Prediction of Kiwifruit Sweetness with Vis/NIR Spectroscopy Based on Scatter Correction and Feature Selection Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Kiwifruit Sample Collection
2.2. Kiwifruit Spectra and Sweetness Determination
2.3. Spectral Processing
2.4. Feature Selection Methods
2.5. Modeling Methods
2.5.1. Multiple Linear Regression (MLR)
2.5.2. Partial Least Squares Regression (PLS)
2.5.3. Least Squares Support Vector Machines (LSSVM)
2.5.4. Back Propagation (BP) Neural Network
2.6. Evaluation Metrics for Model Accuracy
3. Results and Analysis
3.1. Description of Kiwifruit Sweetness Data
3.2. Response of Kiwifruit Surface Reflectance to Sweetness Content
3.3. Feature Extraction
3.4. Calibration and Validation of Sweetness Estimation Models
3.4.1. Sweetness Estimation Based on Hyperspectral Features from SPA
3.4.2. Sweetness Estimation Based on Hyperspectral Features from CARS
3.5. Comparison and Accuracy Analysis
4. Discussion
4.1. Impact of Spectral Pre-Processing on Sweetness Prediction
4.2. Influence of Feature Extraction Methods on Sweetness Prediction
4.3. Impact of Modeling Methods on Sweetness Prediction
4.4. Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SG | Savitzky-Golay Smoothing |
SNV | Standard Normal Variate |
MSC | Multiplicative Scatter Correction |
SPA | Successive Projections Algorithm |
CARS | Competitive Adaptive Reweighted Sampling |
LSSVM | Least Squares Support Vector Machine |
BP | Back Propagation Neural Network |
PLS | Partial Least Squares |
MLR | Multiple Linear Regression |
References
- Huang, Z.Y.; Li, J.; Zhang, J.F.; Guo, Y.Y.; Hui, G.H. Physicochemical properties enhancement of Chinese kiwi fruit (Actinidia chinensis Planch) via chitosan coating enriched with salicylic acid treatment. J. Food Meas. Charact. 2017, 11, 184–191. [Google Scholar] [CrossRef]
- Lu, Y.H.; Kang, T.T.; Zhang, X.J.; Gao, J.B.; Chen, Z.J.; Zhou, J.B. Evaluation of current fertilization status in kiwifruit orchards on the northern slope of Qinling Mountains: A case study of Yujiahe catchment, in Zhouzhi County. J. Plant Nutr. Fert. 2016, 22, 380–387. [Google Scholar]
- Guo, W.C.; Zhao, F.; Dong, J.L. Nondestructive measurement of soluble solids content of kiwifruits using near-infrared hyperspectral imaging. Food Anal. Methods 2016, 9, 38–47. [Google Scholar] [CrossRef]
- Moughan, P.J.; Rutherfurd, S.M.; Balan, P. Chapter Nine—Kiwifruit, Mucins, and the Gut Barrier. Adv. Food Nutr. Res. 2013, 68, 169–185. [Google Scholar] [PubMed]
- Torkashvand, A.M.; Ahmadi, A.; Nikravesh, N.L. Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR). J. Integr. Agric. 2017, 16, 1634–1644. [Google Scholar] [CrossRef]
- Carlini, P.; Massantini, R.; Mencarelli, F. Vis-NIR measurement of soluble solids in cherry and apricot by PLS regression and wavelength selection. J. Agric. Food Chem. 2000, 48, 5236–5242. [Google Scholar] [CrossRef] [PubMed]
- Bochereau, L.; Bourgine, P.; Palagos, B. A method for prediction by combining data analysis and neural networks: Application to prediction of apple quality using near infra-red spectra. J. Agric. Eng. Res. 1992, 51, 207–216. [Google Scholar] [CrossRef]
- Fan, S.X.; Huang, W.Q.; Li, J.B.; Guo, Z.M.; Zhao, C.J. Application of characteristic NIR variables selection in portable detection of soluble solids content of apple by near infrared spectroscopy. Spectrosc Spect Anal. 2014, 34, 2707–2712. [Google Scholar]
- Guo, Z.M.; Huang, W.Q.; Peng, Y.K.; Chen, Q.S.; Ouyang, Q.Y.; Zhao, J.W. Color compensation and comparison of shortwave near infrared and long wave near infrared spectroscopy for determination of soluble solids content of ‘Fuji’ apple. Postharvest Biol. Technol. 2016, 115, 81–90. [Google Scholar] [CrossRef]
- Sánchez, M.T.; De la Haba, M.J.; Benítez-López, M.; Fernández-Novales, J.; Garrido-Varo, A.; Pérez-Marín, D. Non-destructive characterization and quality control of intact strawberries based on NIR spectral data. J. Food Eng. 2012, 110, 102–108. [Google Scholar] [CrossRef]
- Sánchez, M.T.; De la Haba, M.J.; Serrano, I.; Pérez-Marín, D.C. Application of NIRS for nondestructive measurement of quality parameters in intact oranges during on-tree ripening and at harvest. Food Anal. Methods 2013, 6, 826–837. [Google Scholar] [CrossRef]
- Martinsen, P.; Schaare, P. Measuring soluble solids distribution in kiwifruit using near-infrared imaging spectroscopy. Postharvest Biol. Technol. 1998, 14, 271–281. [Google Scholar] [CrossRef]
- Schaare, P.N.; Fraser, D.G. Comparison of reflectance, interactance and transmission modes of visible-near infrared spectroscopy for measuring internal properties of kiwifruit (Actinidia chinensis). Postharvest Biol. Technol. 2000, 20, 175–184. [Google Scholar] [CrossRef]
- Ma, T.; Xia, Y.; Inagaki, T.; Tsuchikawa, S. Non-destructive and fast method of mapping the distribution of the soluble solids content and pH in kiwifruit using object rotation near-infrared hyperspectral imaging approach. Postharvest Biol. Technol. 2021, 174, 111440. [Google Scholar] [CrossRef]
- Li, J.; Huang, B.H.; Wu, C.P.; Sun, Z.; Xue, L.; Liu, M.H.; Chen, J.Y. Nondestructive detection of kiwifruit textural characteristic based on near infrared hyperspectral imaging technology. Int. J. Food Prop. 2022, 25, 1697–1713. [Google Scholar] [CrossRef]
- McGlone, V.A.; Jordan, R.B.; Seelye, R.; Martinsen, P.J. Comparing density and NIR methods for measurement of kiwifruit dry matter and soluble solids content. Postharvest Biol. Technol. 2002, 26, 191–198. [Google Scholar] [CrossRef]
- Yang, B.; Guo, W.C.; Huang, X.L.; Du, R.Y.; Liu, Z.H. A portable, low-cost and sensor-based detector on sweetness and firmness grades of kiwifruit. Comput. Electron. Agric. 2020, 179, 105831. [Google Scholar] [CrossRef]
- Wang, H.X.; Wang, C.; Peng, Z.H.; Sun, H.M. Feasibility study on early identification of freshness decay of fresh-cut kiwifruit during cold chain storage by Fourier transform-near infrared spectroscopy combined with chemometrics. J. Food Sci. 2022, 87, 3138–3150. [Google Scholar] [CrossRef] [PubMed]
- Afonso, A.M.; Antunes, M.D.; Cruz, S.; Cavaco, A.M.; Guerra, R. Non-destructive follow-up of ‘jintao’ kiwifruit ripening through VIS-NIR spectroscopy–individual vs. average calibration model’s prediction. Postharvest Biol. Technol. 2022, 188, 111895. [Google Scholar] [CrossRef]
- François, I.M.; Brandt, T.D.; De Proft, M. On the origin of kiwifruit: Classifying kiwifruit from different countries using vis/nir spectroscopy. Commun. Agric. Appl. Biol. Sci. 2008, 73, 149–152. [Google Scholar]
- Malavi, D.; Nikkhah, A.; Alighaleh, P.; Einafshar, S.; Raes, K.; Van Haute, S. Detection of saffron adulteration with Crocus sativus style using NIR-hyperspectral imaging and chemometrics. Food Control 2024, 157, 110189. [Google Scholar] [CrossRef]
- Cen, H.Y.; He, Y.; Huang, M. Measurement of soluble solids contents and pH in orange juice using chemometrics and Vis-NIRS. J. Agric. Food Chem. 2006, 54, 7437–7443. [Google Scholar] [CrossRef] [PubMed]
- Rogel-Castillo, C.; Boulton, R.; Opastpongkarn, A.; Huang, G.; Mitchell, A.E. Use of near-infrared spectroscopy and chemometrics for the nondestructive identification of concealed damage in raw almonds (Prunus dulcis). J. Agric. Food Chem. 2016, 64, 5958–5962. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Lu, H.Z.; Ference, C.; Qiu, G.J.; Xin, L. Rapid nondestructive detection of water content and granulation in postharvest “shatian” pomelo using visible/near-infrared spectroscopy. Biosens 2020, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.L.; Shang, J.; Huang, R.S.; Zhang, Y. Determination of soluble solids content and firmness in plum using hyperspectral imaging and chemometric algorithms. J. Food Process Eng. 2021, 44, e13597. [Google Scholar] [CrossRef]
- Li, J.B.; Guo, Z.M.; Huang, W.Q.; Zhang, B.H.; Zhao, C.J. Near-infrared spectra combining with CARS and SPA algorithms to screen the variables and samples for quantitatively determining the soluble solids content in strawberry. Spectrosc Spect Anal. 2015, 35, 372–378. [Google Scholar]
- Liu, Y.D.; Zhang, G.W.; Cai, L.J. Analysis of chlorophyll in Gannan navel orange with algorithm of GA and SPA based on hyperspectral. Spectrosc Spect Anal. 2012, 32, 3377–3380. [Google Scholar]
- Zhan, B.S.; Ni, J.H.; Li, J. Hyperspectral technology combined with CARS algorithm to quantitatively determine the SSC in Korla fragrant pear. Spectrosc Spect Anal. 2014, 34, 2752–2757. [Google Scholar]
- Li, H.D.; Liang, Y.Z.; Xu, Q.S.; Cao, D.S. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Qin, Y.H.; Song, K.K.; Zhang, N.Q.; Wang, M.H.; Zhang, M.; Peng, B. Robust NIR quantitative model using MIC-SPA variable selection and GA-ELM. Infrared Phys. Technol. 2023, 128, 104534. [Google Scholar] [CrossRef]
- Berhow, M.A.; Singh, M.; Bowman, M.J.; Price, N.P.J.; Vaughn, S.F.; Liu, S.X. Quantitative NIR determination of isoflavone and saponin content of ground soybeans. Food Chem. 2020, 317, 126373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Y.; Xu, Y.F.; Huang, W.Q.; Tian, X.; Xia, Y.; Xu, L.; Fan, S.X. Nondestructive measurement of soluble solids content in apple using near infrared hyperspectral imaging coupled with wavelength selection algorithm. Infrared Phys. Technol. 2019, 98, 297–304. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Maleki, M.R.; Mouazen, A.M.; Ramon, H.; De Baerdemaekeret, J. Multiplicative scatter correction during on-line measurement with near infrared spectroscopy. Biosyst. Eng. 2007, 96, 427–433. [Google Scholar] [CrossRef]
- Moghimi, A.; Aghkhani, M.H.; Sazgarnia, A.; Sarmad, M. Vis/NIR spectroscopy and chemometrics for the prediction of soluble solids content and acidity (pH) of kiwifruit. Biosyst. Eng. 2010, 106, 295–302. [Google Scholar] [CrossRef]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvao, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Tang, R.N.; Chen, X.P.; Li, C. Detection of nitrogen content in rubber leaves using near-infrared (NIR) spectroscopy with correlation-based successive projections algorithm (SPA). Appl. Spectrosc. 2018, 72, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Suykens, J.A.K.; De Brabanter, J.; Lukas, L.; Vandewalle, J. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing 2002, 48, 85–105. [Google Scholar] [CrossRef]
- De Kruif, B.J.; De Vries, T.J.A. Pruning error minimization in least squares support vector machines. IEEE Trans. Neural Netw. 2003, 14, 696–702. [Google Scholar] [CrossRef]
- Chen, X.K.; Li, F.L.; Wang, Y.N.; Shi, B.T.; Hou, Y.H.; Chang, Q.R. Estimation of winter wheat leaf area index based on UAV hyperspectral remote sensing. Trans. Chin. Soc. Agric. Eng. 2020, 36, 40–49. [Google Scholar]
- Hu, W.H.; Sun, D.W.; Blasco, J. Rapid monitoring 1-MCP-induced modulation of sugars accumulation in ripening ‘Hayward’ kiwifruit by Vis/NIR hyperspectral imaging. Postharvest Biol. Technol. 2017, 125, 168–180. [Google Scholar] [CrossRef]
- Van Beers, R.; Aernouts, B.; Watté, R.; Schenk, A.; Nicolaï, B.; Saeys, W. Effect of maturation on the bulk optical properties of apple skin and cortex in the 500–1850 nm wavelength range. J. Food Eng. 2017, 214, 79–89. [Google Scholar] [CrossRef]
- Bi, Y.M.; Yuan, K.L.; Xiao, W.Q.; Wu, J.Z.; Shi, C.Y.; Xia, J.; Chu, G.H.; Zhang, G.X.; Zhou, G.J. A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation. Anal. Chim. Acta 2016, 909, 30–40. [Google Scholar] [CrossRef]
- Mishra, P.; Verkleij, T.; Klont, R. Improved prediction of minced pork meat chemical properties with near-infrared spectroscopy by a fusion of scatter-correction techniques. Infrared Phys. Technol. 2021, 113, 103643. [Google Scholar] [CrossRef]
- Guo, Q.; Wu, W.; Massart, D.L. The robust normal variate transform for pattern recognition with near-infrared data. Anal. Chim. Acta 1999, 382, 87–103. [Google Scholar] [CrossRef]
- Ge, Y.H.; Tu, S.Y. Identification of Chilling Injury in Kiwifruit Using Hyperspectral Structured-Illumination Reflectance Imaging System (SIRI) with Support Vector Machine (SVM) Modelling. Anal. Lett. 2023, 56, 2040–2052. [Google Scholar] [CrossRef]
- Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New data preprocessing trends based on ensemble of multiple preprocessing techniques. TrAC Trends Anal. Chem. 2020, 132, 116045. [Google Scholar] [CrossRef]
- Mishra, P.; Lohumi, S. Improved prediction of protein content in wheat kernels with a fusion of scatter correction methods in NIR data modelling. Biosyst. Eng. 2021, 203, 93–97. [Google Scholar] [CrossRef]
- Benelli, A.; Cevoli, C.; Fabbri, A.; Ragni, L. Ripeness evaluation of kiwifruit by hyperspectral imaging. Biosyst. Eng. 2022, 223, 42–52. [Google Scholar] [CrossRef]
- Liu, D.Y.; Guo, W.C. Identifying CPPU-Treated Kiwifruits Using Near-Infrared Hyperspectral Imaging Technology. Food Anal. Methods 2017, 10, 1273–1283. [Google Scholar] [CrossRef]
- McGlone, V.A.; Kawano, S. Firmness, dry-matter and soluble-solids assessment of postharvest kiwifruit by NIR spectroscopy. Postharvest Biol. Technol. 1998, 13, 131–141. [Google Scholar] [CrossRef]
- Workman, J.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy; Taylor & Francis Group: New York, NY, USA, 2007; pp. 63–70. [Google Scholar]
- Zhu, H.Y.; Chu, B.Q.; Fan, Y.Y.; Tao, X.Y.; Yin, W.X.; He, Y. Hyperspectral Imaging for Predicting the Internal Quality of Kiwifruits Based on Variable Selection Algorithms and Chemometric Models. Sci. Rep. 2017, 7, 7845. [Google Scholar] [CrossRef] [PubMed]
- Li, F.L.; Wang, L.; Liu, J.; Wang, Y.N.; Chang, Q.R. Evaluation of Leaf N Concentration in Winter Wheat Based on Discrete Wavelet Transform Analysis. Remote Sens. 2019, 11, 1331. [Google Scholar] [CrossRef]
- Clark, C.J.; McGlone, V.A.; De Silva, H.N.; Manning, M.A.; Burdon, J.; Mowat, A.D. Prediction of storage disorders of kiwifruit (Actinidia chinensis) based on visible-NIR spectral characteristics at harvest. Postharvest Biol. Technol. 2004, 32, 147–158. [Google Scholar] [CrossRef]
- Ma, T.; Zhao, J.; Inagaki, T.; Su, Y.; Tsuchikawa, S. Rapid and nondestructive prediction of firmness, soluble solids content, and pH in kiwifruit using Vis–NIR spatially resolved spectroscopy. Postharvest Biol. Technol. 2022, 186, 111841. [Google Scholar] [CrossRef]
- Li, M.; Pullanagari, R.R.; Pranamornkith, T.; Yule, I.J.; East, A.R. Quantitative prediction of post storage ‘Hayward’ kiwifruit attributes using at harvest Vis-NIR spectroscopy. J. Food Eng. 2017, 202, 46–55. [Google Scholar] [CrossRef]
Year | Date | No. of Samples |
---|---|---|
2021 | 26 August, 4 September, 29 September | 20, 70, 50 |
2022 | 29 September, 25 September, 25 October | 130, 250, 215 |
Period | No. of Samples | Sweetness (%) | Coefficient of Variation | ||
---|---|---|---|---|---|
Minimum | Maximum | Average | |||
T1 | 202 | 4.8 | 11.1 | 7.56 | 20.64% |
T2 | 290 | 6.4 | 13.9 | 8.81 | 17.84% |
T3 | 215 | 11.2 | 19.4 | 15.73 | 9.86% |
T4 | 707 | 4.8 | 19.4 | 10.58 | 35.95% |
Transformed Spectra | Method | No. of Features | Sensitive Band (nm) |
---|---|---|---|
SG | CARS | 15 | 422 959 1143 1230 1231 1232 1233 1234 1235 1396 1397 1398 1399 2425 2490 |
SPA | 16 | 404 562 677 708 757 812 978 982 1081 1234 1395 2395 2471 2479 2489 2500 | |
SNV | CARS | 19 | 959 1142 1143 1144 1145 1228 1229 1230 1231 1232 1233 1234 1235 1388 1389 1390 1391 1392 2424 |
SPA | 13 | 400 405 408 411 699 724 913 1138 1420 1781 1902 1987 2169 | |
MSC | CARS | 20 | 644 645 647 708 929 942 1138 1139 1140 1231 1232 1233 1234 1392 1393 1394 1395 1835 1836 2490 |
SPA | 8 | 407 639 708 756 1142 1230 1435 1902 |
Spectrum | Feature | LSSVM | BP | PLS | MLR | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T1 | T2 | T3 | T4 | T1 | T2 | T3 | T4 | T1 | T2 | T3 | T4 | ||
SG | SPA | 0.20 | 0.19 | 0.32 | 0.67 | 0.23 | 0.17 | 0.29 | 0.67 | 0.22 | 0.22 | 0.37 | 0.64 | 0.22 | 0.26 | 0.37 | 0.66 |
CARS | 0.23 | 0.20 | 0.30 | 0.68 | 0.22 | 0.19 | 0.39 | 0.70 | 0.33 | 0.26 | 0.52 | 0.63 | 0.33 | 0.20 | 0.43 | 0.62 | |
SNV | SPA | 0.28 | 0.24 | 0.49 | 0.72 | 0.21 | 0.23 | 0.45 | 0.70 | 0.40 | 0.29 | 0.46 | 0.67 | 0.40 | 0.33 | 0.47 | 0.66 |
CARS | 0.37 | 0.26 | 0.37 | 0.71 | 0.35 | 0.21 | 0.39 | 0.71 | 0.43 | 0.30 | 0.55 | 0.65 | 0.38 | 0.30 | 0.51 | 0.64 | |
MSC | SPA | 0.38 | 0.24 | 0.42 | 0.79 | 0.27 | 0.24 | 0.42 | 0.75 | 0.50 | 0.27 | 0.58 | 0.65 | 0.52 | 0.26 | 0.59 | 0.65 |
CARS | 0.46 | 0.26 | 0.42 | 0.70 | 0.36 | 0.25 | 0.49 | 0.77 | 0.47 | 0.33 | 0.53 | 0.69 | 0.43 | 0.30 | 0.49 | 0.69 |
Spectrum | Feature | LSSVM | BP | PLS | MLR | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T1 | T2 | T3 | T4 | T1 | T2 | T3 | T4 | T1 | T2 | T3 | T4 | ||
SG | SPA | 1.55 | 1.63 | 1.43 | 1.48 | 1.53 | 1.64 | 1.40 | 1.48 | 1.54 | 1.57 | 1.43 | 1.57 | 1.54 | 1.47 | 1.42 | 1.55 |
CARS | 1.53 | 1.62 | 1.46 | 1.46 | 1.55 | 1.63 | 1.39 | 1.41 | 1.44 | 1.47 | 1.11 | 1.53 | 1.44 | 1.55 | 1.36 | 1.48 | |
SNV | SPA | 1.46 | 1.51 | 1.04 | 1.45 | 1.55 | 1.52 | 1.18 | 1.45 | 1.33 | 1.40 | 1.25 | 1.81 | 1.33 | 1.42 | 1.23 | 1.53 |
CARS | 1.40 | 1.49 | 1.41 | 1.41 | 1.42 | 1.53 | 1.33 | 1.45 | 1.25 | 1.45 | 1.08 | 1.53 | 1.35 | 1.45 | 1.11 | 1.53 | |
MSC | SPA | 1.35 | 1.52 | 1.27 | 1.32 | 1.48 | 1.50 | 1.27 | 1.37 | 1.10 | 1.47 | 1.07 | 1.51 | 1.09 | 1.47 | 1.05 | 1.51 |
CARS | 1.17 | 1.43 | 1.26 | 1.52 | 1.41 | 1.51 | 1.13 | 1.37 | 1.17 | 1.44 | 1.09 | 1.42 | 1.35 | 1.46 | 1.13 | 1.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, C.; Yue, R.; Li, Z.; Fan, K.; Chen, X.; Li, F. Prediction of Kiwifruit Sweetness with Vis/NIR Spectroscopy Based on Scatter Correction and Feature Selection Techniques. Appl. Sci. 2024, 14, 4145. https://doi.org/10.3390/app14104145
Wan C, Yue R, Li Z, Fan K, Chen X, Li F. Prediction of Kiwifruit Sweetness with Vis/NIR Spectroscopy Based on Scatter Correction and Feature Selection Techniques. Applied Sciences. 2024; 14(10):4145. https://doi.org/10.3390/app14104145
Chicago/Turabian StyleWan, Chang, Rong Yue, Zhenfa Li, Kai Fan, Xiaokai Chen, and Fenling Li. 2024. "Prediction of Kiwifruit Sweetness with Vis/NIR Spectroscopy Based on Scatter Correction and Feature Selection Techniques" Applied Sciences 14, no. 10: 4145. https://doi.org/10.3390/app14104145
APA StyleWan, C., Yue, R., Li, Z., Fan, K., Chen, X., & Li, F. (2024). Prediction of Kiwifruit Sweetness with Vis/NIR Spectroscopy Based on Scatter Correction and Feature Selection Techniques. Applied Sciences, 14(10), 4145. https://doi.org/10.3390/app14104145