Virtual Antenna Arrays with Frequency Diversity for Radar Systems in Fifth-Generation Flying Ad Hoc Networks
Abstract
:1. Introduction
2. Virtual Array Model
3. Problem Statement and Fitness Function
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dohler, M.; Aghvami, A.H. Distributed antennas: The concept of virtual antenna arrays. In Cooperation in Wireless Networks: Principles and Applications; Springer: Dordrecht, The Netherlands, 2006; pp. 421–461. [Google Scholar]
- Lin, Z.; Lin, M.; de Cola, T.; Wang, J.-B.; Zhu, W.-P.; Cheng, J. Supporting IoT With Rate-Splitting Multiple Access in Satellite and Aerial-Integrated Networks. IEEE Internet Things J. 2021, 8, 11123–11134. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Niu, H.; Chu, Z.; Zhou, F.; Zhu, Z.; Zhen, L.; Wong, K.-K. Robust Design for Intelligent Reflecting Surface-Assisted Secrecy SWIPT Network. IEEE Trans. Wirel. Commun. 2022, 21, 4133–4149. [Google Scholar] [CrossRef]
- Keskin, F.; Filik, T. Isotropic and directional DOA estimation of the target by UAV swarm-based 3-D antenna array. In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 22–24 October 2020; pp. 1–7. [Google Scholar]
- Garza, J.; Panduro, M.A.; Reyna, A.; Romero, G.; Rio, C.D. Design of UAVs-based 3D antenna arrays for maximum performance in terms of directivity and SLL. Int. J. Antennas Propag. 2016, 2016, 2621862. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, Z.; Chen, M.; Zhang, H.; Liang, X. An unmanned aerial vehicle antenna array. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montréal, QC, Canada, 5–10 July 2020; pp. 183–184. [Google Scholar]
- Reyna, A.; Garza, J.C.; Elizarrarás, O.; Panduro, M.; Balderas, L.I.; de la Luz Prado, M. 3D random virtual antenna arrays for FANETs wireless links. Telecommun. Syst. 2021, 77, 469–477. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Drone-based antenna array for service time minimization in wireless networks. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Sun, G.; Zhao, X.; Shen, G.; Liu, Y.; Wang, A.; Jayaprakasam, S. Improving performance of distributed collaborative beamforming in mobile wireless sensor networks: A multi-objective optimization method. IEEE Internet Things J. 2020, 7, 6787–6801. [Google Scholar] [CrossRef]
- Dohler, M.; Dominguez, J.; Aghvami, H. Link capacity analysis for virtual antenna arrays. In Proceedings of the IEEE 56th Vehicular Technology Conference, Vancouver, BC, Canada, 24–28 September 2002; Volume 1, pp. 440–443. [Google Scholar]
- Wang, W.-Q. Virtual antenna array analysis for MIMO synthetic aperture radars. Int. J. Antennas Propag. 2012, 2012, 587276. [Google Scholar] [CrossRef]
- Jan, S.S.; Enge, P. Using GPS to synthesize a large antenna aperture when the elements are mobile. In Proceedings of the 2000 National Technical Meeting of the Institute of Navigation, Anaheim, CA, USA, 26–28 January 2000; pp. 1–11. [Google Scholar]
- Milyakov, D.A.; Verba, V.S.; Merkulov, V.I.; Plyashechnik, A.S. Quadcopter active phased antenna array. Procedia Comput. Sci. 2021, 186, 628–635. [Google Scholar] [CrossRef]
- Breheny, S.H.; D’Andrea, R.; Miller, J.C. Using airborne vehicle-based antenna arrays to improve communications with UAV clusters. In Proceedings of the 42nd IEEE International Conference on Decision and Control, Maui, HI, USA, 9–12 December 2003; Volume 4, pp. 4158–4162. [Google Scholar]
- Chandra, R.S.; Breheny, S.H.; D’Andrea, R. Antenna array synthesis with clusters of unmanned aerial vehicles. Automatica 2008, 44, 1976–1984. [Google Scholar] [CrossRef]
- Reyna, A.; Panduro, M.A.; Mendez, A.; Balderas, L.; Del Río, C. Distributed antenna array for FANET’s wireless links using time modulation. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–3. [Google Scholar]
- Jiménez, D.A.; Reyna, A.; Panduro, M.A.; del Rio, C.; Ram, G.; Balderas, L. UAVs-based antenna arrays using time modulation. Telecommun. Syst. 2020, 74, 113–127. [Google Scholar] [CrossRef]
- Garza, J.C.; Reyna, A.; Balderas, L.I.; Panduro, M.A.; García, L.Y. Dual-band virtual antenna array with time modulation in presence of position perturbations. Telecommun. Syst. 2022, 81, 539–547. [Google Scholar] [CrossRef]
- Ma, R.; Yang, W.; Guan, X.; Lu, X.; Song, Y.; Chen, D. Covert mmWave Communications With Finite Blocklength Against Spatially Random Wardens. IEEE Internet Things J. 2024, 11, 3402–3416. [Google Scholar] [CrossRef]
- Liao, Y.; Zeng, G.; Wu, C.; Wang, W.-Q.; Zheng, Z. Frequency Diverse Array Design for Deceptive Jamming Suppression Using Particle Swarm Optimization. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 2719–2722. [Google Scholar] [CrossRef]
- Yong-Guang, C.; Yun-tao, L.; Yan-hong, W.; Hong, C. Research on the linear frequency diverse array performance. In Proceedings of the IEEE 10th International Conference on Signal Processing Proceedings, Beijing, China, 24–28 October 2010; pp. 2324–2327. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, X.; Wang, A. PSO-Based Low-SLL Pattern Synthesis for FDA in Range-Angle Space. In Proceedings of the 2022 International Conference on 6G Communications and IoT Technologies (6GIoTT), Fuzhou, China, 14–16 October 2022; pp. 20–24. [Google Scholar] [CrossRef]
- Ahmad, Z.; Chen, M.; Bao, S.D. Beampattern analysis of frequency diverse array radar: A review. J. Wirel. Commun. Netw. 2021, 2021, 189. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, W.; Huang, P.; Tan, W. Comparison of Frequency Diverse Array Patterns with Nonuniform Frequency Offset. In Proceedings of the 2020 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, China, 20–23 September 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, L.; Bi, H.; Huang, P.; Tan, W. FDA Beampattern Synthesis With Both Nonuniform Frequency Offset and Array Spacing. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2354–2358. [Google Scholar] [CrossRef]
- Shao, X.; Hu, T.; Xiao, Z.; Zhang, J. Frequency Diverse Array Beampattern Synthesis With Modified Sinusoidal Frequency Offset. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1784–1788. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, W.-Q.; Shao, H.; Chen, H. Frequency Diverse Array Transmit Beampattern Optimization With Genetic Algorithm. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 469–472. [Google Scholar] [CrossRef]
- Mai, C.; Lu, S.; Sun, J.; Wang, G. Beampattern Optimization for Frequency Diverse Array With Sparse Frequency Waveforms. IEEE Access 2017, 5, 17914–17926. [Google Scholar] [CrossRef]
- Dai, M.; Wang, W.-Q.; Shao, H. FDA radar ambiguity function optimization with simulated annealing algorithm. In Proceedings of the 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Hong Kong, China, 16–19 December 2015; pp. 740–743. [Google Scholar] [CrossRef]
- Shen, J.; Liao, K.; Ouyang, S.; Wang, H.; Yu, Q. Front-Downward-Looking 3D SAR Imaging Using Frequency Diversity Array. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 3967–3970. [Google Scholar] [CrossRef]
- Akkoç, A.; Afacan, E.; Yazgan, E. Investigation of Planar Frequency Diverse Array Antenna in Concentric Circular Geometry. In Proceedings of the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2019; pp. 651–654. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, F.-S.; Zhang, H.; Zhang, H.; Li, C.; Feng, C. A Frequency Diversity Printed-Yagi Antenna Element for Apertures Selectivity Wideband Array Application. IEEE Trans. Antennas Propag. 2018, 66, 5634–5638. [Google Scholar] [CrossRef]
- Adeyemi, T.; Buchanan, K. Frequency diverse scanning for aperiodic (Random) antenna arrays. In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, PR, USA, 26 June–1 July 2016; pp. 923–924. [Google Scholar] [CrossRef]
- Maneiro-Catoira, R.; Brégains, J.; García-Naya, J.A.; Castedo, L. A TMA-FDA Approach for Two-Beam Steering. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1973–1977. [Google Scholar] [CrossRef]
- Ferdous, N.; Chin, G.; Hamid, S.H.A.; Nazri, M.; Raman, A.; Kiong, T.S.; Ismail, M. Design of a small patch antenna at 3.5 GHz for 5G application. IOP Conference Series: Earth and Environmental Science. In Proceedings of the International Conference on Sustainable Energy and Green Technology 2018, Kuala Lumpur, Malaysia, 11–14 December 2018. [Google Scholar] [CrossRef]
- Panduro, M.A.; Brizuela, C.A.; Balderas, L.I.; Acosta, D.A. A Comparison of Genetic Algorithms, Particle Swarm Optimization and the Differential Evolution Method for the Design of Scannable Circular Antenna Arrays. Prog. Electromagn. Res. B 2009, 13, 171–186. [Google Scholar] [CrossRef]
- Li, S.; Zong, Z.; Huang, L.; Feng, Y. Adaptive Null Optimization Method Based on Frequency Diverse Array. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 12–16 July 2021; pp. 5012–5015. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, X.; Li, W.; Xu, J.; Huang, L. Low-Sidelobe Range-Angle Beamforming With FDA Using Multiple Parameter Optimization. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2214–2225. [Google Scholar] [CrossRef]
- Yang, Y.-Q.; Wang, H.; Wang, H.-Q.; Gu, S.-Q.; Xu, D.-L.; Quan, S.-L. Optimization of Sparse Frequency Diverse Array With Time-Invariant Spatial-Focusing Beampattern. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 351–354. [Google Scholar] [CrossRef]
N | Symmetry | Normalized SLL | Directivity | Locations xn (λ) | Frequencies fn (KHz) |
---|---|---|---|---|---|
6 | Yes | 0.7706 | 6.56 dB | 0, 1.7652, 4.4652, 7.0634, 9.7634, 11.5286 | 16.248, 12.135, 2.388, 2.388, 12.135, 16.248 |
9 | Yes | 0.5828 | 8.49 dB | 0, 2.6582, 5.3208, 7.1053, 8.8719, 10.6385, 12.4230, 15.0856, 17.7438 | 19.744, 15.234, 12.436, 1.624, 4.664, 1.624, 12.436, 15.234, 19.744 |
12 | Yes | 0.5192 | 9.05 dB | 0, 2.6613, 5.1533, 7.4415, 9.1495, 10.8621, 13.5126, 15.2252, 16.9332, 19.2214, 21.7134, 24.3747 | 10.57043, 19.94567, 17.6699, 1, 1.32935, 9.02219, 39.02219, 1.3293, 1, 17.6699 19.94567, 10.57043 |
6 | No | 0.7121 | 6.95 dB | 0, 2.6412, 4.5123, 6.3544, 8.1316, 9.8321 | 14.3043, 19.217, 1, 1.7049, 11.1150, 2.5609 |
9 | No | 0.5904 | 8.43 dB | 0, 2.6994, 5.3944, 8.0934, 9.8727, 12.5459, 14.3622, 16.0889, 17.8965 | 4.466, 3.308, 19.106, 0.1304, 1, 11.775, 1.171, 07.367, 18.245 |
12 | No | 0.5386 | 9.19 dB | 0, 2.6986, 4.3989, 7.0827, 9.1845, 11.2371, 13.7306, 15.7537, 17.4566 19.1796, 20.9382, 23.6236 | 3.697, 19.408, 3.252, 6.969, 20.000, 13.671, 1, 19.997, 6.018, 17.358, 19.680, 12.929 |
Work | Array Topology | Type of Antenna | Frequency | Drone | Algorithm | Perturbations |
---|---|---|---|---|---|---|
Ref. [5] | 3D polyhedral and linear | Isotropic | Not included | Not included | DOA | Not included |
Ref. [6] | 3D random | Isotropic | Not included | Not included | DEMO | Not included |
Ref. [7] | 3D random in 4 layers | Isotropic | Not included | Not included | Not included | Not included |
Ref. [17] | Uniform linear and square with time modulation | Dipole | Not included | Not included | PSO | Not included |
Ref. [9] | Non-uniform linear | Isotropic | Not included | Not included | Deterministic | Not included |
Ref. [10] | 3D random | Isotropic | Not included | Not included | DPINSGA-II | Not included |
Ref. [15] | Non-uniform linear | Isotropic | Not included | Not included | Nelder mead simplex method | Included |
Ref. [16] | Non-uniform linear | Isotropic | Not included | Not included | SOCP | Included |
Ref. [8] | 3D random | Square patch | 2.4 GHz | Included | DEMO | Not included |
Ref. [18] | Non-uniform linear with time modulation | Square patch | 2.4 GHz | Not included | IWO | Not included |
Ref. [19] | Non-uniform linear with time modulation | Fed-slot | 2.4 GHz and 5.5 GHz | Included | DEMO | Included |
This Work | Non-uniform linear with frequency diversity | Elliptic patch | 3.25 GHz to 3.79 GHz | Included | PSO | Not Included |
Work | Array Topology | Antenna | Frequency Offsets fn | Initial Frequency f0 and Uniform ∆fn | Distance d | Maximum Direction (d0, θ0) | Symmetry | Algorithm | Antenna Spacing |
---|---|---|---|---|---|---|---|---|---|
Ref. [24] | Linear N = 5, 10, 15, 17 | Isotropic | Hamming and logarithmic | f0 = 10 GHz Δfn = 3 kHz, 2 kHz | 0–2 km 2 × 105 km 0–90 km 0–1000 km | θ0 = 0° 1 × 105 km 30° 500 km θ0 = 0° 15 km, 45 km, 745 km θ0 = 30° 500 km θ0 = 0° 500 km | Yes/No | Not applied | λ λ/2 λ/4 |
Ref. [6] | Square N = 16, 8, 4 | Patch Yagui 1–2 GHz 2–4 GHz | Not specified | Not specified | Not specified | θ0 = 0° | Not specified | Not applied | 30 mm |
Ref. [38] | Linear N = 10 | Isotropic | Not specified | f0 = 10 GHz Δfn = 10 kHz | 5–15 km | θ0 = 0° 20 km | No | (CMT) algorithm | λ/2 |
Ref. [29] | Linear N = 10 | Isotropic | Random | f0 = 10 GHz Δfn = 5 KHz. | 0–25 km | θ0 = 0° 0° θ0 = 0° 1.91° 1 km θ0 = 0° 56.44° 25 km | No | Not applied | λ/2 |
Ref. [25] | Linear N = 15 | Isotropic | Logarithmic | f0 = 5 GHz δ = 30 KHz Δfn = log(m + 1)δ | 0–60 km | θ0 = 10° 25 km | Not specified | Not specified | λ/4 |
Ref. [26] | Linear N = 33 | Isotropic | Hamming and logarithmic | f0 = 10 GHz Δfn = 85 kHz. | 0–50 km | θ0 = 0° 25 km | Yes | Not specified | 0.24 m |
Ref. [30] | Linear N = 16 | Isotropic | Random | f0 = 10 GHz Δfn ϵ [100 KHz–10,000 KHz] | 10–15 km | θ0 = π/3 10.11 km | No | Simulated annealing algorithm | Ref. [26] |
Ref. [27] | Linear N = 10 | Aperture antennas | Logarithmic and Hamming | f0 = 10 GHz Δfn = 50 KHz. | 20–80 km | θ0 = 20° 50 km | Yes | Genetic algorithm | 0.015 m |
Ref. [21] | Linear N = 20 | Isotropic | Hamming | f0 = 10 GHz | 300–600 km | θ0 = 0° 450 km | No | PSO | λ/2 = 0.015 m |
Ref. [28] | Linear N = 16 | Isotropic | Logarithmic | f0 = 10 GHz, Δfn = 30 KHz | 50–100 km | θ0 = 25° 75 km θ0 = 0° 30° 82 km | No | Genetic algorithm, MUSIC algorithm | |
Ref. [34] | Spherical random N = 18 elements | Isotropic | Not specified | Not specified | 10–1000 km | θ0 = 90° 100 km | No | Not specified | Not specified |
Ref. [31] | Linear- rid N = 51 | Isotropic | Random | f0= 37.5 GHz carrier Δfn = 1 MHz | Not specified | Not specified | No | BP-based 3D imaging algorithm | 4 m |
Ref. [39] | Linear N = 7 and 35 | Isotropic | Not specified | f0 = 10 GHz Δfn = 4 KHz | 15–45 km | θ0 = 20° 30 km θ0 = 0° 30 km | No | PSO algorithm | λ/2 |
Ref. [40] | Linear N = 23, 101 | Isotropic | Not specified | f0 = 3 GHz Δfn = Not specified | 0–20 km | θ0 = 0° 10 km | No | Artificial bee colony (ABC) optimizer | λ/2 |
Ref. [23] | Linear N = 8 | Isotropic | Hamming | f0 = 10 GHz Δfn = 10 KHz | 15–45 km | θ0 = 0° 30 km | No | PSO Algorithm | λ/2 |
Ref. [22] | Linear N = 5 | Isotropic | Hamming | f0 = 1 GHz Δfn = 1 kHz, 10 MHz, 200 MHz | 0–100 km | θ0 = 0° 60 km | No | CLEAN algorithm | λ/2 |
This work | Non-uniform linear N= 6, 9 and 12 | Elliptic patch | Random | f0 = 3.5 GHz | 0–50 km | θ0 = 0° 25 km | Yes | PSO | Non-uniform |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyna, A.; Garza, J.C.; Balderas, L.I.; Méndez, J.; Panduro, M.A.; Maldonado, G.; García, L.Y. Virtual Antenna Arrays with Frequency Diversity for Radar Systems in Fifth-Generation Flying Ad Hoc Networks. Appl. Sci. 2024, 14, 4219. https://doi.org/10.3390/app14104219
Reyna A, Garza JC, Balderas LI, Méndez J, Panduro MA, Maldonado G, García LY. Virtual Antenna Arrays with Frequency Diversity for Radar Systems in Fifth-Generation Flying Ad Hoc Networks. Applied Sciences. 2024; 14(10):4219. https://doi.org/10.3390/app14104219
Chicago/Turabian StyleReyna, Alberto, Jesús C. Garza, Luz I. Balderas, Jonathan Méndez, Marco A. Panduro, Gonzalo Maldonado, and Lourdes Y. García. 2024. "Virtual Antenna Arrays with Frequency Diversity for Radar Systems in Fifth-Generation Flying Ad Hoc Networks" Applied Sciences 14, no. 10: 4219. https://doi.org/10.3390/app14104219
APA StyleReyna, A., Garza, J. C., Balderas, L. I., Méndez, J., Panduro, M. A., Maldonado, G., & García, L. Y. (2024). Virtual Antenna Arrays with Frequency Diversity for Radar Systems in Fifth-Generation Flying Ad Hoc Networks. Applied Sciences, 14(10), 4219. https://doi.org/10.3390/app14104219