Wintertime Diurnal Variation in Absorption Coefficient of Brown Carbon Associated with the Molecular Marker of Levoglucosan
Abstract
:1. Introduction
2. Materials and Methods
2.1. PM2.5 Measurement
2.2. Optical Absorption Coefficient of BC
2.3. Evaluation of Contribution to BrC Light Absorption Coefficient
2.4. QDTT-OP Evaluation
3. Results and Discussion
3.1. Chemical Components in PM2.5
3.2. Light Absorption Contribution of BC and BrC
3.3. Identification of the Biomass Burning Tracer Levoglucosan
3.4. Comparison of Oxidation Potential in PM2.5
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laskin, A.; Laskin, J.; Nizkorodov, S.A. Chemistry of atmospheric brown carbon. Chem. Rev. 2015, 115, 4335–4382. [Google Scholar] [CrossRef]
- Park, S.S.; Yu, G.H.; Lee, S.L. Optical absorption characteristics of brown carbon aerosols during the KORUS-AQ campaign at an urban site. Atmos. Res. 2018, 203, 16–27. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Y.H.; Surratt, J.D.; Weber, R.J. Sources, composition and absorption Angstrom exponent of light-absorbing organic components in aerosol extracts from the Los Angeles Basin. Environ. Sci. Technol. 2013, 47, 3685–3693. [Google Scholar] [CrossRef]
- Feng, Y.; Ramanathan, V.; Kotamarthi, V.R. Brown carbon: A significant atmospheric absorber of solar radiation? Atmos. Chem. Phys. 2013, 13, 8607–8621. [Google Scholar] [CrossRef]
- Chakrabarty, R.K.; Gyawali, M.; Yatavelli, R.L.N.; Pandey, A.; Watts, A.C.; Knue, J.; Chen, L.W.A.; Pattison, R.R.; Tsibart, A.; Samburova, V.; et al. Brown carbon aerosols from burning of boreal peatlands: Microphysical properties, emission factors, and implications for direct radiative forcing. Atmos. Chem. Phys. 2016, 16, 3033–3040. [Google Scholar] [CrossRef]
- Liu, J.; Lin, P.; Laskin, A.; Laskin, J.; Kathmann, S.M.; Wise, M.; Caylor, R.; Imholt, F.; Selimovic, V.; Shilling, J.E. Optical properties and aging of light-absorbing secondary organic aerosol. Atmos. Chem. Phys. 2016, 16, 12815–12827. [Google Scholar] [CrossRef]
- Wong, J.P.S.; Nenes, A.; Weber, R.J. Changes in Light Absorptivity of Molecular Weight Separated Brown Carbon due to Photolytic Aging. Environ. Sci. Technol. 2017, 51, 8414–8421. [Google Scholar] [CrossRef] [PubMed]
- Hecobian, A.; Zhang, X.; Zheng, M.; Frank, N.; Edgerton, E.S.; Weber, R.J. Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos. Chem. Phys. 2010, 10, 5965–5977. [Google Scholar] [CrossRef]
- Hu, Z.; Kang, S.; Li, C.; Yan, F.; Chen, P.; Gao, S.; Wang, Z.; Zhang, Y.; Sillanpaa, M. Light absorption of biomass burning and vehicle emission-sourced carbonaceous aerosols of the Tibetan Plateau. Environ. Sci. Pollut. Res. 2017, 24, 15369–15378. [Google Scholar] [CrossRef]
- Chen, P.; Kang, S.; Gan, Q.; Yu, Y.; Yuan, X.; Liu, Y.; Tripathee, L.; Wang, X.; Li, C. Concentrations and light absorption properties of PM2.5 organic and black carbon based on online measurements in Lanzhou, China. J. Environ. Sci. 2023, 131, 84–95. [Google Scholar] [CrossRef]
- Bhattarai, H.; Saikawa, E.; Wan, X.; Zhu, H.; Ram, K.; Gao, S.; Kang, S.; Zhang, Q.; Zhang, Y.; Wu, G.; et al. Levoglucosan as a tracer of biomass burning: Recent progress and perspectives. Atmos. Res. 2019, 220, 20–33. [Google Scholar] [CrossRef]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.; Jin, Y.V.; van Leeuwen, T.T. Global fire emissions and thecontribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef]
- Venkataraman, C.; Habib, G.; Kadamba, D.; Shrivastava, M.; Leon, J.F.; Crouzille, B.; Boucher, O.; Streets, D.G. Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Glob. Biogeochem. Cycles 2006, 20, 1–12. [Google Scholar] [CrossRef]
- You, C.; Xu, C.; Xu, B.; Zhao, H.; Song, L. Levoglucosan evidence for biomass burning records over Tibetan glaciers. Environ. Pollut. 2016, 216, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Bond, T.C.; Streets, D.G.; Yarber, K.F.; Nelson, S.M.; Woo, J.H.; Klimont, Z. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res Atmos. 2004, 109, D14203. [Google Scholar] [CrossRef]
- Farahani, V.J.; Altuwayjiri, A.; Pirhadi, M.; Verma, V.; Ruprecht, A.A.; Diapouli, E.; Eleftheriadis, K.; Sioutas, C. The oxidative potential of particulate matter (PM) in different regions around the world and its relation to air pollution sources. Environ. Sci. Atmos. 2022, 2, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wyatt, A.; Kamens, R.M. Oxidant generation and toxicity enhancement of aged-diesel exhaust. Atmos. Environ. 2009, 43, 1037–1042. [Google Scholar] [CrossRef]
- Liu, W.J.; Xu, Y.S.; Liu, W.X.; Liu, Q.Y.; Yu, S.Y.; Liu, Y.; Wang, X.; Tao, S. Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: Seasonal variation and source apportionment. Environ. Pollut. 2018, 236, 514–528. [Google Scholar] [CrossRef]
- Bates, J.T.; Fang, T.; Verma, V.; Zeng, L.; Weber, R.J.; Tolbert, P.E.; Abrams, J.Y.; Sarnat, S.E.; Klein, M.; Mulholland, J.A.; et al. Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. Environ. Sci. Technol. 2019, 53, 4003–4019. [Google Scholar] [CrossRef]
- Cho, A.K.; Sioutas, C.; Miguel, A.H.; Kumagai, Y.; Schmitz, D.A.; Singh, M.; Eiguren-Fernandez, A.; Froines, J.R. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ. Res. 2005, 99, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Chio, J.; Oh, S.H.; Cheo, S.; Yu, G.H.; Cho, S.S.; Park, J.; Bae, M.S. Diurnal dithiothreitol assays for biomass burning source in PM1.0 and PM2.5 during summer and winter. Atmos. Environ. 2023, 313, 1200033. [Google Scholar] [CrossRef]
- Oh, S.H.; Choe, S.; Song, M.; Yu, G.H.; Schauer, J.J.; Shin, S.A.; Bae, M.S. Effects of long-range transport on carboxylic acids, chlorinated VOCs, and oxidative potential in air pollution events. Environ. Pollut. 2024, 347, 123666. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Park, K.; Park, M.; Song, M.; Jang, K.S.; Schauer, J.J.; Bae, G.N.; Bae, M.S. Comparison of the sources and oxidative potential of PM2.5 during winter time in large cities in China and South Korea. Sci. Total Environ. 2023, 859, 160369. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, L.; Bernardoni, V.; Santagostini, L.; Cogliati, S.; Soldan, F.; Valentini, S.; Massabo, D.; Mocnik, G.; Gregoric, A.; Rigler, M.; et al. Consistent determination of the heating rate of light-absorbing aerosol using wavelength-and time-dependent Aethalometer multiple-scattering correction. Sci. Total Environ. 2021, 791, 148277. [Google Scholar] [CrossRef] [PubMed]
- Bernardoni, V.; Valli, G.; Vecchi, R. Set-up of a multi wavelength polar photometer for off-line absorption coefficient measurements on 1-h resolved aerosol samples. Aerosol Sci. 2017, 107, 84–93. [Google Scholar] [CrossRef]
- Wang, Q.; Han, Y.; Ye, J.; Liu, S.; Pongpiachan, S.; Zhang, N.; Han, Y.; Tian, J.; Wu, C.; Long, X.; et al. High contribution of secondary brown carbon to aerosol light absorption in the southeastern margin of Tibetan Plateau. Geophys. Res. Lett. 2019, 46, 4962–4970. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, E.; Ryu, C.; Oh, S.H.; Joo, H.; Bae, M.S. Relationship between cholesterol and oxidative potential from meat cooking. J. Korean Soc. Atmos. Environ. 2018, 34, 639–650. [Google Scholar] [CrossRef]
- Song, M.; Choe, S.; Song, M.Y.; Shin, S.K.; Oh, S.H.; Jeon, H.; Yu, G.H.; Lee, T.; Bae, M.S. Identifying Sources of Atmospheric Pollutants in Densely Populated Urban Areas from a Particle Toxicity Perspective: A Study Using PMF Model and Vehicle Flux Analysis. Asia-Pac. J. Atmos. Sci. 2023, 60, 95–106. [Google Scholar] [CrossRef]
- Song, M.; Kim, M.; Oh, S.H.; Yu, G.H.; Choe, S.H.; Jeon, H.; Ko, D.H.; Park, C.; Bae, M.S. Characteristics of Atmospheric Pollutants in Paddy and Dry Field Regions: Analyzing the Oxidative Potential of Biomass Burning. Atmosphere 2024, 15, 493. [Google Scholar] [CrossRef]
- Snowani, S.; Saxena, P.; Shukla, A. Carbonaceous Aerosol Characterization and Their Relationship with Meteorological Parameters During Summer Monsoon and Winter Monsoon at an Industrial Region in Delhi, India. Earth Space Sci. 2021, 8, e2020EA001303. [Google Scholar] [CrossRef]
- Liu, K.; Ren, J. Seasonal characteristics of PM2.5 and its chemical species in the northern rural China. Atmos. Pollut. Res. 2020, 11, 1891–1901. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Houck, J.E. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in northwestern Colorado during 1995. Chemosphere 2001, 43, 1141–1151. [Google Scholar] [CrossRef]
- Fan, X.; Li, M.; Cao, T.; Cheng, C.; Li, F.; Xie, Y.; Wei, S.; Song, J.; Peng, P. Optical properties and oxidative potential of water and alkaline-soluble brown carbon in smoke particles emitted from laboratory simulated biomass burning. Atmos. Environ. 2018, 194, 48–57. [Google Scholar] [CrossRef]
- Saleh, R.; Robinson, E.S.; Tkacik, D.S.; Ahern, A.T.; Liu, S.; Aiken, A.C.; Sullivan, R.C.; Presto, A.A.; Dubey, M.K.; Yokelson, R.J.; et al. Brownness of organics in aerosols from biomass burning linked to their black carbon content. Nat. Geo. Sci. 2014, 7, 647. [Google Scholar] [CrossRef]
- Pokhrel, R.P.; Beamesderfer, E.R.; Wagner, N.L.; Langridge, J.M.; Lack, D.A.; Jayarathne, T.; Stone, E.A.; Stockwell, C.E.; Yokelson, R.J.; Murphy, S.M. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions. Atmos. Chem. Phys. 2017, 17, 5063–5078. [Google Scholar] [CrossRef]
- Xie, C.; Xu, W.; Wang, J.; Wang, Q.; Liu, D.; Tang, G.; Chen, P.; Du, W.; Zhao, J.; Zhang, Y.; et al. Vertical characterization of aerosol optical properties and brown carbon in winter in urban Beijing, China. Atmos. Chem. Phys. 2019, 19, 165–179. [Google Scholar] [CrossRef]
- Sun, J.; Xie, C.; Xu, W.; Chen, C.; Ma, N.; Xu, W.; Lei, L.; Li, Z.; He, Y.; Qiu, Y.; et al. Light absorption of black carbon and brown carbon in winter in North China Plain: Comparisons between urban and rural sites. Sci. Environ. 2021, 770, 144821. [Google Scholar] [CrossRef]
- Qin, Y.M.; Tan, H.B.; Li, Y.J.; Li, Z.J.; Schurman, M.I.; Liu, L.; Wu, C.; Chan, C.K. Chemical characteristics of brown carbon in atmospheric particles at a suburban site near Guangzhou, China. Atmos. Chem. Phys. 2018, 18, 16409–16418. [Google Scholar] [CrossRef]
- Singh, S.; Gokhale, S. Source apportionment and light absorption properties of black and brown carbon aerosols in the Brahmaputra River valley region. Urban Clim. 2021, 39, 100963. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Schauer, J.J.; Nolte, C.G.; Oros, D.R.; Elias, V.O.; Fraser, P.; Rogge, W.F.; Cass, G.R. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos. Environ. 1999, 33, 173–182. [Google Scholar] [CrossRef]
- Massimi, L.; Simonetti, G.; Buiarelli, F.; Di Filippo, P.; Pomata, D.; Riccardi, C.; Ristorini, M.; Astolfi, M.L.; Canepari, S. Spatial distribution of levoglucosan and alternative biomass burning tracers in atmospheric aerosols, in an urban and industrial hot-spot of Central Italy. Atmos. Res. 2020, 239, 104904. [Google Scholar] [CrossRef]
- Li, X.; Chen, M.; Le, H.P.; Wang, F.; Guo, Z.; Iinuma, Y.; Chen, J.; Herrmann, H. Atmospheric outflow of PM2.5 saccharides from megacity Shanghai to East China Sea: Impact of biological and biomass burning sources. Atmos. Environ. 2016, 143, 1–14. [Google Scholar] [CrossRef]
- Jeong, C.H.; Evans, G.J.; Dann, T.; Graham, M.; Herod, D.; Dabek-Zlotorzynska, E.; Mathieu, D.; Ding, L.; Wang, D. Influence of biomass burning on wintertime fine particulate matter: Source contribution at a valley site in rural British Columbia. Atmos. Environ. 2008, 42, 3684–3699. [Google Scholar] [CrossRef]
- Al-Naiema, I.M.; Offenberg, J.H.; Madler, C.J.; Lewandowski, M.; Ettler, J.; Fang, T.; Stone, E.A. Secondary organic aerosols from aromatic hydrocarbons and their contribution to fine particulate matter in Atlanta, Georgia. Atmos. Environ. 2020, 223, 117227. [Google Scholar] [CrossRef]
- Cheng, Y.; Engling, G.; He, K.B.; Duan, F.K.; Ma, Y.L.; Du, Z.Y.; Liu, J.M.; Zheng, M.; Weber, R.J. Biomass burning contribution to Beijing aerosol. Atmos. Chem. Phys. 2013, 13, 7765–7781. [Google Scholar] [CrossRef]
- Ho, K.F.; Engling, G.; Ho, S.S.H.; Huang, R.; Lai, S.; Cao, J.; Lee, S.C. Seasonal variations of anhydrosugars in PM2.5 in the Pearl River Delta Region, China. Tellus B Chem. Phys. Meteo. 2014, 66, 22577. [Google Scholar] [CrossRef]
- Hakimzadeh, M.; Soleimanian, E.; Mousavi, A.; Borgin, A.; Macro, C.D.; Ruprecht, A.A.; Sioutas, C. The impact of biomass burning on the oxidative potential of PM2.5 in the metropolitan area of Milan. Atmos. Environ. 2020, 224, 117328. [Google Scholar] [CrossRef]
- Verma, V.; Fang, T.; Guo, H.; King, L.; Bates, J.T.; Peltier, R.E.; Edgerton, E.; Russell, A.G.; Weber, R.J. Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: Spatiotemporal trends and source apportionment. Atmos. Chem. Phys. 2014, 14, 12915–12930. [Google Scholar] [CrossRef]
Compounds | Unit | Average ± S.D (1) | Range |
---|---|---|---|
PM2.5 mass | μg/m3 | 21.3 ± 6.6 | 7.9–37.2 |
OC | μg/m3 | 6.1 ± 2.8 | 2.0–18.0 |
EC | μg/m3 | 0.5 ± 0.2 | 0.2–1.2 |
NO3− | μg/m3 | 6.6 ± 5.0 | 0.5–21.9 |
SO42− | μg/m3 | 2.9 ± 1.3 | 1.0–9.8 |
NH4+ | μg/m3 | 4.4 ± 2.4 | 1.0–13.2 |
K+ | μg/m3 | 0.2 ± 0.1 | 0.1–0.4 |
K | μg/m3 | 0.3 ± 0.1 | 0.1–0.7 |
Levoglucosan | ng/m3 | 151.3 ± 152.6 | 9.0–754.8 |
Mannosan | ng/m3 | 43.1 ± 46.9 | 2.9–268.3 |
BC370 | μg/m3 | 1.6 ± 1.0 | 0.3–5.2 |
BC880 | μg/m3 | 1.0 ± 0.6 | 0.2–2.6 |
BC370 (babs) | Mm−1 | 19.1 ± 10.5 | 4.2–49.3 |
BrC370 (babs) | Mm−1 | 9.6 ± 8.9 | 0.9–50.8 |
Levoglucosan/OC | - | 0.022 ± 0.016 | 0.003–0.084 |
Levoglucosan/BC370 | μg/Mm2 | 0.010 ± 0.007 | 0.003–0.031 |
Levoglucosan/BrC370 | μg/Mm2 | 0.031 ± 0.032 | 0.003–0.155 |
QDTT-OP | nM/m3 | 5.3 ± 2.0 | 1.2–12.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, G.-H.; Song, M.; Oh, S.-H.; Choe, S.; Jeon, H.; Ko, D.-H.; Bae, M.-S. Wintertime Diurnal Variation in Absorption Coefficient of Brown Carbon Associated with the Molecular Marker of Levoglucosan. Appl. Sci. 2024, 14, 4117. https://doi.org/10.3390/app14104117
Yu G-H, Song M, Oh S-H, Choe S, Jeon H, Ko D-H, Bae M-S. Wintertime Diurnal Variation in Absorption Coefficient of Brown Carbon Associated with the Molecular Marker of Levoglucosan. Applied Sciences. 2024; 14(10):4117. https://doi.org/10.3390/app14104117
Chicago/Turabian StyleYu, Geun-Hye, Myoungki Song, Sea-Ho Oh, Seoyeong Choe, Hajeong Jeon, Dong-Hoon Ko, and Min-Suk Bae. 2024. "Wintertime Diurnal Variation in Absorption Coefficient of Brown Carbon Associated with the Molecular Marker of Levoglucosan" Applied Sciences 14, no. 10: 4117. https://doi.org/10.3390/app14104117
APA StyleYu, G. -H., Song, M., Oh, S. -H., Choe, S., Jeon, H., Ko, D. -H., & Bae, M. -S. (2024). Wintertime Diurnal Variation in Absorption Coefficient of Brown Carbon Associated with the Molecular Marker of Levoglucosan. Applied Sciences, 14(10), 4117. https://doi.org/10.3390/app14104117