Lactic Acid Bacteria and Bacillus subtilis as Potential Protective Cultures for Biopreservation in the Food Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Potential Bacterial Strains as Protective Cultures
2.1.1. Antimicrobial Activity of the CFS by Agar Well Diffusion Assay
2.1.2. Minimum Inhibitory Concentration (MIC)
2.2. In Vitro Determination of Antibiotic Resistance
2.3. Evaluation of the Cytotoxicity of the Cell-Free Supernatant of B. subtilis CNTA 517 on Epithelial Cells
2.4. Investigation of the Nature of the Antimicrobial Compounds
2.4.1. Synthesis of Organic Acids and Their Contribution to Antimicrobial Activity
Organic Acids Concentration by HPLC
Antimicrobial Activity of the Cell-Free Supernatants at Different pHs
2.4.2. Bacteriocin-like Substance Production by the Cell-Free Supernatants
2.5. Thermal Stability of the Cell-Free Supernatants
2.6. Whole-Genome Sequencing of the Strains, Identification of AMR Genes, and Identification of Biosynthetic Gene Clusters
2.7. Data Analysis and Representation
3. Results and Discussion
3.1. Preliminary Selection of Potential Bacterial Strains to Be Protective Cultures and Characterization of Their Antimicrobial Activity
3.2. Antimicrobial Activity of the CFS
3.3. Antibiotic Resistance of the Selected Strains
3.4. Evaluation of the Cytotoxicity of the Cell-Free Supernatant of B. subtilis CNTA 517 on Epithelial Cells
3.5. Nature of the Antimicrobial Compounds Contained in CFS
3.5.1. The Synthesis of Organic Acids and Their Contribution to Antimicrobial Activity
3.5.2. Antimicrobial Peptide Production by the Cell-Free Supernatants
3.5.3. Antimicrobial Compounds Produced by B. subtilis Strain CNTA 517
3.6. Thermal Stability of the Cell-Free Supernatants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aschemann-Witzel, J.; Varela, P.; Peschel, A.O. Consumers’ categorization of food ingredients: Do consumers perceive them as ‘clean label’ producers expect? An exploration with projective mapping. Food Qual. Prefer. 2019, 71, 117–128. [Google Scholar] [CrossRef]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Cegiełka, A. “Clean label” as one of the leading trends ins the meat industry in the world and in Poland—A review. Rocz. Panstw. Zakl. Hig. 2020, 71, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Elika. Informe RASFF Alimentos Alertas y Notificaciones. Available online: https://alimentos.elika.eus/wp-content/uploads/sites/2/2024/02/resumen-anual-_rasff-alimentos_2023.pdf (accessed on 13 April 2024).
- Strack, L.; Carli, R.C.; da Silva, R.V.; Sartor, K.B.; Colla, L.M.; Reinehr, C.O. Food biopreservation using antimicrobials produced by lactic acid bacteria. Res., Soc. Dev. 2020, 9, e998986666. [Google Scholar] [CrossRef]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: A review. Environ. Chem. Lett. 2021, 19, 1715–1735. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Pando, G.; Ekonomou, S.I.; Stratakos, A.C.; Pintado, T. Clean label alternatives in meat products. Foods 2021, 10, 1615. [Google Scholar] [CrossRef]
- Barcenilla, C.; Puente, A.; Cobo-Díaz, J.F.; Alexa, E.-A.; Garcia-Gutierrez, E.; O’connor, P.M.; Cotter, P.D.; González-Raurich, M.; López, M.; Prieto, M.; et al. Selection of lactic acid bacteria as biopreservation agents and optimization of their mode of application for the control of Listeria monocytogenes in ready-to-eat cooked meat products. Int. J. Food Microbiol. 2023, 403, 110341. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.A.; Wilke, T.; Erdmann, R. Efficacy of bacteriocin-containing cell-free culture supernatants from lactic acid bacteria to control Listeria monocytogenes in food. Int. J. Food Microbiol. 2011, 146, 192–199. [Google Scholar] [CrossRef]
- Souza, L.V.; Martins, E.; Moreira, I.M.F.B.; de Carvalho, A.F. Strategies for the development of bioprotective cultures in food preservation. Int. J. Food Microbiol. 2022, 2022, 6264170. [Google Scholar] [CrossRef]
- EFSA BIOHAZ Panel. Updated List of QPS-Recommended Microorganisms for Safety Risk Assessments Carried Out by EFSA. 2024. Available online: https://zenodo.org/records/10534041 (accessed on 25 April 2024).
- EFSA Panel on Biological Hazards. Statement on how to interpret the QPS qualification on ‘acquired antimicrobial resistance genes’. EFSA J. 2023, 21, e08323. [Google Scholar] [CrossRef]
- EFSA Panel on Additives. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 2018, 16, e05206. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.W.; Titgemeyer, F. Protective cultures in food products: From science to market. Foods 2023, 12, 1541. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Opinion of the Scientific Committee on a request from EFSA related to a generic approach to the safety assessment by EFSA of microorganisms used in food/feed and the production of food/feed additives. EFSA J. 2005, 3, 226. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Ayivi, R.D.; Zimmerman, T.; Siddiqui, S.A.; Altemimi, A.B.; Fidan, H.; Esatbeyoglu, T.; Bakhshayesh, R.V. Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Foods 2021, 10, 3131. [Google Scholar] [CrossRef] [PubMed]
- Bangar, S.P.; Suri, S.; Trif, M.; Ozogul, F. Organic acids production from lactic acid bacteria: A preservation approach. Food Biosci. 2022, 46, 101615. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, S.; Liu, W.; Guo, T.; Gu, R.; Kong, J. Potential application and bactericidal mechanism of lactic acid–hydrogen peroxide consortium. Appl. Biochem. Biotechnol. 2019, 189, 822–833. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, P.M.; Kuniyoshi, T.M.; Oliveira, R.P.; Hill, C.; Ross, R.P.; Cotter, P.D. Antimicrobials for food and feed; a bacteriocin perspective. Curr. Opin. Biotechnol. 2020, 61, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Kourmentza, K.; Gromada, X.; Michael, N.; Degraeve, C.; Vanier, G.; Ravallec, R.; Coutte, F.; Karatzas, K.A.; Jauregi, P. Antimicrobial activity of lipopeptide biosurfactants against foodborne pathogen and food spoilage microorganisms and their cytotoxicity. Front. Microbiol. 2021, 11, 561060. [Google Scholar] [CrossRef]
- Mercado, V.; Olmos, J. Bacteriocin production by Bacillus Species: Isolation, characterization, and application. Probiotics Antimicrob. Proteins 2022, 14, 1151–1169. [Google Scholar] [CrossRef]
- Tran, C.; Cock, I.E.; Chen, X.; Feng, Y. Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics 2022, 11, 88. [Google Scholar] [CrossRef]
- To, H.T.A.; Chhetri, V.; Settachaimongkon, S.; Prakitchaiwattana, C. Stress tolerance-Bacillus with a wide spectrum bacteriocin as an alternative approach for food bio-protective culture production. Food Control 2022, 133, 108598. [Google Scholar] [CrossRef]
- Iseppi, R.; Camellini, S.; Sabia, C.; Messi, P. Combined antimicrobial use of essential oils and bacteriocin bacLP17 as seafood biopreservative to control Listeria monocytogenes both in planktonic and in sessile forms. Res. Microbiol. 2020, 171, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Ivanovic, M.; Mirkovic, N.; Mirkovic, M.; Miocinovic, J.; Radulovic, A.; Knudsen, T.S.; Radulovic, Z. Autochthonous Enterococcus durans pfmi565 and Lactococcus lactis subsp. Lactis bgbu1–4 in bio-control of Listeria monocytogenes in ultrafiltered cheese. Foods 2021, 10, 1448. [Google Scholar] [CrossRef] [PubMed]
- Fredua-Agyeman, M.; Gaisford, S. Assessing inhibitory activity of probiotic culture supernatants against Pseudomonas aeruginosa: A comparative methodology between agar diffusion, broth culture and microcalorimetry. World J. Microb. Biot. 2019, 35, 49. [Google Scholar] [CrossRef] [PubMed]
- Lestari, S.D.; Sadiq AL, O.; Safitri, W.A.; Dewi, S.S.; Prastiyanto, M.E. The antibacterial activities of bacteriocin Pediococcus acidilactici of breast milk isolate to against methicillin-resistant Staphylococcus aureus. J. Phys. Conf. Ser. 2019, 1374, 012021. [Google Scholar] [CrossRef]
- Imade, E.E.; Omonigho, S.E.; Babalola, O.O.; Enagbonma, B.J. Lactic acid bacterial bacteriocins and their bioactive properties against food-associated antibiotic-resistant bacteria. Ann. Microbiol. 2021, 71, 44. [Google Scholar] [CrossRef]
- ISO 10932:2010; Milk and Milk Products: Determination of the Minimal Inhibitory Concentration (MIC) of Antibiotics Applicable to Bifidobacteria and Non-enterococcal Lactic Acid Bacteria. 10932/IDF 223 Standard. International Organization for Standardization: Geneva, Switzerland, 2010.
- EFSA Panel on Additives and Products or Substances Used in Animal Feed (FEEDAP). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar] [CrossRef]
- European Comission Health and Consumer Protection Directorate-General. Opinion of the Scientific Committee on Animal Nutrition on the Criteria for Assessing the Safety of Microorganisms Resistant to Antibiotics of Human and Veterinary Importance. 2003. Available online: https://ec.europa.eu/food/fs/sc/scan/out108_en.pdf (accessed on 12 April 2024).
- Zheng, Z.; Ma, C.; Gao, C.; Li, F.; Qin, J.; Zhang, H.; Wang, K.; Xu, P. Efficient conversion of phenylpyruvic acid to phenyllactic acid by using whole cells of Bacillus coagulans SDM. PLoS ONE 2011, 6, e19030. [Google Scholar] [CrossRef]
- Lin, T.-H.; Pan, T.-M. Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102. J. Microbiol. Immunol. Infect. 2019, 52, 409–417. [Google Scholar] [CrossRef]
- Selvam, D.; Thangarasu, A.; Shyu, D.J.H.; Neelamegam, R.; Muthukalingan, K.; Nagarajan, K. Antimicrobial substance produced by Pseudomonas aeruginosa isolated from slaughterhouse sediment: Physicochemical characterization, purification, and identification. Int. J. Pept. Res. Ther. 2021, 27, 887–897. [Google Scholar] [CrossRef]
- Arrioja-Bretón, D.; Mani-López, E.; Palou, E.; López-Malo, A. Antimicrobial activity and storage stability of cell-free supernatants from lactic acid bacteria and their applications with fresh beef. Food Control 2020, 115, 107286. [Google Scholar] [CrossRef]
- Darbandi, A.; Asadi, A.; Ari, M.M.; Ohadi, E.; Talebi, M.; Zadeh, M.H.; Emamie, A.D.; Ghanavati, R.; Kakanj, M. Bacteriocins: Properties and potential use as antimicrobials. J. Clin. Lab. Anal. 2022, 36, e24093. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 12 March 2024).
- Seemann, T. Shovill: Faster SPAdes Assembly of Illumina Reads. 2017. Available online: https://github.com/tseemann/shovill (accessed on 10 March 2024).
- Mikheenko, A.; Prjibelski, A.; Saveliev, V.; Antipov, D.; Gurevich, A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 2018, 34, i142–i150. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. ABRicate: Mass Screening of Contigs for Antibiotic Resistance Genes. 2016. Available online: https://github.com/tseemann/abricate (accessed on 11 March 2024).
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; A Wlodarski, M.; Edalatmand, A.; Petkau, A.; A Syed, S.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2016, 45, D566–D573. [Google Scholar] [CrossRef] [PubMed]
- Florensa, A.F.; Kaas, R.S.; Clausen, P.T.L.C.; Aytan-Aktug, D.; Aarestrup, F.M. ResFinder—An open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb. Genom. 2022, 8, 000748. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Hasman, H. PlasmidFinder and in silico pMLST: Identification and yyping of plasmid replicons in whole-genome sequencing (WGS). Methods Mol. Biol. 2020, 2075, 285–294. [Google Scholar] [CrossRef]
- Johansson, M.H.K.; Bortolaia, V.; Tansirichaiya, S.; Aarestrup, F.M.; Roberts, A.P.; Petersen, T.N. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J. Antimicrob. Chemother. 2021, 76, 101–109. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucl. Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef] [PubMed]
- NCBI. Common Taxonomy Tree. Available online: https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi (accessed on 3 April 2024).
- R Core Team: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2013. Available online: https://www.R-project.org/2 (accessed on 12 April 2024).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 2020, 69, e96. [Google Scholar] [CrossRef] [PubMed]
- Vataščinová, T.; Pipová, M.; Fraqueza, M.; Maľa, P.; Dudriková, E.; Drážovská, M.; Lauková, A. Short communication: Antimicrobial potential of Lactobacillus plantarum strains isolated from slovak raw sheep milk cheeses. J. Dairy Sci. 2020, 103, 6900–6903. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Nawaz, S.K. Antimicrobial efficacy of Lactobacillus plantarum strain against the B. cereus, B. subtilis, S. aureus and E.coli strains. Biosci. J. 2023, 39, e39061. [Google Scholar] [CrossRef]
- Jang, H.J.; Lee, N.-K.; Paik, H.-D. Probiotic characterization of Lactobacillus brevis KU15153 showing antimicrobial and antioxidant effect isolated from kimchi. Food Sci. Biotechnol. 2019, 28, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Shan, C.; Zhang, L.; Ge, D.; Wang, Y.; Xia, X.; Liu, X.; Zhou, J. A novel subtilin-like lantibiotics subtilin JS-4 produced by Bacillus subtilis JS-4, and its antibacterial mechanism against Listeria monocytogenes. LWT 2021, 142, 110993. [Google Scholar] [CrossRef]
- Taggar, R.; Singh, S.; Bhalla, V.; Bhattacharyya, M.S.; Sahoo, D.K. Deciphering the antibacterial role of peptide from Bacillus subtilis subsp. Spizizenii Ba49 against Staphylococcus aureus. Front. Microbiol. 2021, 12, 708712. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Ma, H.; Sun, M.; Lin, Y.; Bai, F.; Li, J.; Zhang, B. A novel bacteriocin DY4-2 produced by Lactobacillus plantarum from cutlassfish and its application as bio-preservative for the control of Pseudomonas fluorescens in fresh turbot (Scophthalmus maximus) fillets. Food Control 2018, 89, 22–31. [Google Scholar] [CrossRef]
- Karim, A.; Gerliani, N.; Aïder, M. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. Int. J. Food Microbiol. 2020, 333, 108818. [Google Scholar] [CrossRef]
- Sarquis, A.; Bajrami, D.; Mizaikoff, B.; Ladero, V.; Alvarez, M.A.; Fernandez, M. Characterization of the biofilms formed by histamine-producing Lentilactobacillus parabuchneri strains in the dairy environment. Foods 2023, 12, 1503. [Google Scholar] [CrossRef]
- Danielsen, M.; Wind, A. Susceptibility of Lactobacillus spp. to antimicrobial agents. Int. J. Food Microbiol. 2003, 82, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Klarin, B.; Larsson, A.; Molin, G.; Jeppsson, B. Susceptibility to antibiotics in isolates of Lactobacillus plantarum RAPD-type Lp299v, harvested from antibiotic treated, critically ill patients after administration of probiotics. Microbiol. 2019, 8, e00642. [Google Scholar] [CrossRef] [PubMed]
- Stefańska, I.; Kwiecień, E.; Jóźwiak-Piasecka, K.; Garbowska, M.; Binek, M.; Rzewuska, M. Antimicrobial susceptibility of lactic acid bacteria strains of potential use as feed additives—The basic safety and usefulness criterion. Front. Vet. Sci. 2021, 8, 687071. [Google Scholar] [CrossRef] [PubMed]
- Campedelli, I.; Mathur, H.; Salvetti, E.; Clarke, S.; Rea, M.C.; Torriani, S.; Ross, R.P.; Hill, C.; O’toole, P.W. Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl. Environ. Microbiol. 2019, 85, e01738-18. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, R.; Yocheva, L.; Tserovska, L.; Zhelezova, G.; Stefanova, N.; Atanasova, A.; Danguleva, A.; Ivanova, G.; Karapetkov, N.; Rumyan, N.; et al. Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. Biotechnol. Biotechnol. Equip. 2015, 29, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Adimpong, D.B.; Sørensen, K.I.; Thorsen, L.; Stuer-Lauridsen, B.; Abdelgadir, W.S.; Nielsen, D.S.; Derkx, P.M.F.; Jespersen, L. Antimicrobial susceptibility of Bacillus strains isolated from primary starters for African traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis. Appl. Environ. Microbiol. 2012, 78, 7903–7914. [Google Scholar] [CrossRef] [PubMed]
- Brutscher, L.M.; Borgmeier, C.; Garvey, S.M.; Spears, J.L. Preclinical safety assessment of Bacillus subtilis BS50 for probiotic and food applications. Microorganisms 2022, 10, 1038. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, S.; Wu, S.; Ren, Z.; Liu, G.; Wu, J. Synergistic protective effect of konjac mannan oligosaccharides and Bacillus subtilis on intestinal epithelial barrier dysfunction in Caco-2 cell model and mice model of lipopolysaccharide stimulation. Front. Immunol. 2021, 12, 696148. [Google Scholar] [CrossRef] [PubMed]
- Nuryana, I.; Andriani, A.; Lisdiyanti, P.; Yopi. Analysis of organic acids produced by lactic acid bacteria. IOP Conf. Ser. Earth Environ. Sci. 2019, 251, 012054. [Google Scholar] [CrossRef]
- Bustos, A.Y.; de Valdez, G.F.; Gerez, C.L. Optimization of phenyllactic acid production by Pediococcus acidilactici CRL 1753. Application of the formulated bio-preserver culture in bread. Biol. Control 2018, 123, 137–143. [Google Scholar] [CrossRef]
- Castells, A.; Leon, A.; Sosa, D.; Cadena, I.; Ramirez, D.; Serrano, L.; Larrea, F.; Almeida Streitweiser, D.; Alvarez-Barreto, J. Evaluation of lactic acid production by different Bacillus subtilis strains isolated from theobroma cacao crops in Ecuador. Chem. Eng. Trans. 2022, 93, 55–60. [Google Scholar] [CrossRef]
- Cui, F.; Li, Y.; Wan, C. Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresour. Technol. 2011, 102, 1831–1836. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-X.; Wang, J.-J.; Xiao, X.-K.; Chen, C.-R.; Lu, X.; Zhang, X.-Y.; Lin, L.-B.; Wang, F. Antimicrobial effects and metabolomics analysis of cell-free supernatant produced by Pediococcus acidilactici LWX 401 isolated from Yunnan traditional pickles. LWT 2024, 191, 115626. [Google Scholar] [CrossRef]
- Sreedharan, D.K.; Abbasiliasi, S.; Murugan, P.; Ng, Z.J.; Ariff, A.B.; Tan, J.S. Isolation and characterization of Lactobacillus brevis c23 with ability to secrete antimicrobial substance for the inhibition of a foodborne pathogen Listeria monocytogenes ATCC 7644. Malays. J. Microbiol. 2021, 17, 266–276. [Google Scholar] [CrossRef]
- Epparti, P.; Eligar, S.M.; Sattur, A.P.; Kumar, B.G.; Halami, P.M. Characterization of dual bacteriocins producing Bacillus subtilis SC3.7 isolated from fermented food. LWT 2022, 154, 112854. [Google Scholar] [CrossRef]
- Fugaban, J.I.I.; Bucheli, J.E.V.; Park, Y.J.; Suh, D.H.; Jung, E.S.; Franco, B.D.G.d.M.; Ivanova, I.V.; Holzapfel, W.H.; Todorov, S.D. Antimicrobial properties of Pediococcus acidilactici and Pediococcus pentosaceus isolated from silage. J. Appl. Microbiol. 2022, 132, 311–330. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Fu, Y.; Kong, L.; Shen, Q.; Liu, M.; Zeng, X.; Wu, Z.; Guo, Y.; Pan, D. Production of a class IIb bacteriocin with broad-spectrum antimicrobial activity in Lactiplantibacillus plantarum RUB1. Probiotics Antimicrob. Proteins 2021, 13, 1820–1832. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.K.; Salooja, M.K.; Parul, T. Application of bacteriocins of Lactobacillus brevis as biomedicine. Res. J. Biotechnol. 2021, 16, 109–117. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Y.; He, Y.; Zhang, Y.; She, Q.; Chai, Y.; Li, P.; Shang, Q. Characterization of subtilin L-Q11, a novel class I bacteriocin synthesized by Bacillus subtilis L-Q11 isolated from orchard soil. Front. Microbiol. 2019, 10, 484. [Google Scholar] [CrossRef]
- Song, J.; Chen, J.-Y.; Zhang, D.-D.; Li, R.; Kong, Z.-Q.; Zhu, H.; Dai, X.-F.; Han, D.; Wang, D. Genome resource of Bacillus subtilis KRS015, a potential biocontrol agent for Verticillium dahliae. PhytoFront 2024. [Google Scholar] [CrossRef]
- Jha, S.S.; Joshi, S.J.; Geetha, S.J. Lipopeptide production by Bacillus subtilis R1 and its possible applications. Braz. J. Microbiol. 2016, 47, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Ansari, J.A.; Ismail, M.; Farid, M. Extension of shelf life of pasteurized trim milk using ultraviolet treatment. J. Food Saf. 2020, 40, e12768. [Google Scholar] [CrossRef]
- Aghajanzadeh, S.; Ziaiifar, A.M.; Verkerk, R. Effect of thermal and non-thermal treatments on the color of citrus juice: A review. Food Rev. Int. 2023, 39, 3555–3577. [Google Scholar] [CrossRef]
- Dhanda, S.; Kumar, P.; Bansal, P.; Singh, J.; Dhanda, S. Identification, purification, characterization and biopreservation potential of antimicrobial peptide of Pediococcus acidilactici NCDC 252. Int. J. Pept. Res. Ther. 2023, 29, 15. [Google Scholar] [CrossRef]
- Md Sidek, N.L.; Halim, M.; Tan, J.S.; Abbasiliasi, S.; Mustafa, S.; Ariff, A.B. Stability of bacteriocin-like inhibitory substance (BLIS) produced by Pediococcus acidilactici kp10 at different extreme conditions. BioMed Res. Int. 2018, 2018, 5973484. [Google Scholar] [CrossRef] [PubMed]
- Zangeneh, M.; Khorrami, S.; Khaleghi, M. Bacteriostatic activity and partial characterization of the bacteriocin produced by L. plantarum sp. isolated from traditional sourdough. Food Sci. Nutr. 2020, 8, 6023–6030. [Google Scholar] [CrossRef] [PubMed]
- Qadi, W.S.M.; Mediani, A.; Kasim, Z.M.; Misnan, N.M.; Sani, N.A.; Jamar, N.H. Biological characterization and metabolic variations among cell-free supernatants produced by selected plant-based lactic acid bacteria. Metabolites 2023, 13, 849. [Google Scholar] [CrossRef]
- Bin Hyun, W.; Kang, H.S.; Lee, J.W.; Abraha, H.B.; Kim, K.-P. A newly-isolated Bacillus subtilis BSC35 produces bacteriocin-like inhibitory substance with high potential to control Clostridium perfringens in food. LWT 2021, 138, 110625. [Google Scholar] [CrossRef]
Potential Protective Culture | Antibiotic Resistance * | ||||||||
---|---|---|---|---|---|---|---|---|---|
Resistant/Sensitive | |||||||||
GEN | KAN | STR | TET | CLN | CHL | AMP | ERY | VAN | |
Pediocccus acidilactici CNTA 1059 | S | R | S | S | S | S | S | S | n.r. |
Lactiplantibacillus plantarum CNTA 600 | S | R | n.r. | S | S | S | S | S | n.r. |
Levilactobacillus brevis CNTA 1374 | S | S | S | S | S | S | S | S | n.r. |
Bacillus subtilis CNTA 517 | S | S | R | S | S | S | n.r. | S | S |
Strain | Organic Acids (g/L) | ||
---|---|---|---|
Lactic Acid | Acetic Acid | Phenylactic Acid | |
Pediococcus acidilactici CNTA 1059 | 8.20 a ± 0.19 | 3.58 x ± 0.07 | 119.13 ± 1.17 |
Lactiplantibacillus plantarum CNTA 600 | 7.39 a ± 0.13 | 3.64 x ± 0.00 | - |
Levilactobacillus brevis CNTA 1374 | 2.80 b ± 0.02 | 3.78 x ± 0.07 | - |
Bacillus subtilis CNTA 517 | 2.70 b ± 0.17 | <0.25 | - |
Strain | CFS pH | Halo Diameter (mm) | |
---|---|---|---|
CFS pH 3.50 | CFS pH 7.00 | ||
Pediococcus acidilactici CNTA 1059 | 4.33 | 23.27 ± 0.72 | 23.10 ± 0.56 |
Lactiplantibacillus plantarum CNTA 600 | 4.44 | 20.14 * ± 0.95 | 19.32 * ± 0.26 |
Levilactobacillus brevis CNTA 1374 | 5.06 | 31.89 ± 0.46 | 31.52 ± 0.12 |
Bacillus subtilis CNTA 517 | 6.77 | 14.93 * ± 0.01 | 28.98 ± 0.08 |
Region (contig:from-to) | Type | Most Similar Known Cluster | Similarity |
---|---|---|---|
01:93826-115524 | epipeptide | thailanstatin A | 10% |
01:335810-377228 | other | bacilysin | 100% |
01:380214-401825 | sactipeptide | subtilosin A | 100% |
01:618860-639606 | CDPS | pulcherriminic acid | 100% |
01:922093-973870 | NRP-metallophore, NRPS | bacillibactin | 100% |
02:317794-358891 | T3PKS | 1-carbapen-2-em-3-carboxylic acid | 16% |
02:407348-429246 | terpene | ||
02:502119-579867 | NRPS, betalactone | fengycin | 100% |
02:644080-758852 | transAT-PKS, NRPS, T3PKS, PKS-like | bacillaene | 100% |
03:1-21708 | NRPS | - | - |
03:430506-451309 | terpene | - | - |
05:199657-265045 | NRPS | surfactin | 78% |
05:395661-418614 | sactipeptide, ranthipeptide | sporulation killing factor | 100% |
10:1-6820 | NRPS | pelgipeptin | 37% |
14:1-1179 | NRPS |
Strain | % of Antimicrobial Activity Lost after the In-Container Milk Sterilization Treatment (110 °C/20 min) | % of Antimicrobial Activity Lost after Botulinum Cooking (121 °C/3 min) | % of Antimicrobial Activity Lost after Autoclaved Treatment (121 °C/15 min) |
---|---|---|---|
Pediococcus acidilactici CNTA 1059 | 8.18 | 3.73 | 11.06 |
Lactiplantibacillus plantarum CNTA 600 | 13.92 | 13.12 | 22.17 |
Levilactobacillus brevis CNTA 1374 | 8.36 | 4.73 | 9.02 |
Bacillus subtilis CNTA 517 | 21.67 | 9.44 | 28.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garin-Murguialday, N.; Espina, L.; Virto, R.; Pagán, R. Lactic Acid Bacteria and Bacillus subtilis as Potential Protective Cultures for Biopreservation in the Food Industry. Appl. Sci. 2024, 14, 4016. https://doi.org/10.3390/app14104016
Garin-Murguialday N, Espina L, Virto R, Pagán R. Lactic Acid Bacteria and Bacillus subtilis as Potential Protective Cultures for Biopreservation in the Food Industry. Applied Sciences. 2024; 14(10):4016. https://doi.org/10.3390/app14104016
Chicago/Turabian StyleGarin-Murguialday, Nerea, Laura Espina, Raquel Virto, and Rafael Pagán. 2024. "Lactic Acid Bacteria and Bacillus subtilis as Potential Protective Cultures for Biopreservation in the Food Industry" Applied Sciences 14, no. 10: 4016. https://doi.org/10.3390/app14104016
APA StyleGarin-Murguialday, N., Espina, L., Virto, R., & Pagán, R. (2024). Lactic Acid Bacteria and Bacillus subtilis as Potential Protective Cultures for Biopreservation in the Food Industry. Applied Sciences, 14(10), 4016. https://doi.org/10.3390/app14104016