Impact of Precursor Compounds Associated with Long-Range Transport in the East Asia Region—Variation in CO/CO2 and VOCs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measuring Location
2.2. Chemical Analysis of PM2.5
2.3. Analysis of VOCs
2.4. Back-Trajectory Analysis of Meteorological and Satellite Data
3. Results
3.1. Time Series Results of Measured Concentrations
3.2. Satellite Observations for Long-Range Transport
3.3. Ratio Characteristic of Long-Range Transport Component
3.4. Long-Distance Transport Using VOCs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PM | particulate matter |
PM2.5 | particles that are 2.5 microns or less in diameter |
PM10 | particles that are 10 microns or less in diameter |
VOCs | volatile organic compounds |
EC | elemental carbon |
OC | organic carbon |
WSOC | water soluble organic carbon |
MAAP | multi-angle absorption photometer |
DDW | deionized distilled water |
IC | ion chromatography |
TOC | total organic carbon |
ED-XRF | energy dispersive X-ray fluorescence |
GC | gas chromatography |
MS | mass spectrometry |
CWT | concentration weighted trajectory |
LRT | long-range transport |
AOD | aerosol optical depth |
WIOC | water insoluble organic carbon |
BB | biomass burning |
SOA | secondary organic aerosol |
RH | relative humidity |
VIS | visible light |
NIR | near infrared |
SWIR | short wavelength infrared |
ECMWF | European Centre for Medium-Range Weather Forecasts |
RTWC | residence time weighted concentration |
PSCF | potential Source Contribution Function |
SNA | SO42−, NO3−, NH4+ |
Cf | chloroform |
12Dice | 1,2-dichloroethane |
TcCE | tetrachloroethene |
CB | chlorobenzene |
NaT | naphthalene |
References
- Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Zanobetti, A.; Franklin, M.; Koutrakis, P.; Schwartz, J. Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environ. Health 2009, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Maji, K.J.; Ye, W.-F.; Arora, M.; Shiva Nagendra, S.M. PM2.5-related health and economic loss assessment for 338 Chinese cities. Environ. Int. 2018, 121, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Chen, L.-W.A.; Motallebi, N. Black and Organic Carbon Emission Inventories: Review and Application to California. J. Air Waste Manag. Assoc. 2010, 60, 497–507. [Google Scholar] [CrossRef]
- Gentner, D.R.; Isaacman, G.; Worton, D.R.; Chan, A.W.H.; Dallmann, T.R.; Davis, L.; Goldstein, A.H. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions. Proc. Natl. Acad. Sci. USA 2012, 109, 18318. [Google Scholar] [CrossRef]
- Sandrini, S.; Fuzzi, S.; Piazzalunga, A.; Prati, P.; Bonasoni, P.; Cavalli, F.; Gilardoni, S. Spatial and seasonal variability of carbonaceous aerosol across Italy. Atmos. Environ. 2014, 99, 587–598. [Google Scholar] [CrossRef]
- Hellack, B.; Quass, U.; Beuck, H.; Wick, G.; Kuttler, W.; Schins, R.P.; Kuhlbusch, T.A. Elemental composition and radical formation potency of PM10 at an urban background station in Germany in relation to origin of air masses. Atmos. Environ. 2015, 105, 1–6. [Google Scholar] [CrossRef]
- Krumpen, T.; Belter, H.J.; Boetius, A.; Damm, E.; Haas, C.; Hendricks, S.; Stein, R. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Sci. Rep. 2019, 9, 5459. [Google Scholar] [CrossRef]
- Ryall, D.; Derwent, R.; Manning, A.; Redington, A.; Corden, J.; Millington, W.; Fuller, G. The origin of high particulate concentrations over the United Kingdom, March 2000. Atmos. Environ. 2002, 36, 1363–1378. [Google Scholar] [CrossRef]
- Valenzuela, A.; Olmo, F.; Lyamani, H.; Antón, M.; Quirantes, A.; Alados-Arboledas, L. Classification of aerosol radiative properties during African desert dust intrusions over southeastern Spain by sector origins and cluster analysis. J. Geophys. Res. Atmos. 2012, 117, D6. [Google Scholar] [CrossRef]
- Uygur, N.; Karaca, F.; Alagha, O. Prediction of sources of metal pollution in rainwater in Istanbul, Turkey using factor analysis and long-range transport models. Atmos. Res. 2010, 95, 55–64. [Google Scholar] [CrossRef]
- Choo, G.-H.; Lee, K.; Seo, J.; Kim, S.-Y.; Lee, D.-W.; Shin, H.-J. Optical and chemical properties of long-range transported aerosols using satellite and ground-based observations over seoul; South Korea. Atmos. Environ. 2021, 246, 118024. [Google Scholar] [CrossRef]
- Kim, H.; Zhang, Q.; Heo, J. Influence of intense secondary aerosol formation and long-range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: Results from KORUS-AQ. Atmos. Chem. Phys. 2018, 18, 7149–7168. [Google Scholar] [CrossRef]
- Thang, P.Q.; Kim, S.-J.; Lee, S.-J.; Ye, J.; Seo, Y.-K.; Baek, S.-O.; Choi, S.-D. Seasonal characteristics of particulate polycyclic aromatic hydrocarbons (PAHs) in a petrochemical and oil refinery industrial area on the west coast of South Korea. Atmos. Environ. 2019, 198, 398–406. [Google Scholar] [CrossRef]
- Song, M.; Kim, M.; Oh, S.; Park, C.; Kim, M.; Kim, M.; Lee, H.; Choe, S.; Bae, M. Influences of Organic Volatile Compounds on the Secondary Organic Carbon of Fine Particulate Matter in the Fruit Tree Area. Appl. Sci. 2021, 11, 8193. [Google Scholar] [CrossRef]
- Cheng, I.; Zhang, L.; Blanchard, P.; Dalziel, J.; Tordon, R. Concentration-weighted trajectory approach to identifying potential sources of speciated atmospheric mercury at an urban coastal site in Nova Scotia, Canada. Atmos. Chem. Phys. 2013, 13, 6031–6048. [Google Scholar] [CrossRef]
- Dimitriou, K.; Kassomenos, P. Aerosol contributions at an urban background site in Eastern Mediterranean–Potential source regions of PAHs in PM10 mass. Sci. Total Environ. 2017, 598, 563–571. [Google Scholar] [CrossRef]
- Magro, C.; Nunes, L.; Gonçalves, O.C.; Neng, N.R.; Nogueira, J.M.F.; Rego, F.C.; Vieira, P. Atmospheric Trends of CO and CH4 from Extreme Wildfires in Portugal Using Sentinel-5P TROPOMI Level-2 Data. Fire 2021, 4, 25. [Google Scholar] [CrossRef]
- Schneising, O.; Buchwitz, M.; Reuter, M.; Bovensmann, H.; Burrows, J.P.; Borsdorff, T.; Wunch, D. A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor. Atmos. Meas. Tech. 2019, 12, 6771–6802. [Google Scholar] [CrossRef]
- Tian, X.; Gao, Z. Validation and Accuracy Assessment of MODIS C6.1 Aerosol Products over the Heavy Aerosol Loading Area. Atmosphere 2019, 10, 548. [Google Scholar] [CrossRef]
- Hoffmann, L.; Günther, G.; Li, D.; Stein, O.; Wu, X.; Griessbach, S.; Wright, J.S. From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys. 2019, 19, 3097–3124. [Google Scholar] [CrossRef]
- Bozzetti, C.; Haddad, I.E.; Salameh, D.; Daellenbach, K.R.; Fermo, P.; Gonzalez, R.; Elser, M. Organic aerosol source apportionment by offline-AMS over a full year in Marseille. Atmos. Chem. Phys. 2017, 17, 8247–8268. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Kondo, Y.; Takegawa, N.; Komazaki, Y.; Fukuda, M.; Kawamura, K.; Weber, R. Time-resolved measurements of water-soluble organic carbon in Tokyo. J. Geophys. Res. Atmos. 2006, 111, D23. [Google Scholar] [CrossRef]
- Sannigrahi, P.; Sullivan, A.P.; Weber, R.J.; Ingall, E.D. Characterization of water-soluble organic carbon in urban atmospheric aerosols using solid-state 13C NMR spectroscopy. Environ. Sci. Technol. 2006, 40, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.J.; Sullivan, A.P.; Peltier, R.E.; Russell, A.; Yan, B.; Zheng, M.; Holloway, J.S. A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States. J. Geophys. Res. Atmos. 2007, 112, D13. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Li, J.; Zhang, G.; Zotter, P.; Huang, R.-J.; Tang, J.-H.; Szidat, S.N. Radiocarbon-based source apportionment of carbonaceous aerosols at a regional background site on Hainan Island, South China. Environ. Sci. Technol. 2014, 48, 2651–2659. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Duan, L.; Hao, J.; Li, C.; Chen, Y.; Yang, L. Particulate and Trace Gas Emissions from Open Burning of Wheat Straw and Corn Stover in China. Environ. Sci. Technol. 2007, 41, 6052–6058. [Google Scholar] [CrossRef]
- Ni, H.; Tian, J.; Wang, X.; Wang, Q.; Han, Y.; Cao, J.; Dusek, U. PM2.5 emissions and source profiles from open burning of crop residues. Atmos. Environ. 2017, 169, 229–237. [Google Scholar] [CrossRef]
- Turn, S.Q.; Jenkins, B.M.; Chow, J.C.; Pritchett, L.C.; Campbell, D.; Cahill, T.; Whalen, S.A. Elemental characterization of particulate matter emitted from biomass burning: Wind tunnel derived source profiles for herbaceous and wood fuels. J. Geophys. Res. Atmos. 1997, 102, 3683–3699. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Hao, J.; Wan, L.; Jiang, J.; Zhang, M.; Mellouki, A.W. Chemical and size characterization of particles emitted from the burning of coal and wood in rural households in Guizhou, China. Atmos. Environ. 2012, 51, 94–99. [Google Scholar] [CrossRef]
- Shen, Z.; Cao, J.; Arimoto, R.; Han, Z.; Zhang, R.; Han, Y.; Tanaka, S. Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi’an, China. Atmos. Environ. 2009, 43, 2911–2918. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Houck, J.E. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 2001, 43, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Zhang, L.; Evans, G.J.; Yao, X. Variability of atmospheric ammonia related to potential emission sources in downtown Toronto, Canada. Atmos. Environ. 2014, 99, 365–373. [Google Scholar] [CrossRef]
- Pathak, R.K.; Yao, X.; Chan, C.K. Sampling artifacts of acidity and ionic species in PM2.5. Environ. Sci. Technol. 2004, 38, 254–259. [Google Scholar] [CrossRef]
- Rozante, J.R.; Rozante, V.; Souza Alvim, D.; Ocimar Manzi, A.; Barboza Chiquetto, J.; Siqueira D’Amelio, M.T.; Moreira, D.S. Variations of Carbon Monoxide Concentrations in the Megacity of São Paulo from 2000 to 2015 in Different Time Scales. Atmosphere 2017, 8, 81. [Google Scholar] [CrossRef]
- Wofsy, S.C.; McConnell, J.C.; McElroy, M.B. Atmospheric CH4, CO, and CO2. J. Geophys. Res. 1972, 77, 4477–4493. [Google Scholar] [CrossRef]
- Zhang, Y.; Lang, J.; Cheng, S.; Li, S.; Zhou, Y.; Chen, D.; Wang, H. Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. Sci. Total Environ. 2018, 630, 72–82. [Google Scholar] [CrossRef]
- Xu, W.; Liu, X.; Liu, L.; Dore, A.J.; Tang, A.; Lu, L.; Zhang, F. Impact of emission controls on air quality in Beijing during APEC 2014: Implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors. Atmos. Environ. 2019, 210, 241–252. [Google Scholar] [CrossRef]
- Jaffe, D.; Mahura, A.; Kelley, J.; Atkins, J.; Novelli, P.C.; Merrill, J. Impact of Asian emissions on the remote North Pacific atmosphere: Interpretation of CO data from Shemya, Guam, Midway and Mauna Loa. J. Geophys. Res. Atmos. 1997, 102, 28627–28635. [Google Scholar] [CrossRef]
- Wagstrom, K.M.; Pandis, S.N. Contribution of long range transport to local fine particulate matter concerns. Atmos. Environ. 2011, 45, 2730–2735. [Google Scholar] [CrossRef]
- Huy, D.H.; Thanh, L.T.; Hien, T.T.; Takenaka, N. Development and application of a simultaneous measurement method for gaseous ammonia and particulate ammonium in ambient air. Aerosol Sci. Technol. 2016, 50, 959–970. [Google Scholar] [CrossRef]
- Pathak, R.K.; Wu, W.S.; Wang, T. Summertime PM2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys. 2009, 9, 1711–1722. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Levelt, P.F. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Ashbaugh, L.L.; Malm, W.C.; Sadeh, W.Z. A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmos. Environ. 1985, 19, 1263–1270. [Google Scholar] [CrossRef]
- Gao, N.; Cheng, M.-D.; Hopke, P.K. Receptor modeling of airborne ionic species collected in SCAQS. Atmos. Environ. 1994, 28, 1447–1470. [Google Scholar] [CrossRef]
- Hsu, Y.-K.; Holsen, T.M.; Hopke, P.K. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Environ. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Lai, S.-o.; Holsen, T.M.; Hopke, P.K.; Liu, P. Wet deposition of mercury at a New York state rural site: Concentrations, fluxes, and source areas. Atmos. Environ. 2007, 41, 4337–4348. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Crow, D.; Lowenthal, D.H.; Merrifield, T. Comparison of IMPROVE and NIOSH carbon measurements. J. Aerosol Sci. 2001, 34, 23–34. [Google Scholar] [CrossRef]
- Merico, E.; Cesari, D.; Dinoi, A.; Gambaro, A.; Barbaro, E.; Guascito, M.R.; Contini, D. Inter-comparison of carbon content in PM10 and PM2.5 measured with two thermo-optical protocols on samples collected in a Mediterranean site. Environ. Sci. Pollut. Res. 2019, 26, 29334–29350. [Google Scholar] [CrossRef]
- Hitzenberger, R.; Petzold, A.; Bauer, H.; Ctyroky, P.; Pouresmaeil, P.; Laskus, L.; Puxbaum, H. Intercomparison of thermal and optical measurement methods for elemental carbon and black carbon at an urban location. Environ. Sci. Technol. 2006, 40, 6377–6383. [Google Scholar] [CrossRef]
- Khan, B.; Hays, M.D.; Geron, C.; Jetter, J. Differences in the OC/EC ratios that characterize ambient and source aerosols due to thermal-optical analysis. Aerosol Sci. Technol. 2012, 46, 127–137. [Google Scholar] [CrossRef]
- Ram, K.; Sarin, M.; Tripathi, S. Inter-comparison of thermal and optical methods for determination of atmospheric black carbon and attenuation coefficient from an urban location in northern India. Atmos. Res. 2010, 97, 335–342. [Google Scholar] [CrossRef]
- Cesari, D.; Merico, E.; Dinoi, A.; Marinoni, A.; Bonasoni, P.; Contini, D. Seasonal variability of carbonaceous aerosols in an urban background area in Southern Italy. Atmos. Res. 2018, 200, 97–108. [Google Scholar] [CrossRef]
- Massabò, D.; Caponi, L.; Bove, M.; Prati, P. Brown carbon and thermal–optical analysis: A correction based on optical multi-wavelength apportionment of atmospheric aerosols. Atmos. Environ. 2016, 125, 119–125. [Google Scholar] [CrossRef]
- Cheng, Y.; He, K.-B.; Engling, G.; Weber, R.; Liu, J.-M.; Du, Z.-Y.; Dong, S.-P. Brown and black carbon in Beijing aerosol: Implications for the effects of brown coating on light absorption by black carbon. Sci. Total Environ. 2017, 599, 1047–1055. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Monod, A.; Sive, B.C.; Avino, P.; Chen, T.; Blake, D.R.; Sherwood Rowland, F. Monoaromatic compounds in ambient air of various cities: A focus on correlations between the xylenes and ethylbenzene. Atmos. Environ. 2001, 35, 135–149. [Google Scholar] [CrossRef]
- Fang, X.; Park, S.; Saito, T.; Tunnicliffe, R.; Ganesan, A.L.; Rigby, M.; Prinn, R.G. Rapid increase in ozone-depleting chloroform emissions from China. Nat. Geosci. 2019, 12, 89–93. [Google Scholar] [CrossRef]
- Wallington, T.J.; Bilde, M.; Møgelberg, T.E.; Sehested, J.; Nielsen, O.J. Atmospheric Chemistry of 1,2-Dichloroethane: UV Spectra of CH2ClCHCl and CH2ClCHClO2 Radicals, Kinetics of the Reactions of CH2ClCHCl Radicals with O2 and CH2ClCHClO2 Radicals with NO and NO2, and Fate of the Alkoxy Radical CH2ClCHClO. J. Phys. Chem. 1996, 100, 5751–5760. [Google Scholar] [CrossRef]
- Wu, R.; Wang, S.; Wang, L. Atmospheric oxidation mechanism of chlorobenzene. Chemosphere 2014, 111, 537–544. [Google Scholar] [CrossRef]
- McCulloch, A. Chloroform in the environment: Occurrence, sources, sinks and effects. Chemosphere 2003, 50, 1291–1308. [Google Scholar] [CrossRef] [PubMed]
- Bunce, N.J.; Liu, L.; Zhu, J.; Lane, D.A. Reaction of Naphthalene and Its Derivatives with Hydroxyl Radicals in the Gas Phase. Environ. Sci. Technol. 1997, 31, 2252–2259. [Google Scholar] [CrossRef]
Compound | Unit | Overall Average | LRT (1) Period | Other Periods | Ratio (2) | |
---|---|---|---|---|---|---|
Gas | CO | ppb | 202.175 | 283.010 | 184.521 | 1.534 |
CO2 | ppm | 446.742 | 452.842 | 445.410 | 1.017 | |
SO2 | ppb | 4.953 | 4.823 | 4.981 | 0.968 | |
O3 | ppb | 38.140 | 42.254 | 37.241 | 1.135 | |
NO | ppb | 0.950 | 0.994 | 0.940 | 1.058 | |
NO2 | ppb | 3.770 | 4.957 | 3.510 | 1.412 | |
NH3 | ppb | 6.974 | 14.748 | 5.366 | 2.749 | |
PM2.5 | PM2.5 | µg/m3 | 21.869 | 50.863 | 15.388 | 3.305 |
eBC | µg/m3 | 0.916 | 1.943 | 0.692 | 2.807 | |
PM2.5sum | µg/m3 | 17.499 | 41.545 | 11.995 | 3.464 | |
OC | µg/m3 | 4.816 | 7.577 | 4.184 | 1.811 | |
EC | µg/m3 | 0.453 | 0.789 | 0.376 | 2.101 | |
WSOC | µg/m3 | 3.186 | 5.239 | 2.716 | 1.929 | |
NO3− | µg/m3 | 5.149 | 17.172 | 2.397 | 7.163 | |
SO42− | µg/m3 | 2.754 | 5.928 | 2.028 | 2.923 | |
NH4+ | µg/m3 | 2.452 | 6.821 | 1.452 | 4.696 | |
K+ | µg/m3 | 0.086 | 0.199 | 0.061 | 3.277 | |
Na | µg/m3 | 0.278 | 0.418 | 0.247 | 1.691 | |
Mg | µg/m3 | 0.077 | 0.115 | 0.068 | 1.688 | |
Al | µg/m3 | 0.178 | 0.251 | 0.162 | 1.546 | |
Si | µg/m3 | 0.351 | 0.495 | 0.319 | 1.553 | |
Cl | µg/m3 | 0.337 | 0.736 | 0.250 | 2.939 | |
K | µg/m3 | 0.253 | 0.520 | 0.194 | 2.679 | |
Ca | µg/m3 | 0.113 | 0.182 | 0.098 | 1.844 | |
Ti | µg/m3 | 0.011 | 0.016 | 0.010 | 1.641 | |
Cr | µg/m3 | 0.002 | 0.003 | 0.002 | 1.252 | |
Mn | µg/m3 | 0.011 | 0.019 | 0.009 | 2.140 | |
Fe | µg/m3 | 0.160 | 0.244 | 0.142 | 1.719 | |
Ni | µg/m3 | 0.003 | 0.003 | 0.003 | 1.245 | |
Cu | µg/m3 | 0.001 | 0.001 | 0.000 | 2.555 | |
Zn | µg/m3 | 0.020 | 0.038 | 0.016 | 2.421 | |
Br | µg/m3 | 0.003 | 0.006 | 0.002 | 2.340 | |
Pb | µg/m3 | 0.008 | 0.014 | 0.007 | 1.978 |
Compound | Unit | Overall Average | LRT (1) Periods | Other Periods | Ratio (2) | |
---|---|---|---|---|---|---|
Gas | CO | ppb | 202.175 | 283.010 | 184.521 | 1.534 |
NH3 | ppb | 6.974 | 14.748 | 5.366 | 2.749 | |
PM2.5 | PM2.5 mass | µg/m3 | 21.869 | 50.863 | 15.388 | 3.305 |
eBC | µg/m3 | 0.916 | 1.943 | 0.692 | 2.807 | |
OC | µg/m3 | 4.816 | 7.577 | 4.184 | 1.811 | |
EC | µg/m3 | 0.453 | 0.789 | 0.376 | 2.101 | |
WSOC | µg/m3 | 3.186 | 5.239 | 2.716 | 1.929 | |
NO3− | µg/m3 | 5.149 | 17.172 | 2.397 | 7.163 | |
SO42− | µg/m3 | 2.754 | 5.928 | 2.028 | 2.923 | |
NH4+ | µg/m3 | 2.452 | 6.821 | 1.452 | 4.696 |
Compound (1) | Overall Average | LRT (2) Periods | Other Periods | Ratio (3) | Non Event STD (4) |
---|---|---|---|---|---|
Acrylonitrile | 0.021 | 0.016 | 0.022 | 0.727 | 0.029 |
1,1-Dichloroethane | 0.234 | 0.266 | 0.221 | 1.204 | 0.289 |
Chloroform | 0.045 | 0.075 | 0.039 | 1.923 | 0.041 |
1,2-Dichloroethane | 0.044 | 0.116 | 0.031 | 3.742 | 0.025 |
Benzene | 0.729 | 0.483 | 0.781 | 0.618 | 0.782 |
Carbon tetrachloride | 0.048 | 0.044 | 0.049 | 0.898 | 0.018 |
Trichloroethene | 0.007 | 0.004 | 0.008 | 0.500 | 0.017 |
Toluene | 0.986 | 0.677 | 1.052 | 0.644 | 1.699 |
Tetrachloroethene | 0.006 | 0.010 | 0.006 | 1.667 | 0.007 |
Chlorobenzene | 0.007 | 0.012 | 0.006 | 2.000 | 0.012 |
Ethylbenzene | 0.100 | 0.098 | 0.101 | 0.970 | 0.166 |
m&p-Xylene | 0.040 | 0.042 | 0.040 | 1.050 | 0.079 |
Styrene | 0.080 | 0.060 | 0.084 | 0.714 | 0.057 |
o-Xylene | 0.047 | 0.045 | 0.047 | 0.957 | 0.078 |
Bromobenzene | 0.051 | 0.035 | 0.053 | 0.660 | 0.067 |
Isopropylbenzene | 0.007 | 0.007 | 0.007 | 1.000 | 0.006 |
2-Chlorotoluene | 0.002 | 0.001 | 0.002 | 0.500 | 0.004 |
1,3,5-Trimethylbenzene | 0.004 | 0.003 | 0.004 | 0.750 | 0.004 |
p-Isopropylbenzene | 0.010 | 0.011 | 0.009 | 1.222 | 0.010 |
1,2,4-Trimethylbenzene | 0.017 | 0.018 | 0.017 | 1.059 | 0.007 |
1,2-DiChlorobenzene | 0.004 | 0.004 | 0.004 | 1.000 | 0.002 |
1,3-DiChlorobenzene | 0.001 | 0.001 | - | - | 0.002 |
tert-Butylbenzene | 0.001 | - | 0.001 | - | 0.002 |
1,4-DiChlorobenzene | - | 0.001 | - | - | 0.001 |
n-Butylbenzene | 0.007 | 0.007 | 0.007 | 1.000 | 0.003 |
Naphthalene | 0.090 | 0.082 | 0.091 | 0.901 | 0.014 |
∑VOCs | 2.588 | 2.118 | 2.682 |
r2 | Cf/NaT | 12Dice/NaT | TcCE/NaT | CB/NaT |
---|---|---|---|---|
PM2.5 | 0.323 | 0.879 | 0.382 | 0.505 |
CO | 0.321 | 0.907 | 0.436 | 0.525 |
eBC | 0.084 | 0.792 | 0.630 | 0.663 |
EC | 0.026 | 0.610 | 0.610 | 0.609 |
OC | 0.104 | 0.783 | 0.629 | 0.641 |
WSOC | 0.101 | 0.647 | 0.442 | 0.509 |
NH4+ | 0.220 | 0.780 | 0.409 | 0.504 |
NO3− | 0.180 | 0.834 | 0.519 | 0.585 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Song, M.; Oh, S.-H.; Yu, G.-H.; Choe, S.; Jeon, H.; Kim, J.-H.; Bae, M.-S. Impact of Precursor Compounds Associated with Long-Range Transport in the East Asia Region—Variation in CO/CO2 and VOCs. Appl. Sci. 2023, 13, 10783. https://doi.org/10.3390/app131910783
Kim M, Song M, Oh S-H, Yu G-H, Choe S, Jeon H, Kim J-H, Bae M-S. Impact of Precursor Compounds Associated with Long-Range Transport in the East Asia Region—Variation in CO/CO2 and VOCs. Applied Sciences. 2023; 13(19):10783. https://doi.org/10.3390/app131910783
Chicago/Turabian StyleKim, Minwook, Myoungki Song, Sea-Ho Oh, Geun-Hye Yu, Seoyeong Choe, Hajeong Jeon, Jin-Ho Kim, and Min-Suk Bae. 2023. "Impact of Precursor Compounds Associated with Long-Range Transport in the East Asia Region—Variation in CO/CO2 and VOCs" Applied Sciences 13, no. 19: 10783. https://doi.org/10.3390/app131910783
APA StyleKim, M., Song, M., Oh, S. -H., Yu, G. -H., Choe, S., Jeon, H., Kim, J. -H., & Bae, M. -S. (2023). Impact of Precursor Compounds Associated with Long-Range Transport in the East Asia Region—Variation in CO/CO2 and VOCs. Applied Sciences, 13(19), 10783. https://doi.org/10.3390/app131910783