Air Quality Research Based on B-Spline Functional Linear Model: A Case Study of Fujian Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Framework of Methodology
2.4. Functionalized Processing of Data
2.5. Clustering Analysis Based on Functional Principal Component
2.6. Functional Linear Model
3. Results
3.1. Proportion of Days with the Primary Pollutants
3.2. Spatiotemporal Characteristics of Air Pollution
3.3. Response Relationship between Anthropogenic Activities and Air Quality
4. Discussion
4.1. Dynamic Changes in Air Quality Associated with Natural Factors and Anthropogenic Activities
4.2. Advantages and Limitations of the Study
5. Recommendations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ouyang, H.; Tang, X.; Kumar, R.; Zhang, R.; Brasseur, G.; Churchill, B.; Alam, M.; Kan, H.; Liao, H.; Zhu, T.; et al. Toward Better and Healthier Air Quality: Implementation of WHO 2021 Global Air Quality Guidelines in Asia. Bull. Am. Meteorol. Soc. 2022, 103, E1696–E1703. [Google Scholar] [CrossRef]
- IQAir. IQAir World Air Quality Report 2022; IQAir: Goldach, Switzerland, 2022; p. 11. [Google Scholar]
- World Health Organization. Household Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 28 November 2022).
- Kilinc, B.K. The Effects of Industry Increase and Urbanization on Air Pollutants in Turkey: A Nonlinear Air Quality Model. Appl. Ecol. Environ. Res. 2019, 17, 9889–9903. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; Liu, T.; Zhao, X. Spatio-Temporal Correlation Analysis of Air Quality in China: Evidence from Provincial Capitals Data. Sustainability 2020, 12, 2486. [Google Scholar] [CrossRef]
- Harrison, R.M.; Laxen, D.; Moorcroft, S.; Laxen, K. Processes affecting concentrations of fine particulate matter (PM2.5) in the UK atmosphere. Atmos. Environ. 2012, 46, 115–124. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Chen, M.; Gao, S.; Li, R. Regional Variation of urban air quality in China and its dominant factors. Acta Geogr. Sin. 2021, 76, 2814–2829. [Google Scholar] [CrossRef]
- Chu, B.; Ma, Q.; Liu, J.; Ma, J.; Zhang, P.; Chen, T.; Feng, Q.; Wang, C.; Yang, N.; Ma, H.; et al. Air Pollutant Correlations in China: Secondary Air Pollutant Responses to NOx and SO2 Control. Environ. Sci. Technol. Lett. 2020, 7, 695–700. [Google Scholar] [CrossRef]
- Li, T.; Lu, W.; Zhao, J.; Zeng, S. Analysis of Chengdu Air Quality Pollution Based on Logistic Sequential Multi-classification of Distance between Classes. Sci. Technol. Eng. 2022, 22, 409–415. [Google Scholar]
- Jiao, D.; Sun, Z. Regression Analysis of Air Quality Index. Period. Ocean Univ. China 2018, 48, 228–234. [Google Scholar]
- Tan, S.T.; Mohamed, N.; Ng, L.C.; Aik, J. Air quality in underground metro station commuter platforms in Singapore: A cross-sectional analysis of factors influencing commuter exposure levels. Atmos. Environ. 2022, 273, 118962. [Google Scholar] [CrossRef]
- Jin, Z.; Gao, X.; Li, B.; Zhai, D.; Xu, J.; Li, F. Spatio-temporal distribution pattern and influencing factors of air quality in Sichuan-Chongqing region. Acta Ecol. Sin. 2022, 42, 4379–4388. [Google Scholar]
- Lei, T.M.T.; Siu, S.W.I.; Monjardino, J.; Mendes, L.; Ferreira, F. Using Machine Learning Methods to Forecast Air Quality: A Case Study in Macao. Atmosphere 2022, 13, 1412. [Google Scholar] [CrossRef]
- Xie, S.; Zhou, Z.; Li, G. Relationship between PM(2.5) Concentration and Meteorological Factors in Nanjing. Sci. Technol. Eng. 2020, 20, 460–466. [Google Scholar]
- Navares, R.; Aznarte, J.L. Predicting air quality with deep learning LSTM: Towards comprehensive models. Ecol. Inform. 2020, 55, 101019. [Google Scholar] [CrossRef]
- Phruksahiran, N. Improvement of air quality index prediction using geographically weighted predictor methodology. Urban Clim. 2021, 38, 100890. [Google Scholar] [CrossRef]
- Sun, X.; Xu, W.; Jiang, H.; Wang, Q. A deep multitask learning approach for air quality prediction. Ann. Oper. Res. 2021, 303, 51–79. [Google Scholar] [CrossRef]
- Fu, J.; Zhou, F. Chinese provincial air quality measurement and its influencing factors. Urban Probl. 2020, 20–27. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, H.; Pu, H. The Spatiotemporal Evolution and Socio-economic Driving Forces of Air Quality in China during the 13th Five-Year Plan Period. J. Southwest Univ. Nat. Sci. Ed. 2022, 44, 99–109. [Google Scholar]
- Li, M.; Zhang, M.; Du, C.; Chen, Y. Study on the spatial spillover effects of cement production on air pollution in China. Sci. Total Environ. 2020, 748, 141421. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Chen, J.; Wang, J.; Cheng, X. PM (2.5) Concentration Influencing Factors in China Based on the Random Forest Model. Environ. Sci. 2020, 41, 2057–2065. [Google Scholar] [CrossRef]
- Song, B.; Shi, H.; Wang, M.; Gu, R. The research on the effect of digital economy development on urban air quality. Front. Environ. Sci. 2022, 10, 993353. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, K. The roles of globalization, renewable energy and technological innovation in improving air quality: Evidence from the world’s 60 most open countries. Energy Rep. 2022, 8, 9889–9898. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, X.; Yang, W. Status quo of air quality and its relationship with economic development in seven cities of China. J. Environ. Occup. Med. 2019, 36, 533–539. [Google Scholar]
- Zhao, Y.; Wang, S.; Zhou, C. Understanding the relation between urbanization and the eco-environment in China’s Yangtze River Delta using an improved EKC model and coupling analysis. Sci. Total Environ. 2016, 571, 862–875. [Google Scholar] [CrossRef] [PubMed]
- Yan, M. The Statistical Analysis of Functional Data: Thoughts, Methods and the Applications. Stat. Res. 2007, 24, 87–94. [Google Scholar]
- Huang, H.; Qi, W. Massive Semi-Structured Data: Collection, Storage and Analysis—Based on the Practice of Real-time Air Quality Data Processing. Stat. Res. 2014, 31, 10–16. [Google Scholar]
- King, M.C.; Staicu, A.M.; Davis, J.M.; Reich, B.J.; Eder, B. A Functional Data Analysis of Spatiotemporal Trends and Variation in Fine Particulate Matter. Atmos. Environ. 1994 2018, 184, 233–243. [Google Scholar] [CrossRef]
- Ramsay, J.O. When the data are functions. Psychometrika 1982, 47, 379–396. [Google Scholar] [CrossRef]
- Aggarwal, C.C.; Reddy, C.K. Data Clustering: Algorithms and Applications; Chapman & Hall/CRC: Boca Raton, FL, USA, 2013; p. 652. [Google Scholar]
- Wang, D.; Zhu, J.; Liu, X.; He, L. Review and Prospect of Functional Data Clustering Analysis. J. Appl. Stat. Manag. 2018, 37, 51–63. [Google Scholar]
- Liang, Y.; Liu, L.; Lu, Y. Characterization of air pollution in Beijing, Tianjin and Hebei based on functional data clustering. World Surv. Res. 2017, 43–48. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, L.; Sun, J.; Wang, N.; Yu, Q. Research on characteristic of air quality change in Zhejiang Province—Based on functional data analysis. J. Shandong Univ. Nat. Sci. 2021, 56, 53–64. [Google Scholar]
- Fujian Provincial Department of Ecology and Environment. Fujian Province’s 14th Five-Year Plan for Air Quality Improvement. Available online: https://sthjt.fujian.gov.cn/zwgk/ghjh1/zcqfzgh/202303/t20230315_6131424.htm (accessed on 27 February 2022).
- Fujian Provincial Bureau of Statistics. Statistical Communiqué on National Economic and Social Development of Fujian Province in 2022. Available online: https://tjj.fujian.gov.cn/xxgk/tjgb/202303/t20230313_6130081.htm (accessed on 14 March 2023).
- HJ 633-2012; Technical Regulation on Ambient Air Quality Index(on Trial). Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2012.
- Ramsay, J.O.; Silverman, B.W. Functional Data Analysis, 2nd ed.; Springer: New York, NY, USA, 2004. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R, Uncorrected ed.; Springer: New York, NY, USA, 2013; p. xiv, 426 pages: Illustrations (some color). [Google Scholar]
- Yan, M. Methods of Functional Data Analysis and Its Economic Applications; Financial and Economic Publishing House: Beijing, China, 2014; p. 191. [Google Scholar]
- Craven, P.; Wahba, G.; University of Wisconsin—Madison. Department of, S. Smoothing Noisy Data with Spline Functions: Estimating the Correct Degree of Smoothing by the Method of Generalized Cross-Validation; Department of Statistics, University of Wisconsin: Madison, WI, USA, 1977. [Google Scholar]
- Ramsay, J.; Hooker, G.; Graves, S.; SpringerLink. Functional Data Analysis with R and MATLAB, 1st ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Ali, M.; Athar, M. Impact of transport and industrial emissions on the ambient air quality of Lahore City, Pakistan. Env. Monit. Assess. 2010, 171, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Freire, S.M.; Relvas, H.; Lopes, M. Impact of traffic emissions on air quality in Cabo Verde. Env. Monit Assess 2020, 192, 726. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, A. Air quality impact of particulate matter (PM(10)) releases from an industrial source. Env. Monit Assess 2020, 192, 547. [Google Scholar] [CrossRef]
- Handhayani, T. An integrated analysis of air pollution and meteorological conditions in Jakarta. Sci. Rep. 2023, 13, 5798. [Google Scholar] [CrossRef]
- Guo, J.; Chen, Y. Patterns of seasonal change in air pollution and suggestions on pollution control in Beijing. J. Ecol. Environ. 2009, 18, 952–956. [Google Scholar]
- Li, X.; Zhang, M.; Wang, S.; Zhao, A.; Ma, Q. Variation Characteristics and Influencing Factors of Air Pollution Index in China. Environ. Sci. 2012, 33, 1936–1943. [Google Scholar]
- Yan, C.; Zhou, X.; Zhang, H.; Huang, X.; Sheng, Y.; Nie, M.; Ding, M. Spatiotemporal Distribution of Air Pollution and Its Impacted Factors in Nanchang City. Resour. Environ. Yangtze River Basin 2019, 28, 1446–1459. [Google Scholar]
- Fameli, K.M.; Kotrikla, A.M.; Psanis, C.; Biskos, G.; Polydoropoulou, A. Estimation of the emissions by transport in two port cities of the northeastern Mediterranean, Greece. Environ. Pollut. 2020, 257, 113598. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, B.; Li, H.; Al-Barakani, A. Expansion of city scale, traffic modes, traffic congestion, and air pollution. Cities 2021, 108, 102974. [Google Scholar] [CrossRef]
- Albayati, N.; Waisi, B.; Al-Furaiji, M.; Kadhom, M.; Alalwan, H. Effect of COVID-19 on air quality and pollution in different countries. J. Transp. Health 2021, 21, 101061. [Google Scholar] [CrossRef] [PubMed]
Air Quality Index | 0–50 | 51–100 | 101–150 | 151–200 | 201–300 | >300 |
---|---|---|---|---|---|---|
Categories | Excellent I | Good II | Light pollution III | Moderate pollution IV | Heavy pollution V | Severe pollution VI |
Pollutant | Optimal Smoothing Parameters |
---|---|
CO | 100.1 |
NO2 | 100.2 |
O3 | 10−0.8 |
PM2.5 | 10−0.2 |
PM10 | 10−0.5 |
SO2 | 10−1.7 |
Pollutant | FPC 1 | FPC 2 | FPC 3 | Accumulation |
---|---|---|---|---|
Air Quality Index | 34.7% | 13.7% | 40.6% | 89% |
CO | 52.1% | 27.3% | 16.9% | 96.3% |
NO2 | 30.6% | 28.9% | 31.9% | 91.4% |
O3 | 45.5% | 12.4% | 33.6% | 91.5% |
PM2.5 | 54.9% | 22.9% | 10.3% | 88.1% |
PM10 | 61.3% | 19.3% | 10% | 90.6% |
SO2 | 42.4% | 26.6% | 18.2% | 87.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; You, T.; Wen, Y.; Ning, J.; Xiao, Y.; Shen, H. Air Quality Research Based on B-Spline Functional Linear Model: A Case Study of Fujian Province, China. Appl. Sci. 2023, 13, 11206. https://doi.org/10.3390/app132011206
Xu Y, You T, Wen Y, Ning J, Xiao Y, Shen H. Air Quality Research Based on B-Spline Functional Linear Model: A Case Study of Fujian Province, China. Applied Sciences. 2023; 13(20):11206. https://doi.org/10.3390/app132011206
Chicago/Turabian StyleXu, Yihan, Tiange You, Yuanyao Wen, Jing Ning, Yanglan Xiao, and Huirou Shen. 2023. "Air Quality Research Based on B-Spline Functional Linear Model: A Case Study of Fujian Province, China" Applied Sciences 13, no. 20: 11206. https://doi.org/10.3390/app132011206
APA StyleXu, Y., You, T., Wen, Y., Ning, J., Xiao, Y., & Shen, H. (2023). Air Quality Research Based on B-Spline Functional Linear Model: A Case Study of Fujian Province, China. Applied Sciences, 13(20), 11206. https://doi.org/10.3390/app132011206