Assessment of Postbiotic, Mundticin-like Substance EM 41/3 Application in Broiler Rabbits
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Mundticin-like Substance EM 41/3 for Application
2.2. Experimental Design and Sampling
2.3. Microbiota Analyses
2.4. Phagocytic Activity Analysis, Glutathione-Peroxidase (GPx) Evaluation, and Biochemistry in Blood Serum
2.5. Hydrolytic Activity, Jejunal Morphometry Growth Performance, Organic Acids in Chyme, and Quality of Meat
2.6. Statistical Analysis
3. Results
3.1. Microbiota Evaluation
3.2. Phagocytic Activity, GPx and Biochemistry
3.3. Hydrolytic Activity, Jejunal Morphometry, Growth Performance, Organic Acids in Chyme, Quality of Meat
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cullere, M.; Dalle Zotte, A. Rabbit meat production and consumption: State of knowledge and future perspectives. Meat Sci. 2018, 143, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Basavaraj, M.; Nagabhushana, V.; Prakash, N.; Appanavar, M.M.; Prashanth, W.; Mallikarjunappa, S. Effect of dietary supplementation of curcuma longaon the biochemical profile and meat characteristics of broiler rabbits under summer stress. Vet. World 2011, 4, 15–18. [Google Scholar] [CrossRef]
- Nataraj, B.H.; Ali, S.A.; Behare, P.V.; Yadav, H. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microb. Cell Factories 2020, 19, 168. [Google Scholar] [CrossRef] [PubMed]
- Bing, L.; Xing, D. The current and future perspectives of postbiotics. Probiotics Antimicrob. Proteins 2023, 15, 1626–1643. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef] [PubMed]
- Focková, V.; Styková, E.; Pogány Simonová, M.; Maďar, M.; Kačírová, J.; Lauková, A. Horses as a source of bioactive fecal strains Enterococcus mundtii. Vet. Res. Commun. 2022, 46, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Pogány Simonová, M.; Chrastinová, Ľ.; Lauková, A. Autochthonous strain Enterococcus faecium EF2019 (CCM7420), its bacteriocin and their beneficial effects in broiler rabbits-A review. Animals 2020, 10, 1188. [Google Scholar] [CrossRef] [PubMed]
- Pogány Simonová, M.; Lauková, A.; Plachá, I.; Čobanová, K.; Strompfová, V.; Szabóová, R.; Chrastinová, Ľ. Can enterocins affect phagocytosis and gluthatione-peroxidase in rabbits? Cent. Eur. J. Biol. 2013, 8, 730–734. [Google Scholar] [CrossRef]
- Lauková, A.; Chrastinová, Ľ.; Pogány Simonová, Ľ.; Strompfová, V.; Plachá, I.; Čobanová, K.; Formelová, Z.; Chrenková, M.; Ondruška, Ľ. Enterococcus faecium AL41, Its Enterocin M and their beneficial use in rabbits husbandry. Probiotics Antimicrob. Proteins 2012, 4, 243–249. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Lauková, A.; Chrastinová, Ľ.; Kandričáková, A.; Ščerbová, J.; Strompfová, V.; Miltko, R.; Belzecki, G. Enterocins as novel feed additives in rabbit diet: Enterocin Ent M and Durancin Ent ED26E/7, their combination, and effects on microbiota, caecal fermentation and enzymatic activity. Probiotics Antimicrob. Proteins 2021, 13, 1433–1442. [Google Scholar] [CrossRef]
- De Vuyst, L.; Calleawaert, R.; Pot, B. Characterization and antagonistic activity of Lactobacillus amylovorus DCE471 and large scale isolation of its bacteriocin amylovorin L471. Syst. Appl. Microbiol. 1996, 19, 9–20. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Chrastinová, Ľ.; Ščerbová, J.; Focková, V.; Plachá, I.; Tokarčíková, K.; Žitňan, R.; Lauková, A. The effect of enterocin A/P dipeptide on growth performance, glutathione-peroxidase activity, IgA secretion and jejunal morphology in rabbits after experimental methicillin-resistant Staphylococcus epidermidis P3Tr2a infection. Vet. Res. Commun. 2024, 48, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Vetvička, V.; Fornousek, L.; Kopeček, J.; Kaminková, J.; Kašpárek, L.; Vránová, M. Phagocytosis of human blood leucocytes, a simple micro-method. Immunol. Lett. 1982, 5, 97–100. [Google Scholar]
- Lauková, A.; Styková, E.; Kubašová, I.; Strompfová, V.; Gancarčíková, S.; Plachá, I.; Miltko, R.; Belzecki, G.; Valocký, I.; Pogány Simonová, M. Enterocin M-producing Enterococcus faecium CCM 8558 demonstrating probiotic properties in horses. Probiotics Antimicrob. Proteins 2020, 12, 1555–1561. [Google Scholar] [CrossRef] [PubMed]
- Huhtanen, P.; Khali, H. The effect of sucrose supplements on particle-associated carboxymethylcellulase (EC 3.2.1.4) and xylanase (EC3.2.1.8) activities in cattle given grass-silage based diet. Brit. J. Nut. 1992, 67, 245–255. [Google Scholar] [CrossRef]
- Miltko, R.; Belzecki, G.; Kowalik, B.; Skomial, J. Presence of carbohydrates-digesting enzymes throughout the digestive tract of sheep. Turk. J. Vet. Anim. Sci. 2016, 40, 271–277. [Google Scholar] [CrossRef]
- Ouhayon, J. Rabbit meat characteristics and qualitative variability. Cuni Sci. 1992, 7, 1–15. [Google Scholar]
- Žitňan, R.; Voigt, J.; Kuhla, S.; Wegner, J.; Chudy, A.; Scoenhausen, U.; Brna, M.; Župčanová, M.; Hagemeister, H. Morphology of small intestinal mucosa and intestinal weight change with metabolic type of cattle. Vet. Med. 2008, 53, 525–532. [Google Scholar] [CrossRef]
- Franz, C.M.P.A.; Huch, M.; Abriouel, H.; Holzapfel, W.H.; Gálvez, A. Enterococci as probiotics and their implications in food safety. Int. J. Food Microbiol. 2011, 151, 125–140. [Google Scholar] [CrossRef]
- Franz, C.M.P.A.; van Belkum, M.; Holzapfel, W.H.; Abriouel, H.; Gálvez, A. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol. Rev. 2007, 31, 293–310. [Google Scholar] [CrossRef]
- Nes, I.F.; Diep, D.B.; Ike, Y. Enterococcal bacteriocins and antimicrobial proteins that contribute to niche control. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Eye and Ear Infirmary: Boston, MA, USA, 2014; p. 674. [Google Scholar]
- Ferreira, A.E.; Canal, N.; Morales, D.; Fuentefria, D.B.; Corcao, G. Characterization of enterocins produced by Enterococcus mundtii isolated from human faeces. Braz. Arch. Biol. Technol. 2007, 50, 249–258. [Google Scholar] [CrossRef]
- Gancarčíková, S.; Nemcová, R.; Popper, M.; Hrčková, G.; Sciranková, Ľ.; Maďar, M.; Mudroňová, D.; Vilček, Š.; Žitňan, R. The influence of feed supplementation with probiotic strain Lactobacillus reuteri CCM 8617 and alginine on intestinal microenvironment of SPF mice infected with Salmonella Typhimurium CCM 7205. Probiotics Antimicrob. Proteins 2019, 11, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Szabóová, R.; Lauková, A.; Chrastinová, Ľ.; Pogány Simonová, M.; Strompfová, V.; Plachá, I.; Čobanová, K.; Vasilková, Z.; Chrenková, M. Enterocin 4231 produced by Enterococcus faecium CCM 4231 and its use in rabbits. Acta Vet. Brno 2011, 5, 97–100. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Lauková, A.; Chrastinová, Ľ.; Kandričáková, A.; Ščerbová, J.; Strompfová, V.; Gancarčíková, S.; Plachá, I.; Žitňan, R. Effect of enterocin M and durancin ED26E/7 supplementation on blood parameters, immune response and jejunal morphometry in rabbits. J. Anim. Physiol. Anim. Nutr. 2022, 106, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Chrastinová, Ľ.; Plachá, I.; Kandričáková, A.; Szabóová, R.; Strompfová, V.; Chrenková, M.; Čobanová, K.; Žitňan, R. Beneficial effect of lantibiotic nisin in rabbit husbandry. Probiotics Antimicrob. Proteins 2014, 6, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Pogány Simonová, M.; Lauková, A.; Žitňan, R.; Chrastinová, Ľ. Effect of rabbit origin enterocin.producing strain E. faecium CCM 7420 application on growth performance and gut morphometry in rabbits. Czech J. Anim. Sci. 2015, 60, 509–512. [Google Scholar] [CrossRef]
- Bhatt, R.S.; Agrawal, A.R.; Sahoo, A. Effect of probiotic supplementation on growth performance, nutrient utilization and carcass characteristics of growing Chinchilla rabbits. Appl. Anim. Res. 2017, 45, 304–309. [Google Scholar] [CrossRef]
- Gidenne, T.; Fortun-Lamothe, L. Feeding strategy for young rabbits around weaning. A review of digestive capacity and nutritional needs. Anim. Sci. 2002, 75, 169–184. [Google Scholar] [CrossRef]
- Bačová, K.; Zitterl-Eglseer, K.; Lauková, A.; Chrastinová, Ľ.; Gancarčíková, S.; Žitňan, R.; Takacsová, M.; Sopková, D.; Andrejčáková, Z.; Pogány Simonová, M.; et al. Effect of thymol and Enterocin M administration on biochemical, antioxidant and immunological parameters, small intestinal morphology and microbiota in rabbits. Ital. J. Anim. Sci. 2023, 22, 972–981. [Google Scholar] [CrossRef]
- Oso, A.O.; Idowu, O.M.O.; Haastrup, A.S.; Ajibade, A.J.; Olowonefa, K.O.; Aluko, A.O.; Ogunade, I.M.; Osho, S.O.; Bamgbose, A.E. Growth performance, apparent nutrient digestibility, caecal fermentation, ileal morphology and caecal microflora of growing rabbits fed diets containing probiotics and prebiotics. Livest. Sci. 2013, 157, 184–190. [Google Scholar] [CrossRef]
- Dalle Zotte, A. Rabbit farming for meat purposes. Anim. Front. 2014, 4, 62–67. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Chrastinová, Ľ.; Ščerbová, J.; Focková, V.; Plachá, I.; Formelová, Z.; Chrenková, M.; Lauková, A. Preventive potential of dipeptide Enterocin A/P on rabbit health and its effect on growth, microbiota, and immune response. Animals 2022, 12, 1108. [Google Scholar] [CrossRef] [PubMed]
Day 0/1 (n = 10) | Day 21 (n = 5)—EG | Day 21 (n = 5)—CG | Day 42 (n = 5)—EG | Day 42 (n = 5)—CG | |
---|---|---|---|---|---|
Enterococci | 3.39 ± 1.45 a | 5.81 ± 0.22 b | 4.40 ± 0.79 c | 4.74 ± 0.47 | 3.39 ± 0.48 |
Lactic acid bacteria | 3.79 ± 1.23 | 5.67 ± 0.22 | 4.94 ± 0.75 | 4.44 ± 0.82 | 3.25 ± 0.40 |
Staphylococci | 3.98 ± 0.50 | 4.28 ± 0.34 | 3.91 ± 0.33 | 4.25 ± 0.28 | 4.43 ± 0.57 |
Amyl. streptococci | 5.71 ± 0.21 | 5.76 ± 0481 | 5.24 ± 0.61 | 5.99 ± 0.37 | 5.89 ± 0.24 |
Coliform bacteria | 2.28 ± 1.72 | 5.37 ± 0.73 | 4.83 ± 1.16 | 4.18 ± 1.27 | 3.85 ± 0.64 |
Day 21 (n = 4)—EG | Day 21 (n = 4)—CG | Day 42 (n = 4)—EG | Day 42 (n = 4)—CG | |
---|---|---|---|---|
Caecum | ||||
Enterococci | 0.93 ± 0.05 | 0.93 ± 0.05 | 1.43 ± 1.05 | 0.09 ± 0.0 |
Lactic acid bacteria | 1.82 ± 1.41 | 2.55 ± 1.93 | 1.05 ± 0.17 | 0.95 ± 0.06 |
Staphylococci | 3.96 ± 0.29 | 4.07 ± 0.51 | 2.48 ± 1.72 b | 4.09 ± 0.30 a |
Amylolytic streptococci | 4.15 ± 0.21 | 3.96 ± 0.39 | 4.43 ± 0.19 | 4.21 ± 0.16 |
Coliform bacteria | 2.42 ± 1.25 | 1.32 ± 0.33 | 3.54 ± 1.04 | 2.42 ± 1.25 |
Appendix | Day 21 (n = 4)—EG | Day 21 (n = 4)—CG | Day 42 (n = 4)—EG | Day 42 (n = 4)—CG |
Enterococci | 2.54 ± 1.07 | 0.93 ± 0.05 | 0.90 ± 0.00 | 0.90 ± 0.0 |
Lactic acid bacteria | 3.30 ± 1.63 | 2.55 ± 1.93 | 0.90 ± 0.00 | 0.95 ± 0.06 |
Staphylococci | 3.78 ± 0.24 | 4.07 ± 0.51 | 3.59 ± 0.23 | 4.09 ± 0.30 |
Amylolytic streptococci | 4.47 ± 0.42 | 3.96 ± 0.39 | 4.66 ± 0.38 | 4.21 ± 0.16 |
Coliform bacteria | 3.97 ± 0.17 | 1.32 ± 0.33 | 4.95 ± 0.11 | 2.42 ± 1.25 |
n = 8 | Day 0/1 | Day 21 | Day 42 |
---|---|---|---|
EG/PA | 57.13 ± 3.14 a | 64.38 ± 1.30 b | 60.13 ± 0.99 c |
CG/PA | 57.13 ± 3.14 a | 60.13 ± 0.99 b | 60.38 ± 0.92 c |
EG/IPA | 3.55 ± 0.38 | 3.88 ± 0.05 | 3.40 ± 0.20 |
CG/IPA | 3.55 ± 0.38 | 3.86 ± 0.05 | 3.88 ± 0.05 |
EG/GPx | 151.98 ± 27.32 | 185.98 ± 37.60 | 153.05 ± 29.14 |
CG/GPx | 151.98 ± 27.32 | 190.86 ± 28.98 | 171.49 ± 27.66 |
n = 8 | Day 0/1 | EG/21 | CG/21 | EG/42 | CG/42 |
---|---|---|---|---|---|
Total protein (g/L) | 42.65 ± 3.06 | 47.41 ± 7.39 | 49.33 ± 6.36 | 47.03 ± 3.29 | 48.18 ± 5.30 |
Albumin (g/L) | 31.69 ± 2.22 | 33.61 ± 5.60 | 34.35 ± 4.39 | 33.44 ± 2421 | 32.83 ± 2.46 |
Creatinine (µmol/L) | 27.97 ± 3.21 a | 43.53 ± 5.16 b | 38.96 ± 8.10 d | 48.93 ± 5.41 | 52.81 ± 7.48 c |
Glucose (mmol/L) | 8.7 ± 0.78 a | 7.55 ± 0.85 | 7.35 ± 0.82 c | 6.86 ± 0.58 b | 6.8 ± 0.48 d |
Cholesterol (mmol/L) | 1.89 ± 0.30 a | 1.40 ± 0.32 | 1.62 ± 0.64 b | 1.05 ± 0.29 c | 1.06 ± 0.30 d |
Triglycerides (mmol/L) | 1.76 ± 0.68 | 1.09 ± 0.28 | 1.19 ± 0.54 | 0.75 ± 0.22 | 1.01 ± 0.22 |
ALT (µkat/L) | 0.13 ± 0.03 | 0.14 ± 0.03 | 0.17 ± 0.04 | 0.19 ± 0.08 | 0.15 ± 0.05 |
AST (µkat/L) | 0.12 ± 0.07 | 0.15 ± 0.03 | 0.20 ± 0.05 | 0.11 ± 0.00 | 0.17 ± 0.07 |
ALP (µkat/L) | 2.44 ± 0.40 | 1.94 ± 0.53 | 1.81 ± 0.63 | 2.00 ± 0.40 | 1.81 ± 0.44 |
Na (sodium, mmol/L) | 132.9 ± 2.96 | 136.1 ± 10.74 | 136.9 ± 9.72 | 134.1 ± 7.36 | 130.5 ± 7.09 |
K (kalium, mmol/L) | 4.60 ± 0.44 | 4.52 ± 0.39 | 4.03 ± 0.49 | 3.96 ± 0.18 | 4.60 ± 0.44 |
Ca (calcium, mmol/L) | 3.30 ± 0.15 | 3.20 ± 0.47 | 3.42 ± 0.36 | 3.16 ± 0.20 | 3.06 ± 0.22 |
P (phosphorus, mmol/L) | 2.27 ± 0.28 | 2.23 ± 0.31 | 2.35 ± 0.28 | 1.29 ± 0.24 | 2.04 ± 0.38 |
Mg (magnesium, mmol/L) | 0.80 ± 0.04 | 0.83 ± 0.09 | 0.86 ± 0.10 | 0.82 ± 0.06 | 0.79 ± 0.09 |
Chlorides (Cl, mmol/L) | 92.00 ± 3.51 | 95.94 ± 8.43 | 93.24 ± 7.28 | 95.19 ± 6.94 | 90.63 ± 5.20 |
Day 0/1 (n = 10) | Day 21/EG (n = 5) | Day 21/CG (n = 5) | Day 42/EG (n = 5) | Day 42/CG (n = 5) | |
---|---|---|---|---|---|
Amylolytic activity | 3.76 ± 0.53 | 5.92 ± 0.96 | 4.60 ± 0.67 | 5.34 ± 1.00 | 4.22 ± 0.63 |
Cellulolytic activity | 1.68 ± 0.15 | 2.63 ± 0.56 | 2.18 ± 0.38 | 2.04 ± 0.23 | 2.10 ± 0.46 |
Xylanolytic activity | 3.50 ± 0.39 | 4.88 ± 0.84 | 4.23 ± 0.36 | 3.09 ± 0.52 | 3.52 ± 1.05 |
Inulolytic activity | 1.19 ± 0.09 | 1.64 ± 0.05 | 1.44 ± 0.29 | 1.46 ± 0.11 | 0.91 ± 0.10 |
Pectinolytic activity | 2.66 ± 0.29 | 3.08 ± 0.63 | 2.86 ± 0.39 | 2.84 ± 0.18 | 2.29 ± 0.58 |
n = 4 | Day 21/EG | Day 21/CG | Day 42/EG | Day 42/CG |
---|---|---|---|---|
Acetic acid | 10.65 ± 1.57 | 12.09 ± 1.82 | 7.65 ± 2.27 | 8.03 ± 1.79 |
Propionic acid | 0.47 ± 0.07 | 0.41 ± 0.08 | 0.47 ± 0.24 | 0.62 ± 0.13 |
Isobutyric acid | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.0 | 0.02 ± 0.01 |
Butyric acid | 3.20 ± 0.96 | 2.97 ± 0.67 | 0.09 ± 0.05 | 1.65 ± 0.48 |
Isovaleric acid | 0.08 ± 0.05 | 0.09 ± 0.02 | 0.05 ± 0.01 | 2.07 ± 0.76 |
Caproic acid | 0.15 ± 0.06 | 0.18 ± 0.03 | 0.06 ± 0.01 | 0.06 ± 0.01 |
Valeric acid (mmol/L) | 0.12 ± 0.04 | 0.13 ± 0.02 | 0.12 ± 0.05 | 0.01 ± 0.00 |
Lactic acid (g/100 kg) | 0.09 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 |
Ammonia (NH3, mmo/L) | 12.49 ± 2.29 | 12.41 ± 2.10 | 8.14 ± 1.66 | 11.76 ± 3.68 |
pH | 6.13 ± 0.09 | 5.86 ± 0.19 | 6.01 ± 0.12 | 6.24 ± 0.34 |
n = 4 | Day 21/EG | Day 21/CG | Day 42/EG | Day 42/CG |
---|---|---|---|---|
Water content (g/100 g) | 74.93 ± 0.35 | 74.76 ± 0.11 | 74.29 ± 0.87 | 74.76 ± 0.31 |
Protein content (g/100 g) | 22.89 ± 0.33 | 22.78 ± 0.19 | 23.85 ± 0.43 | 23.22 ± 0.35 |
Fat content (g/100 g) | 1.47 ± 0.00 | 1.42 ± 0.36 | 1.19 ± 0.15 | 1.25 ± 0.17 |
pH 24 p.m. | 5.96 ± 0.03 | 5.99 ± 0.04 | 5.96 ± 0.05 | 6.02 ± 0.02 |
Water holding capacity g/100 g) | 26.33 ± 3.32 | 29.02 ± 4.81 | 27.08 ± 6.42 | 27.94 ± 1.03 |
Energy value (kJ/100 g) | 443.07 ± 10.75 | 435.16 ± 9.17 | 444.48 ± 7.96 | 436.10 ± 10.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauková, A.; Chrastinová, Ľ.; Focková, V.; Plachá, I.; Bino, E.; Grešáková, Ľ.; Formelová, Z.; Žitňan, R.; Belzecki, G.; Miltko, R.; et al. Assessment of Postbiotic, Mundticin-like Substance EM 41/3 Application in Broiler Rabbits. Appl. Sci. 2024, 14, 5059. https://doi.org/10.3390/app14125059
Lauková A, Chrastinová Ľ, Focková V, Plachá I, Bino E, Grešáková Ľ, Formelová Z, Žitňan R, Belzecki G, Miltko R, et al. Assessment of Postbiotic, Mundticin-like Substance EM 41/3 Application in Broiler Rabbits. Applied Sciences. 2024; 14(12):5059. https://doi.org/10.3390/app14125059
Chicago/Turabian StyleLauková, Andrea, Ľubica Chrastinová, Valentína Focková, Iveta Plachá, Eva Bino, Ľubomíra Grešáková, Zuzana Formelová, Rudolf Žitňan, Grzegorz Belzecki, Renata Miltko, and et al. 2024. "Assessment of Postbiotic, Mundticin-like Substance EM 41/3 Application in Broiler Rabbits" Applied Sciences 14, no. 12: 5059. https://doi.org/10.3390/app14125059
APA StyleLauková, A., Chrastinová, Ľ., Focková, V., Plachá, I., Bino, E., Grešáková, Ľ., Formelová, Z., Žitňan, R., Belzecki, G., Miltko, R., & Pogány Simonová, M. (2024). Assessment of Postbiotic, Mundticin-like Substance EM 41/3 Application in Broiler Rabbits. Applied Sciences, 14(12), 5059. https://doi.org/10.3390/app14125059