- Cowen, E.A.; Ward, K.B. Chemical Plume Tracing. Environ. Fluid Mech. 2002, 2, 1–7. [Google Scholar] [CrossRef]
- Chan, W.P.; Chen, J.H.; Chou, W.L.; Chen, W.Y.; Liu, H.Y.; Hu, H.C.; Jeng, C.C.; Li, J.R.; Chen, C.; Chen, S.Y. Efficient DNA-Driven Nanocavities for Approaching Quasi-Deterministic Strong Coupling to a Few Fluorophores. ACS Nano 2021, 15, 13085–13093. [Google Scholar] [CrossRef] [PubMed]
- Punj, D.; Regmi, R.; Devilez, A.; Plauchu, R.; Moparthi, S.B.; Stout, B.; Bonod, N.; Rigneault, H.; Wenger, J. Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations. ACS Photonics 2015, 2, 1099–1107. [Google Scholar] [CrossRef]
- Busson, M.P.; Rolly, B.; Stout, B.; Bonod, N.; Wenger, J.; Bidault, S. Photonic Engineering of Hybrid Metal—Organic Chromophores. Angew. Chem. Int. Ed. 2012, 51, 11083–11087. [Google Scholar] [CrossRef]
- Kolaric, B.; Maes, B.; Clays, K.; Durt, T.; Caudano, Y. Strong Light-Matter Coupling as a New Tool for Molecular and Material Engineering: Quantum Approach. Adv. Quantum Technol. 2018, 1, 1800001. [Google Scholar] [CrossRef]
- Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Kirpalani, H.; Huang, L.; Michenko, M.J.; Duffet, M. Manual of Pediatric Intensive Care. PMPH-USA. 2009. Available online: https://www.wolterskluwer.com/en/solutions/ovid/manual-of-pediatric-intensive-care-8132 (accessed on 1 May 2024).
- Managò, S.; Tramontano, C.; Cave, D.D.; Chianese, G.; Zito, G.; De Stefano, L.; Terracciano, M.; Lonardo, E.; De Luca, A.C.; Rea, I. SERS quantification of galunisertib delivery in colorectal cancer cells by plasmonic-assisted diatomite nanoparticles. Small 2021, 17, 2101711. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Ling, X.; Xiao, J.; Dresselhaus, M.S.; Kong, J.; Xu, H.; Liu, Z.; Zhang, J. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. USA 2012, 109, 9281–9286. [Google Scholar] [CrossRef] [PubMed]
- Tao, A.R.; Yang, P. Polarized Surface-Enhanced Raman Spectroscopy on Coupled Metallic Nanowires. J. Phys. Chem. B 2005, 109, 15687–15690. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Eddins, A.; Anand, S.; Wei, K.X.; Van Den Berg, E.; Rosenblatt, S.; Nayfeh, H.; Wu, Y.; Zaletel, M.; Temme, K.; et al. Evidence for the Utility of Quantum Computing before Fault Tolerance. Nature 2023, 618, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Primavera, B.A.; Chiles, J.; McCaughan, A.N.; Buckley, S.M.; Tait, A.N.; Lita, A.; Biesecker, J.; Fox, A.; Olaya, D.; et al. Superconducting Optoelectronic Single-Photon Synapses. Nat. Electron. 2022, 5, 650–659. [Google Scholar] [CrossRef]
- Dardano, P.; Ferrara, M.A. Integrated Photodetectors Based on Group IV and Colloidal Semiconductors: Current State of Affairs. Micromachines 2020, 11, 842. [Google Scholar] [CrossRef] [PubMed]
- Coppola, G.; Ferrara, M.A. Polarization-sensitive digital holographic imaging for characterization of microscopic samples: Recent advances and perspectives. Appl. Sci. 2020, 10, 4520. [Google Scholar] [CrossRef]
- Di Caprio, G.; Dardano, P.; Coppola, G.; Cabrini, S.; Mocella, V. Digital holographic microscopy characterization of superdirective beam by metamaterial. Opt. Lett. 2012, 37, 1142. [Google Scholar] [CrossRef]
- Ranjan, R.; D’Arco, A.; Ferrara, M.A.; Indolfi, M.; Larobina, M.; Sirleto, L. Integration of stimulated Raman gain and stimulated Raman losses detection modes in a single nonlinear microscope. Opt. Express 2012, 26, 26317–26326. [Google Scholar] [CrossRef] [PubMed]
- Mocella, V.; Dardano, P.; Rendina, I.; Cabrini, S. An extraordinary directive radiation based on optical antimatter at near infrared. Opt. Express 2010, 18, 25068–25074. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, M.A.; Dardano, P. Special Issue on Recent Advances and Future Trends in Nanophotonics II. Appl. Sci. 2024, 14, 4524. https://doi.org/10.3390/app14114524
Ferrara MA, Dardano P. Special Issue on Recent Advances and Future Trends in Nanophotonics II. Applied Sciences. 2024; 14(11):4524. https://doi.org/10.3390/app14114524
Chicago/Turabian StyleFerrara, Maria Antonietta, and Principia Dardano. 2024. "Special Issue on Recent Advances and Future Trends in Nanophotonics II" Applied Sciences 14, no. 11: 4524. https://doi.org/10.3390/app14114524
APA StyleFerrara, M. A., & Dardano, P. (2024). Special Issue on Recent Advances and Future Trends in Nanophotonics II. Applied Sciences, 14(11), 4524. https://doi.org/10.3390/app14114524