A Deep Learning-Based Crop Disease Diagnosis Method Using Multimodal Mixup Augmentation
Abstract
:1. Introduction
2. Related Works
2.1. Deep Learning Approach to Crop Disease Diagnosis Using Multimodal Data
2.2. Mixup Augmentation
3. Materials and Methods
3.1. Dataset Description
3.2. Multimodal Deep Learning
3.3. Multimodal Mixup Augmentation
4. Experiments
5. Results
5.1. Comparative Analysis of Crop Disease Diagnosis Performance
5.2. Computational Cost Comparison
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gascoyne, P.R.; Vykoukal, J.V.; Schwartz, J.A.; Anderson, T.J.; Vykoukal, D.M.; Current, K.W.; McConaghy, C.; Becker, F.F.; Andrews, C. Dielectrophoresis-based programmable fluidic processors. Lab Chip 2004, 4, 299–309. [Google Scholar] [CrossRef]
- Lin, C.H.; Tsai, C.H.; Pan, C.W.; Fu, L.M. Rapid circular microfluidic mixer utilizing unbalanced driving force. Biomed. Microdevices 2007, 9, 43–50. [Google Scholar] [CrossRef]
- Taylor, M.T.; Belgrader, P.; Furman, B.J.; Pourahmadi, F.; Kovacs, G.T.; Northrup, M.A. Lysing bacterial spores by sonication through a flexible interface in a microfluidic system. Anal. Chem. 2001, 73, 492–496. [Google Scholar] [CrossRef]
- López, M.M.; Llop, P.; Olmos, A.; Marco-Noales, E.; Cambra, M.; Bertolini, E. Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr. Issues Mol. Biol. 2009, 11, 13–46. [Google Scholar]
- Mumford, R.; Boonham, N.; Tomlinson, J.; Barker, I. Advances in molecular phytodiagnostics—New solutions for old problems. Eur. J. Plant Pathol. 2006, 116, 1–19. [Google Scholar] [CrossRef]
- Nandhini, M.; Kala, K.U.; Thangadarshini, M.; Verma, S.M. Deep Learning model of sequential image classifier for crop disease detection in plantain tree cultivation. Comput. Electron. Agric. 2022, 197, 106915. [Google Scholar] [CrossRef]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Picon, A.; Alvarez-Gila, A.; Seitz, M.; Ortiz-Barredo, A.; Echazarra, J.; Johannes, A. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Comput. Electron. Agric. 2019, 161, 280–290. [Google Scholar] [CrossRef]
- Atila, Ü.; Uçar, M.; Akyol, K.; Uçar, E. Plant leaf disease classification using efficientnet deep learning model. Ecol. Inform. 2021, 61, 101182. [Google Scholar] [CrossRef]
- Yoon, H.S.; Jeong, S.B. Performance comparison of base CNN models in transfer learning for crop diseases classification. J. Soc. Korea Ind. Syst. Eng. 2021, 44, 33–38. [Google Scholar] [CrossRef]
- Pandian, J.A.; Kumar, V.D.; Geman, O.; Hnatiuc, M.; Arif, M.; Kanchanadevi, K. Plant disease detection using deep convolutional neural network. Appl. Sci. 2022, 12, 6982. [Google Scholar] [CrossRef]
- Arsenovic, M.; Karanovic, M.; Sladojevic, S.; Anderla, A.; Stefanovic, D. Solving current limitations of deep learning based approaches for plant disease detection. Symmetry 2019, 11, 939. [Google Scholar] [CrossRef]
- Ahmad, J.; Jan, B.; Farman, H.; Ahmad, W.; Ullah, A. Disease detection in plum using convolutional neural network under true field conditions. Sensors 2020, 20, 5569. [Google Scholar] [CrossRef]
- Nalini, T.; Rama, A. Impact of temperature condition in crop disease analyzing using machine learning algorithm. Meas. Sens. 2022, 24, 100408. [Google Scholar] [CrossRef]
- Mishra, D.; Deepa, D. Automation and integration of growth monitoring in plants (with disease prediction) and crop prediction. Mater. Today Proc. 2021, 43, 3922–3927. [Google Scholar]
- Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; Ng, A.Y. Multimodal deep learning. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011; pp. 689–696. [Google Scholar]
- Xu, T.; Zhang, H.; Huang, X.; Zhang, S.; Metaxas, D.N. Multimodal deep learning for cervical dysplasia diagnosis. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, 17–21 October 2016; Proceedings, Part II 19; Springer: Berlin/Heidelberg, Germany, 2016; pp. 115–123. [Google Scholar]
- Vásquez-Correa, J.C.; Arias-Vergara, T.; Orozco-Arroyave, J.R.; Eskofier, B.; Klucken, J.; Nöth, E. Multimodal assessment of Parkinson’s disease: A deep learning approach. IEEE J. Biomed. Health Inform. 2018, 23, 1618–1630. [Google Scholar] [CrossRef]
- Rastgoo, M.N.; Nakisa, B.; Maire, F.; Rakotonirainy, A.; Chandran, V. Automatic driver stress level classification using multimodal deep learning. Expert Syst. Appl. 2019, 138, 112793. [Google Scholar] [CrossRef]
- Tzirakis, P.; Trigeorgis, G.; Nicolaou, M.A.; Schuller, B.W.; Zafeiriou, S. End-to-end multimodal emotion recognition using deep neural networks. IEEE J. Sel. Top. Signal Process. 2017, 11, 1301–1309. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, R.; Lin, Y.; Li, C.; Chen, S.; Yuan, Z.; Chen, S.; Zou, X. Plant disease recognition model based on improved YOLOv5. Agronomy 2022, 12, 365. [Google Scholar] [CrossRef]
- Li, J.; Qiao, Y.; Liu, S.; Zhang, J.; Yang, Z.; Wang, M. An improved YOLOv5-based vegetable disease detection method. Comput. Electron. Agric. 2022, 202, 107345. [Google Scholar] [CrossRef]
- Yu, H.; Liu, J.; Chen, C.; Heidari, A.A.; Zhang, Q.; Chen, H.; Mafarja, M.; Turabieh, H. Corn leaf diseases diagnosis based on K-means clustering and deep learning. IEEE Access 2021, 9, 143824–143835. [Google Scholar] [CrossRef]
- Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond empirical risk minimization. arXiv 2017, arXiv:1710.09412. [Google Scholar]
- Xu, K.; Feng, D.; Mi, H.; Zhu, B.; Wang, D.; Zhang, L.; Cai, H.; Liu, S. Mixup-based acoustic scene classification using multichannel convolutional neural network. In Proceedings of the Advances in Multimedia Information Processing–PCM 2018: 19th Pacific-Rim Conference on Multimedia, Hefei, China, 21–22 September 2018; Proceedings Part III 19; Springer: Berlin/Heidelberg, Germany, 2018; pp. 14–23. [Google Scholar]
- DACON AI Challenge Website. Available online: https://dacon.io/competitions/official/235870/data (accessed on 7 March 2024).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the 2021 International Conference on Machine Learning (PMLR), Virtual, 18–24 July 2021; pp. 10096–10106. [Google Scholar]
- Divyanth, L.G.; Ahmad, A.; Saraswat, D. A two-stage deep-learning based segmentation model for crop disease quantification based on corn field imagery. Smart Agric. Technol. 2023, 3, 100108. [Google Scholar] [CrossRef]
- Raj, N.; Perumal, S.; Singla, S.; Sharma, G.K.; Qamar, S.; Chakkaravarthy, A.P. Computer aided agriculture development for crop disease detection by segmentation and classification using deep learning architectures. Comput. Electr. Eng. 2022, 103, 108357. [Google Scholar] [CrossRef]
- Alqahtani, Y.; Nawaz, M.; Nazir, T.; Javed, A.; Jeribi, F.; Tahir, A. An improved deep learning approach for localization and recognition of plant leaf diseases. Expert Syst. Appl. 2023, 230, 120717. [Google Scholar] [CrossRef]
- Mishra, S.; Sachan, R.; Rajpal, D. Deep convolutional neural network based detection system for real-time corn plant disease recognition. Procedia Comput. Sci. 2020, 167, 2003–2010. [Google Scholar] [CrossRef]
- Garg, G.; Gupta, S.; Mishra, P.; Vidyarthi, A.; Singh, A.; Ali, A. CROPCARE: An intelligent real-time sustainable IoT system for crop disease detection using mobile vision. IEEE Internet Things J. 2021, 10, 2840–2851. [Google Scholar] [CrossRef]
- Schaad, N.W.; Frederick, R.D. Real-time PCR and its application for rapid plant disease diagnostics. Can. J. Plant Pathol. 2002, 24, 250–258. [Google Scholar] [CrossRef]
Crop | Disease | Severity | The Number of Samples |
---|---|---|---|
Strawberry | Normal | 810 | |
Tomato | Normal | 143 | |
Powdery Mildew | Intermediate | 189 | |
Paprika | Normal | 1177 | |
Powdery Mildew | Early | 154 | |
Intermediate | 111 | ||
Terminal | 42 | ||
Ca | Early | 166 | |
N | 142 | ||
P | 156 | ||
K | 153 | ||
Cucumber | Normal | 917 | |
Chili | Normal | 69 | |
Anthracnose | Intermediate | 99 | |
N | Early | 148 | |
P | 159 | ||
K | 157 | ||
Grape | Normal | 828 | |
Anthracnose | Early | 40 | |
Intermediate | 12 | ||
Powdery Mildew | Early | 13 | |
Intermediate | 29 | ||
Sunscald | Early | 18 | |
Intermediate | 14 | ||
Corky Core | Early | 21 | |
Total | 5767 |
CNN Model | Environmental Data | Image | Multimodal |
---|---|---|---|
Resnet 50 | 80.84 ± 0.91 (LSTM) | 87.79 ± 0.70 | 90.37 ± 0.59 |
DenseNet 121 | 90.60 ± 0.46 | 92.02 ± 0.74 | |
Xception | 88.07 ± 0.89 | 90.68 ± 0.33 | |
MobileNet V3 | 89.27 ± 0.73 | 90.56 ± 0.46 | |
EfficientNet V2-Small | 90.34 ± 0.53 | 92.15 ± 1.18 |
CNN Model | Without Mixup | Image-Only Mixup | Multimodal Mixup |
---|---|---|---|
Resnet 50 | 90.37 ± 0.59 | 90.93 ± 0.34 | 92.26 ± 0.79 |
DenseNet 121 | 92.02 ± 0.74 | 92.08 ± 0.42 | 92.66 ± 0.39 |
Xception | 90.68 ± 0.33 | 90.97 ± 0.90 | 91.95 ± 0.56 |
MobileNet V3 | 90.56 ± 0.46 | 91.17 ± 0.80 | 91.94 ± 0.64 |
EfficientNet V2-Small | 92.15 ± 1.18 | 90.85 ± 0.46 | 93.22 ± 0.61 |
Modality of Data | The Number of Params. (M) | FLOPs (G) | F1 Score (%) |
---|---|---|---|
Environmental Data | 0.19 | 0.11 | 80.84 ± 0.91 |
Image | 23.56 | 10.76 | 87.79 ± 0.70 |
Multimodal | 23.75 | 10.88 | 90.37 ± 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Park, Y.-S.; Yang, S.; Lee, H.; Park, T.-J.; Yeo, D. A Deep Learning-Based Crop Disease Diagnosis Method Using Multimodal Mixup Augmentation. Appl. Sci. 2024, 14, 4322. https://doi.org/10.3390/app14104322
Lee H, Park Y-S, Yang S, Lee H, Park T-J, Yeo D. A Deep Learning-Based Crop Disease Diagnosis Method Using Multimodal Mixup Augmentation. Applied Sciences. 2024; 14(10):4322. https://doi.org/10.3390/app14104322
Chicago/Turabian StyleLee, Hyunseok, Young-Sang Park, Songho Yang, Hoyul Lee, Tae-Jin Park, and Doyeob Yeo. 2024. "A Deep Learning-Based Crop Disease Diagnosis Method Using Multimodal Mixup Augmentation" Applied Sciences 14, no. 10: 4322. https://doi.org/10.3390/app14104322
APA StyleLee, H., Park, Y. -S., Yang, S., Lee, H., Park, T. -J., & Yeo, D. (2024). A Deep Learning-Based Crop Disease Diagnosis Method Using Multimodal Mixup Augmentation. Applied Sciences, 14(10), 4322. https://doi.org/10.3390/app14104322