Explainable Multimodal Graph Isomorphism Network for Interpreting Sex Differences in Adolescent Neurodevelopment
Abstract
:1. Introduction
- Our method alleviates the problem of predetermining the best features from connectivity networks, which are often ambiguous due to the high-dimensional nature of neuroimaging data. To overcome these challenges, our framework utilizes all connectivity networks without pre-determining features in order to mitigate the impact of high dimensionality.
- We propose a generalizable model to accurately predict sex between the five different stages of adolescence. Our method is robust, multi-task, multi-modal, and generalizable to other applications and modalities.
- Based on graph isomorphism, our graph neural network classifier can be employed for multigraphs characterized by varying nodes and edges, all the while acquiring local graph knowledge without being restricted to the entirety of the graph. By emphasizing the learning of local graph information, the model can effectively leverage the inherent structure and relationships within the graph to perform classification tasks.
- Lastly, our MGIN model is interpretable by applying the GNNExplainer [30] method to understand important subnetwork connections in the brain during the five stages of adolescence, thereby providing an insight on brain network mechanisms underlying development. Our framework illustrates important regions of interest as well as subnetwork connections during neurodevelopment.
2. Methodology
2.1. Data Collection and Pre-Processing
2.2. Overview of the Pipeline
2.3. Graph Isomorphism Network (GIN)
2.4. Multi-Modal Graph Isomorphism Network (MGIN)
2.5. Interpretability Using GNNExplainer
2.6. Experimental Setup and Sex Classification
3. Results
3.1. Hyperparameter Selection
3.2. Ablation Studies
3.3. Performance in Comparison to Other Methods
3.4. Model Explanation and Biomarker Identification
4. Discussion
4.1. Differences in Intra-Network Connections
- Default Mode Network (DMN)According to previous studies, DMN is a signature intrinsic network that is frequently linked to sex differences [44]. For example, in the DMN, the basal configuration exhibits distinct sex-specific dynamics, and it diverges between the sexes during early adulthood. There is a globally age-modulated reconfiguration in men but not women, where the reconfiguration correlates with measures of personality traits. In women, the basal reconfiguration likely exhibits a strong dependence on the menstrual cycle [45].
- Sensorimotor (SM Hand Mouth)Based on previous studies, females spend more time than males in two transient network states that spatially overlap with the sensory motor network and dorsal attention network [46].
- Cingulo-Opercular Task Control (CNG)
- Subcortical (SUB)Studies have shown substantial functional connectivity differences between the sexes in several subcortical regions including the amygdala, caudate, thalamus, and cortical regions such as the inferior frontal gyrus [47].
- Visual System (VIS)Previous research has shown various differences in the visual system across the sexes, as females tend to prioritize the utilization of low spatial frequencies, which convey information regarding the overall structure of objects, while males exhibit a segregative approach that emphasizes individual objects and intricate details [49].
- Fronto-Parietal Task Control (FRNT)In the FRNT, women have shown higher connectivity than men in the left middle frontal gyrus (MFG) for the anterior network, and another cluster is found in the right MFG right dorsal network. Previous resting state fMRI studies have shown that women have higher connectivity in prefrontal regions for cognitive networks, which includes the IFG, MFG, and medial prefrontal regions [50].
- Salience (SAL)The salience network, a network associated with helping direct attention to the most relevant stimuli in one’s environment, has differences between male and female subjects. For example, in male patients with autism, they had increased connectivity between the salience and primary sensory networks [51].
4.2. Differences in Inter-Network Connections
- Visual System (VIS) ↔ Default Mode Network (DMN)In our study, we found that females have additional inter-network connections between the visual system and default mode network during the pre-adolescent stage. Specifically, there are 94 connections between these subnetworks in pre-adolescence. Based on previous studies, females have shown greater hyperconnectivity in the DMN compared to males [44,45,49]. Our work provides further insight into where the subnetwork connections exist during different stages of adolescence.
- Subcortical (SUB) ↔ Sensorimotor (SM Hand Mouth)During post-adolescence, females have additional connections between the subcortical and sensorimotor networks. In particular, there are 65 connections between these subnetworks that are not seen in males. Previous research has shown the substantial differences in sex for the SUB network and SM Hand Mouth [46,47,48], but our work provides further knowledge about the types of connections that exist.
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glover, G.H. Overview of functional magnetic resonance imaging. Neurosurg. Clin. N. Am. 2011, 22, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Potenza, M.N.; Calhoun, V.D.; Zhang, R.; Yip, S.W.; Wall, J.T.; Pearlson, G.D.; Worhunsky, P.D.; Garrison, K.A.; Moran, J.M. Large-scale functional network overlap is a general property of brain functional organization: Reconciling inconsistent fMRI findings from general-linear-model-based analyses. Neurosci. Biobehav. Rev. 2016, 71, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Jie, B.; Zhang, D.; Cheng, B.; Dong, Q.; Zhang, L.; Shen, D. Integration of network topological and connectivity properties for neuroimaging classification. IEEE Trans. Biomed. Eng. 2014, 61, 576–589. [Google Scholar] [PubMed]
- Finn, E.S.; Shen, X.; Scheinost, D.; Rosenberg, M.D.; Huang, J.; Chun, M.M.; Papademetris, X.; Constable, R.T. Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nat. Neurosci. 2015, 18, 1664. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.; Rosenberg, M.D.; Noble, S.; Scheinost, D.; Constable, R.T.; Chun, M.M. Multivariate approaches improve the reliability and validity of functional connectivity and prediction of individual behaviors. NeuroImage 2019, 197, 212–223. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, M.; Qin, W.; Wan, B.; Yu, C.; Ming, D. Gender differences are encoded differently in the structure and function of the human brain revealed by multimodal mri. Front. Hum. Neurosci. 2020, 14, 244. [Google Scholar] [CrossRef] [PubMed]
- Satterthwaite, T.D.; Wolf, D.H.; Roalf, D.R.; Ruparel, K.; Erus, G.; Vandekar, S.; Gennatas, E.D.; Elliott, M.A.; Smith, A.; Hakonarson, H.; et al. Linked Sex Differences in Cognition and Functional Connectivity in Youth. Cereb. Cortex 2014, 25, 2383–2394. [Google Scholar] [CrossRef] [PubMed]
- Etchell, A.; Adhikari, A.; Weinberg, L.S.; Choo, A.L.; Garnett, E.O.; Chow, H.M.; Chang, S.E. A systematic literature review of sex differences in childhood language and brain development. Neuropsychologia 2018, 114, 19–31. [Google Scholar] [CrossRef]
- Schmithorst, V.J.; Holland, S.K. Sex differences in the development of neuroanatomical functional connectivity underlying intelligence found using Bayesian connectivity analysis. NeuroImage 2007, 35, 406–419. [Google Scholar] [CrossRef]
- Zuo, X.-N.; Kelly, C.; Di Martino, A.; Mennes, M.; Margulies, D.S.; Bangaru, S.; Grzadzinski, R.; Evans, A.C.; Zang, Y.F.; Castellanos, F.X.; et al. Growing together and growing apart: Regional and sex differences in the lifespan developmental trajectories of functional homotopy. J. Neurosci. 2010, 30, 15034–15043. [Google Scholar] [CrossRef]
- Dhamala, E.; Jamison, K.W.; Sabuncu, M.R.; Kuceyeski, A. Sex classification using long-range temporal dependence of resting-state functional MRI time series. Hum. Brain Mapp. 2020, 41, 3567–3579. [Google Scholar] [CrossRef] [PubMed]
- Salahuddin, Z.; Woodruff, H.C.; Chatterjee, A.; Lambin, P. Transparency of deep neural networks for medical image analysis: A review of interpretability methods. Comput. Biol. Med. 2022, 140, 105111. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Meng, X.; Bai, Y.; Zhang, A.; Qu, G.; Cai, B.; Zhang, G.; Wilson, T.W.; Stephen, J.M.; Calhoun, V.D.; et al. Interpretable multimodal fusion networks reveal mechanisms of brain cognition. IEEE Trans. Med Imaging 2021, 40, 1474–1483. [Google Scholar] [CrossRef]
- Qu, G.; Xiao, L.; Hu, W.; Wang, J.; Zhang, K.; Calhoun, V.; Wang, Y.P. Ensemble manifold regularized multi-modal graph convolutional network for cognitive ability prediction. IEEE Trans. Biomed. Eng. 2021, 68, 3564–3573. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Bao, Y.; Guo, Y.; Yu, M.; Zhang, D.; Risacher, S.L.; Saykin, A.J.; Yao, X.; Shen, L.; Alzheimer’s Disease Neuroimaging Initiative. Multi-modal neuroimaging feature selection with consistent metric constant for diagnosis of Alzheimer’s disease. Med. Image Anal. 2020, 60, 101625. [Google Scholar] [CrossRef] [PubMed]
- Argyriou, A.; Evgeniou, T.; Pontil, M. Multi-task feature learning. Adv. Neural Inf. Process. Syst. 2007, 19, 41–48. [Google Scholar]
- Calhoun, V.D.; Sui, J. Multimodal Fusion of Brain Imaging Data: A Key to Finding the Missing Link(s) in Complex Mental Illness. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2016, 1, 230–244. [Google Scholar]
- Sui, J.; Adali, T.; Yu, Q.; Chen, J.; Calhoun, V.D. A Review of Multivariate Methods for Multimodal Fusion of Brain Imaging Data. J. Neurosci. Methods 2012, 204, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, P.; Chen, Z.; Zhang, J. A Survey on Deep Learning for Multimodal Data Fusion. Neural Comput. 2020, 32, 829–864. [Google Scholar] [CrossRef]
- Jie, B.; Zhang, D.; Cheng, B.; Shen, D. Manifold regularized multitask feature learning for multimodality disease classification. Hum. Brain Mapp. 2015, 36, 489–507. [Google Scholar] [CrossRef]
- Kipf, T.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826. [Google Scholar]
- Sun, Z.; Yin, H.; Chen, H.; Chen, T.; Cui, L.; Yang, F. Disease Prediction via Graph Neural Networks. IEEE J. Biomed. Health Inform. 2021, 25, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, Y.; Dvornek, N.; Zhang, M.; Gao, S.; Zhuang, J.; Scheinost, D.; Staib, L.H.; Ventola, P.; Duncan, J.S. BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis. Med. Image Anal. 2021, 74, 102233. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Ma, G.; Guo, L.; Fu, X.; Huang, H.; Zhan, L. Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling Model. IEEE Trans. Neural Netw. Learn. Syst. 2022. early access. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Dai, W.; Zhu, Y.; Kan, X.; Gu, A.A.C.; Lukemire, J.; Zhan, L.; He, L.; Guo, Y.; Yang, C. BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks. IEEE Trans. Med. Imaging 2023, 42, 493–506. [Google Scholar] [CrossRef]
- Rashid, B.; Calhoun, V.D. Towards a brain-based predictome of mental illness. Hum. Brain Mapp. 2020, 41, 3468–3535. [Google Scholar] [CrossRef] [PubMed]
- Adali, T.; Levin-Schwartz, Y.; Calhoun, V.D. Multimodal Data Fusion Using Source Separation: Application to Medical Imaging. Proc. IEEE 2015, 103, 1494–1506. [Google Scholar] [CrossRef]
- Li, Y.; Yang, M.; Zhang, Z. A Survey of Multi-View Representation Learning. IEEE Trans. Knowl. Data Eng. 2019, 31, 1863–1883. [Google Scholar] [CrossRef]
- Ying, R.; Bourgeois, D.; You, J.; Zitnik, M.; Leskovec, J. GNNExplainer: Generating Explanations for Graph Neural Networks. Adv. Neural Inf. Process. Syst. 2019, 32, 9240–9251. [Google Scholar]
- Patel, B.; Orlichenko, A.; Wang, Y.P. Multimodal graph isomorphism network to study fMRI connectivity in developmental stages of adolescence. In Medical Imaging 2022: Biomedical Applications in Molecular, Structural, and Functional Imaging; SPIE: Bellingham, WA, USA, 2022; Volume 12036. [Google Scholar]
- Satterthwaite, T.D.; Connolly, J.J.; Ruparel, K.; Calkins, M.E.; Jackson, C.; Elliott, M.A.; Roalf, D.R.; Hopson, R.; Prabhakaran, K.; Behr, M.; et al. The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth. NeuroImage 2016, 124 Pt B, 1115–1119. [Google Scholar] [CrossRef]
- Satterthwaite, T.D.; Elliott, M.A.; Ruparel, K.; Loughead, J.; Prabhakaran, K.; Calkins, M.E.; Hopson, R.; Jackson, C.; Keefe, J.; Riley, M.; et al. Neuroimaging of the philadelphia neurodevelopmental cohort. NeuroImage 2014, 86, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Power, J.D.; Cohen, A.L.; Nelson, S.M.; Wig, G.S.; Barnes, K.A.; Church, J.A.; Vogel, A.C.; Laumann, T.O.; Miezin, F.M.; Schlaggar, B.L.; et al. Functional network organization of the human brain. Neuron 2011, 72, 665–678. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Cai, B.; Hu, W.; Jia, B.; Liang, F.; Wilson, T.W.; Stephen, J.M.; Calhoun, V.D.; Wang, Y.P. Joint Bayesian-Incorporating Estimation of Multiple Gaussian Graphical Models to Study Brain Connectivity Development in Adolescence. IEEE Trans. Med. Imaging 2020, 39, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Dsouza, N.S.; Nebel, M.B.; Crocetti, D.; Robinson, J.; Mostofsky, S.; Venkataraman, A. M-GCN: A multimodal graph convolutional network to integrate functional and structural connectomics data to predict multidimensional phenotypic characterizations. In Medical Imaging with Deep Learning; PMLR: Cambridge, MA, USA, 2021. [Google Scholar]
- Fu, H.; Huang, F.; Liu, X.; Qiu, Y.; Zhang, W. MVGCN: Data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks. Bioinformatics 2022, 38, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Ye, J.C. Understanding Graph Isomorphism Network for rs-fMRI Functional Connectivity Analysis. Front. Neurosci. 2020, 14, 630. [Google Scholar] [CrossRef] [PubMed]
- Leskovec, J. Mambo: Multimodal Biomedical Networks. 2021. Available online: http://snap.stanford.edu/mambo/ (accessed on 1 December 2021).
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Kurucu, M.C.; Rekik, I.; Alzheimer’s Disease Neuroimaging Initiative. Graph neural network based unsupervised influential sample selection for brain multigraph population fusion. Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc. 2023, 108, 102274. [Google Scholar] [CrossRef]
- de Lacy, N.; McCauley, E.; Kutz, J.N.; Calhoun, V.D. Sex-related differences in intrinsic brain dynamism and their neurocognitive correlates. Neuroimage 2019, 202, 116116. [Google Scholar] [CrossRef]
- Zhu, X.; Li, H.; Fan, Y. Parameter-free centralized multi-task learning for characterizing developmental sex differences in resting state functional connectivity. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 2660–2667. [Google Scholar]
- Gadgil, S.; Zhao, Q.; Pfefferbaum, A.; Sullivan, E.V.; Adeli, E.; Pohl, K.M. Spatio-temporal graph convolution for resting-state fMRI analysis. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020, Proceedings of the 23rd International Conference, Lima, Peru, 4–8 October 2020; Springer International Publishing: New York, NY, USA, 2020; Volume 12267, pp. 528–538. [Google Scholar]
- Conrin, S.D.; Zhan, L.; Morrissey, Z.D.; Xing, M.; Forbes, A.; Maki, P.; Milad, M.R.; Ajilore, O.; Langenecker, S.A.; Leow, A.D. From default mode network to the basal configuration: Sex differences in the resting-state brain connectivity as a function of age and their clinical correlates. Front. Psychiatry 2018, 9, 365. [Google Scholar] [CrossRef]
- Murray, L.; Maurer, J.M.; Peechatka, A.L.; Frederick, B.B.; Kaiser, R.H.; Janes, A.C. Sex differences in functional network dynamics observed using coactivation pattern analysis. Cogn. Neurosci. 2021, 12, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Stoica, T.; Knight, L.K.; Naaz, F.; Patton, S.C.; Depue, B.E. Gender differences in functional connectivity during emotion regulation. Neuropsychologia 2021, 156, 107829. [Google Scholar] [PubMed]
- Chung, Y.S.; Calhoun, V.; Stevens, M.C. Adolescent sex differences in cortico-subcortical functional connectivity during response inhibition. Cogn. Affect. Behav. Neurosci. 2020, 20, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Vanston, J.E.; Strother, L. Sex differences in the human visual system. J. Neurosci. Res. 2017, 95, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Hjelmervik, H.; Hausmann, M.; Osnes, B.; Westerhausen, R.; Specht, K. Resting states are resting traits—An FMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks. PLoS ONE 2014, 9, e103492. [Google Scholar] [CrossRef] [PubMed]
- Cummings, K.K.; Lawrence, K.E.; Hernandez, L.M.; Wood, E.T.; Bookheimer, S.Y.; Dapretto, M.; Green, S.A. Sex Differences in Salience Network Connectivity and its Relationship to Sensory Over-Responsivity in Youth with Autism Spectrum Disorder. Autism Res. Off. J. Int. Soc. Autism Res. 2020, 13, 1489–1500. [Google Scholar] [CrossRef]
- Allen, E.A.; Damaraju, E.; Plis, S.M.; Erhardt, E.B.; Eichele, T.; Calhoun, V.D. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 2014, 24, 663–676. [Google Scholar] [CrossRef]
- Himberg, J.; Hyvärinen, A.; Esposito, F. Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 2004, 22, 1214–1222. [Google Scholar] [CrossRef]
- Friston, K.J.; Frith, C.D.; Frackowiak, R.S.; Turner, R. Characterizing dynamic brain responses with fmri: A multivariate approach. NeuroImage 1995, 2, 166–172. [Google Scholar] [CrossRef]
- Fan, F.; Liao, X.; Lei, T.; Zhao, T.; Xia, M.; Men, W.; Wang, Y.; Hu, M.; Liu, J.; Qin, S.; et al. Development of the default-mode network during childhood and adolescence: A longitudinal resting-state fmri study. NeuroImage 2021, 226, 117581. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, F.L.; Davies, G.L.; Williams, G.R. Theranostics for MRI-guided therapy: Recent developments. View 2021, 3, 20200134. [Google Scholar] [CrossRef]
- Delvecchio, G.; Maggioni, E.; Pigoni, A.; Crespo-Facorro, B.; Nenadić, I.; Benedetti, F.; Gaser, C.; Sauer, H.; Roiz-Santiañez, R.; Poletti, S.; et al. Sexual Regional Dimorphism of Post-Adolescent and Middle Age Brain Maturation. A Multi-center 3T MRI Study. Front. Aging Neurosci. 2021, 13, 622054. [Google Scholar] [CrossRef] [PubMed]
- Biswal, B.B.; Mennes, M.; Zuo, X.N.; Gohel, S.; Kelly, C.; Smith, S.M.; Beckmann, C.F.; Adelstein, J.S.; Buckner, R.L.; Colcombe, S.; et al. Toward discovery science of human brain function. Proc. Natl. Acad. Sci. USA 2010, 107, 4734–4739. [Google Scholar] [CrossRef]
- Shen, X.; Finn, E.S.; Scheinost, D.; Rosenberg, M.D.; Chun, M.M.; Papademetris, X.; Constable, R.T. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat. Protoc. 2017, 12, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Greene, A.S.; Constable, R.T.; Scheinost, D. Combining multiple connectomes improves predictive modeling of phenotypic measures. NeuroImage 2019, 201, 116038. [Google Scholar] [CrossRef]
- Cui, Z.; Li, H.; Xia, C.H.; Larsen, B.; Adebimpe, A.; Baum, G.L.; Cieslak, M.; Gur, R.E.; Gur, R.C.; Moore, T.M.; et al. Individual variation in functional topography of association networks in youth. Neuron 2020, 106, 340–353. [Google Scholar] [CrossRef]
- Cai, B.; Zhang, G.; Hu, W.; Zhang, A.; Zille, P.; Zhang, Y.; Stephen, J.M.; Wilson, T.W.; Calhoun, V.D.; Wang, Y.P. Refined measure of functional connectomes for improved identifiability and prediction. Hum. Brain Mapp. 2019, 40, 4843–4858. [Google Scholar] [CrossRef]
- Fair, D.A.; Cohen, A.L.; Power, J.D.; Dosenbach, N.U.; Church, J.A.; Miezin, F.M.; Schlaggar, B.L.; Petersen, S.E. Functional brain networks develop from a ‘local to distributed’ organization. PLoS Comput. Biol. 2009, 5, e1000381. [Google Scholar] [CrossRef] [PubMed]
- Gur, R.C.; Richard, J.; Calkins, M.E.; Chiavacci, R.; Hansen, J.A.; Bilker, W.B.; Loughead, J.; Connolly, J.J.; Qiu, H.; Mentch, F.D.; et al. Age group and sex differences in performance on a computerized neurocognitive battery in children age 8–21. Neuropsychology 2012, 26, 251–265. [Google Scholar] [CrossRef]
- Burte, H.; Turner, B.O.; Miller, M.B.; Hegarty, M. The neural basis of individual differences in directional sense. Front. Hum. Neurosci. 2018, 12, 410. [Google Scholar] [CrossRef]
- Izen, S.C.; Chrastil, E.R.; Stern, C.E. Resting state connectivity between medial temporal lobe regions and intrinsic cortical networks predicts performance in a path integration task. Front. Hum. Neurosci. 2018, 12, 415. [Google Scholar] [CrossRef] [PubMed]
Notation | Description |
---|---|
G = (V, E) | Graph with V vertices and E edges |
Node feature vector for v ∈ V | |
Associated label to node v ∈ V | |
Representation vector of v ∈ V | |
{,…,} ⊂ G | Set of graphs |
{,…,} ⊂ Y | Set of labels |
Representation vector | |
= g() | Predicted label of an entire graph |
k | kth layer of a GNN (kth iteration) |
= READOUT | Summation or group-level pooling function |
Adolescent Stage | Age Range | Total Subjects | Sex Distribution |
---|---|---|---|
Pre | 8–12 | 129 | 55 male/74 female |
Early | 12–14 | 113 | 58 male/55 female |
Middle | 14–16 | 109 | 54 male/55 female |
Late | 16–18 | 130 | 59 male/71 female |
Post | 18–22 | 141 | 53 male/88 female |
Learning Rate | |
Optimizer | Adam |
Epochs | 3000 |
Layer 1 Size | 69,696 |
Layer 2 Size | 100 |
Weight Decay | 0.2 |
fMRI Paradigms | Emoid, Nback |
Predictive Task | Sex |
Method | Accuracy (Mean ± std) | F1 (Mean ± std) | AUC (Mean ± std) | |
---|---|---|---|---|
Modalities | 1 Modality Nback 1 Modality Emoid 2 Modality Nback+Emoid | 0.7814 ± 0.0722 0.7621 ± 0.0501 0.8167 ± 0.0749 | 0.7801 ± 0.0568 0.7721 ± 0.0452 0.8192 ± 0.0683 | 0.7995 ± 0.0453 0.7861 ± 0.0834 0.8269 ± 0.0754 |
Layers | 1 Hidden Layer 2 Hidden Layers 3 Hidden Layers | 0.8152 ± 0.0537 0.8167 ± 0.0749 0.8092 ± 0.0438 | 0.8110 ± 0.0764 0.8192 ± 0.0683 0.8014 ± 0.0467 | 0.8237 ± 0.0472 0.8269 ± 0.0754 0.8137 ± 0.0564 |
Node Features | Eigen Degree Connection profile | 0.5140 ± 0.0392 0.6389 ± 0.0227 0.7012 ± 0.0416 | 0.4934 ± 0.0562 0.6023 ± 0.0385 0.6621 ± 0.0476 | 0.5018 ± 0.0754 0.7025 ± 0.0437 0.7670 ± 0.0549 |
Model | Modalities | Accuracy (Mean ± std) | p-Value | F1 (Mean ± std) | p-Value | AUC (Mean ± std) | p-Value |
---|---|---|---|---|---|---|---|
SVM SVM | Emoid fMRI Nback fMRI | 0.6801 ± 0.0824 0.6704 ± 0.0818 | 0.6912 ± 0.0542 0.6781 ± 0.0823 | 0.7091 ± 0.0643 0.6847 ± 0.0567 | |||
GIN GIN | Emoid fMRI Nback fMRI | 0.7621 ± 0.0501 0.7814 ± 0.0722 | 0.0219 0.1380 | 0.7721 ± 0.0452 0.7801 ± 0.0568 | 0.0154 0.1125 | 0.7861 ± 0.0834 0.7995 ± 0.0453 | 0.0322 0.0929 |
MLP | Emoid fMRI & Nback fMRI | 0.8097 ± 0.0944 | 0.1131 | 0.8085 ± 0.0756 | 0.1026 | 0.8109 ± 0.0985 | 0.0932 |
BrainGNN | Emoid fMRI & Nback fMRI | 0.6860 ± 0.0829 | 0.1121 | 0.6899 ± 0.0756 | 0.1729 | 0.7022 ± 0.0563 | 0.2382 |
MVGCN | Emoid fMRI & Nback fMRI | 0.8006 ± 0.0504 | 0.4730 | 0.8093 ± 0.0583 | 0.4372 | 0.8135 ± 0.0731 | 0.4572 |
M-GCN | Emoid fMRI & Nback fMRI | 0.7501 ± 0.0504 | 0.1131 | 0.7525 ± 0.0431 | 0.1092 | 0.7721 ± 0.0621 | 0.1356 |
MGIN * | Emoid fMRI & Nback fMRI | 0.8167 ± 0.0749 | - | 0.8192 ± 0.0683 | - | 0.8269 ± 0.0754 | - |
Prediction Loss | 1 |
Feature Size Loss | 200 |
Feature Element Loss | 20 |
Population Size Loss | 0 |
Population Element Loss | 1000 |
Weight Decay | 0 |
Training Epochs | 150 |
Learning Rate |
Modality | Sex | ROI | ROI Region | MNI Space | FN |
---|---|---|---|---|---|
Nback | Female | 2 35 44 79 84 85 90 91 * 111 199 | Left Cerebrum | Limbic Lobe | Cingulate Gyrus Right Cerebrum | Frontal Lobe | Precentral Gyrus Left Cerebrum | Frontal Lobe | Precentral Gyrus Right Cerebrum | Limbic Lobe| Cingulate Gyrus Right Cerebrum | Frontal Lobe | Middle Frontal Gyrus Left Cerebrum | Frontal Lobe | Superior Frontal Gyrus Left Cerebrum | Frontal Lobe | Superior Frontal Gyrus Left Cerebrum | Frontal Lobe | Superior Frontal Gyrus Right Cerebrum | Limbic Lobe | Parahippocampa Gyrus Left Cerebrum | Frontal Lobe | Superior Frontal Gyrus | −14 −18 40 66 −8 25 −45 0 9 8 −48 31 23 33 48 −10 39 52 −10 55 39 −20 −45 39 −26 −40 −8 −39 51 17 | SM Hand SM Mouth CNG DMN DMN DMN DMN DMN DMN SAL |
Male | 35 44 65 70 79 102 111 142 164 177 | Right Cerebrum | Frontal Lobe | Precentral Gyrus Left Cerebrum | Frontal Lobe | Precentral Gyrus Right Cerebrum | Frontal Lobe | Medial Frontal Gyrus Left Cerebrum | Temporal Lobe | Superior Temporal Gyrus Right Cerebrum | Limbic Lobe | Cingulate Gyrus Left Cerebrum | Frontal Lobe | Medial Frontal Gyrus Left Cerebrum | Limbic Lobe | Parahippocampa Gyrus Left Cerebrum | Occipital Lobe | Lingual Gyrus Right Cerebrum | Frontal Lobe | Middle Frontal Gyrus Left Cerebrum | Frontal Lobe | Middle Frontal Lobule | 66 −8 25 −45 0 9 8 48 −15 −44 12 −34 8 −48 31 −8 48 23 −26 40 −8 15 −77 31 34 54 −13 −42 45 −2 | SM Mouth CNG DMN DMN DMN DMN DMN VIS FRNT FRNT | |
Emoid | Female | 3 47 49 83 91 * 93 191 195 202 233 234 | Left Cerebrum | Frontal Lobe | Paracentral Lobule Left Cerebrum | Temporal Lobe | Superior Temporal Gyrus Right Cerebrum | Sub-lobar | Insula Right Cerebrum | Parietal Lobe | Angular Gyrus Left Cerebrum | Frontal Lobe | Superior Frontal Gyrus Left Cerebrum | Frontal Lobe | Medial Frontal Gyrus Left Cerebrum | Limbic Lobe | Anterior Cingulate Right Cerebrum | Frontal Lobe | Cingulate Gyrus Left Cerebrum | Sub-lobar | Thalamus Left Cerebellum | Cerebellum Posterior Lobe | Declive Left Cerebellum | Cerebellum Posterior Lobe | Culmen | 0 −15 47 −51 8 −2 36 10 1 52 −59 36 −20 45 39 6 64 22 −11 26 25 5 23 37 −10 −18 7 −16 −65 −20 −32 −55 −25 | SM Hand CNG CNG DMN DMN DMN SAL SAL SUB CB CB |
Male | 3 49 136 139 184 198 202 211 233 234 | Left Cerebrum | Frontal Lobe | Paracentral Lobule Right Cerebrum | Sub-lobar | Insula Right Cerebrum | Occipital Lobe | Inferior Occipital Gyrus Right Cerebrum | Parietal Lobe | Precuneus Right Cerebrum | Frontal Lobe | Middle Frontal Gyrus Right Cerebrum | Frontal Lobe | Superior Frontal Gyrus Left Cerebrum | Sub-lobar | Thalamus Right Cerebrum | Sub-lobar | Extra-Nuclear Left Cerebellum | Cerebellum Posterior Lobe | Declive Left Cerebellum | Cerebellum Anterior Lobe | Culmen | 0 −15 47 36 10 1 43 −78 −12 15 −87 37 42 0 47 26 50 27 −10 −18 7 15 5 7 −16 −65 −20 −32 −55 −25 | SM Hand CNG VIS VIS SAL SAL SUB SUB CB CB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, B.; Orlichenko, A.; Patel, A.; Qu, G.; Wilson, T.W.; Stephen, J.M.; Calhoun, V.D.; Wang, Y.-P. Explainable Multimodal Graph Isomorphism Network for Interpreting Sex Differences in Adolescent Neurodevelopment. Appl. Sci. 2024, 14, 4144. https://doi.org/10.3390/app14104144
Patel B, Orlichenko A, Patel A, Qu G, Wilson TW, Stephen JM, Calhoun VD, Wang Y-P. Explainable Multimodal Graph Isomorphism Network for Interpreting Sex Differences in Adolescent Neurodevelopment. Applied Sciences. 2024; 14(10):4144. https://doi.org/10.3390/app14104144
Chicago/Turabian StylePatel, Binish, Anton Orlichenko, Adnan Patel, Gang Qu, Tony W. Wilson, Julia M. Stephen, Vince D. Calhoun, and Yu-Ping Wang. 2024. "Explainable Multimodal Graph Isomorphism Network for Interpreting Sex Differences in Adolescent Neurodevelopment" Applied Sciences 14, no. 10: 4144. https://doi.org/10.3390/app14104144
APA StylePatel, B., Orlichenko, A., Patel, A., Qu, G., Wilson, T. W., Stephen, J. M., Calhoun, V. D., & Wang, Y. -P. (2024). Explainable Multimodal Graph Isomorphism Network for Interpreting Sex Differences in Adolescent Neurodevelopment. Applied Sciences, 14(10), 4144. https://doi.org/10.3390/app14104144