Comparison of Miniaturized and Benchtop NIR Spectrophotometers for Quantifying the Fatty Acid Profile of Iberian Ham
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Reference Analysis
2.3. Spectroscopy Measurements
2.4. Statistical Analyses
2.4.1. Spectra Pre-Treatment
2.4.2. Development of Calibration Models
3. Results and Discussion
3.1. Spectral Characteristics
3.2. Fatty Acid Composition
3.3. Regression Models
3.4. Fatty Acid Profile Prediction Using Fat Spectra
3.5. Fatty Acid Profile Prediction Using Lean Meat Spectra
3.6. Comparison of Spectra Sampling Zone: Fat vs. Lean Meat
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prieto, N.; Roehe, R.; Lavín, P.; Batten, G.; Andrés, S. Application of near Infrared Reflectance Spectroscopy to Predict Meat and Meat Products Quality: A Review. Meat Sci. 2009, 83, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Rojas, E.; Pérez-Marín, D.; De Pedro-Sanz, E.; Guerrero-Ginel, J.E.; Garrido-Varo, A. In-Situ Iberian Pig Carcass Classification Using a Micro-Electro-Mechanical System (MEMS)-Based near Infrared (NIR) Spectrometer. Meat Sci. 2012, 90, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive Measurement of Fruit and Vegetable Quality by Means of NIR Spectroscopy: A Review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Weeranantanaphan, J.; Downey, G.; Allen, P.; Sun, D.W. A Review of near Infrared Spectroscopy in Muscle Food Analysis: 2005–2010. J. Infrared Spectrosc. 2011, 19, 61–104. [Google Scholar] [CrossRef]
- Gaitán-Jurado, A.J.; Ortiz-Somovilla, V.; España-España, F.; Pérez-Aparicio, J.; De Pedro-Sanz, E.J. Quantitative Analysis of Pork Dry-Cured Sausages to Quality Control by NIR Spectroscopy. Meat Sci. 2008, 78, 391–399. [Google Scholar] [CrossRef]
- Prieto, N.; Andrés, S.; Giráldez, F.J.; Mantecón, A.R.; Lavín, P. Potential Use of near Infrared Reflectance Spectroscopy (NIRS) for the Estimation of Chemical Composition of Oxen Meat Samples. Meat Sci. 2006, 74, 487–496. [Google Scholar] [CrossRef]
- Viljoen, M.; Hoffman, L.C.; Brand, T.S. Prediction of the Chemical Composition of Mutton with near Infrared Reflectance Spectroscopy. Small Rumin. Res. 2007, 69, 88–94. [Google Scholar] [CrossRef]
- Anderson, S.; Aldana, S.; Beggs, M.; Birkey, J.; Conquest, A.; Conway, R.; Hemminger, T.; Herrick, J.; Hurley, C. Determination of Fat, Moisture, and Protein in Meat and Meat Products by Using the FOSS FoodScan Near-Infrared Spectrophotometer with FOSS Artificial Neural Network Calibration Model and Associated Database: Collaborative Study. J. AOAC Int. 2007, 90, 1073–1083. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Principles and Applications of Miniaturized Near-Infrared (NIR) Spectrometers. Chem. Eur. J. 2021, 27, 1514–1532. [Google Scholar] [CrossRef]
- Kademi, H.I.; Ulusoy, B.H.; Hecer, C. Applications of Miniaturized and Portable near Infrared Spectroscopy (NIRS) for Inspection and Control of Meat and Meat Products. Food Rev. Int. 2019, 35, 201–220. [Google Scholar] [CrossRef]
- Garrido-Delgado, R.; Eugenia Muñoz-Pérez, M.; Arce, L. Detection of Adulteration in Extra Virgin Olive Oils by Using UV-IMS and Chemometric Analysis. Food Control. 2018, 85, 292–299. [Google Scholar] [CrossRef]
- Wang, W.; Peng, Y.; Sun, H.; Zheng, X.; Wei, W. Spectral Detection Techniques for Non-Destructively Monitoring the Quality, Safety, and Classification of Fresh Red Meat. Food Anal. Methods 2018, 11, 2707–2730. [Google Scholar] [CrossRef]
- Vicente, F.; Pereira, P.C. Pork Meat Composition and Health: A Review of the Evidence. Foods 2024, 13, 1905. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.-T.; Fan, Y.-X.; Cheng, F. On-Line Prediction of Fresh Pork Quality Using Visible/near-Infrared Reflectance Spectroscopy. Meat Sci. 2010, 86, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Hoving-Bolink, A.H.; Vedder, H.W.; Merks, J.W.M.; de Klein, W.J.H.; Reimert, H.G.M.; Frankhuizen, R.; van den Broek, W.H.A.M.; Lambooij, E.E. Perspective of NIRS Measurements Early Post Mortem for Prediction of Pork Quality. Meat Sci. 2005, 69, 417–423. [Google Scholar] [CrossRef]
- Barlocco, N.; Vadell, A.; Ballesteros, F.; Galietta, G.; Cozzolino, D. Predicting Intramuscular Fat, Moisture and Warner-Bratzler Shear Force in Pork Muscle Using near Infrared Reflectance Spectroscopy. Anim. Sci. 2006, 82, 111–116. [Google Scholar] [CrossRef]
- Savenije, B.; Geesink, G.H.; Van Der Palen, J.G.P.; Hemke, G. Prediction of Pork Quality Using Visible/near-Infrared Reflectance Spectroscopy. Meat Sci. 2006, 73, 181–184. [Google Scholar] [CrossRef]
- Ortiz-Somovilla, V.; España-España, F.; Gaitán-Jurado, A.J.; Pérez-Aparicio, J.; De Pedro-Sanz, E.J. Proximate Analysis of Homogenized and Minced Mass of Pork Sausages by NIRS. Food Chem. 2007, 101, 1031–1040. [Google Scholar] [CrossRef]
- De Marchi, M.; Manuelian, C.L.; Ton, S.; Manfrin, D.; Meneghesso, M.; Cassandro, M.; Penasa, M. Prediction of Sodium Content in Commercial Processed Meat Products Using near Infrared Spectroscopy. Meat Sci. 2017, 125, 61–65. [Google Scholar] [CrossRef]
- Tejerina, D.; García-Torres, S.; Cabeza de Vaca, M.; Vázquez, F.M.; Cava, R. Effect of Production System on Physical–Chemical, Antioxidant and Fatty Acids Composition of Longissimus Dorsi and Serratus Ventralis Muscles from Iberian Pig. Food Chem. 2012, 133, 293–299. [Google Scholar] [CrossRef]
- Díaz-Caro, C.; García-Torres, S.; Elghannam, A.; Tejerina, D.; Mesias, F.J.; Ortiz, A. Is Production System a Relevant Attribute in Consumers’ Food Preferences? The Case of Iberian Dry-Cured Ham in Spain. Meat Sci. 2019, 158, 107908. [Google Scholar] [CrossRef] [PubMed]
- Prieto, N.; Pawluczyk, O.; Dugan, M.E.R.; Aalhus, J.L. A Review of the Principles and Applications of Near-Infrared Spectroscopy to Characterize Meat, Fat, and Meat Products. Appl. Spectrosc. 2017, 71, 1403–1426. [Google Scholar] [CrossRef] [PubMed]
- Horcada, A.; Valera, M.; Juárez, M.; Fernández-Cabanás, V.M. Authentication of Iberian Pork Official Quality Categories Using a Portable near Infrared Spectroscopy (NIRS) Instrument. Food Chem. 2020, 318, 126471. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Varo, A.; Riccioli, C.; Fearn, T.; De-Pedro Sanz, E.; Pérez-Marín, D.C. Multivariate Predictive Models for the Prediction of Fatty Acids in the EU High Added-Value “Acorn Iberian Pig Ham” Using a Miniature near-Infrared Spectroscopy Instrument. In Proceedings of the Sensing for Agriculture and Food Quality and Safety XI, Baltimore, MD, USA, 16–17 April 2019; Volume 11016. [Google Scholar] [CrossRef]
- González-Martín, M.I.; Escuredo, O.; Hernández-Jiménez, M.; Revilla, I.; Vivar-Quintana, A.M.A.; Martínez-Martín, I.; Hernández-Ramos, P. Prediction of Stable Isotopes and Fatty Acids in Subcutaneous Fat of Iberian Pigs by Means of NIR: A Comparison Between Benchtop and Portable Systems. Talanta 2021, 224, 121817. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Marín, D.; Fearn, T.; Riccioli, C.; De Pedro, E.; Garrido, A. Probabilistic Classification Models for the in Situ Authentication of Iberian Pig Carcasses Using near Infrared Spectroscopy. Talanta 2021, 222, 121511. [Google Scholar] [CrossRef]
- Hernández-Jiménez, M.; Revilla, I.; Vivar-Quintana, A.M.; Grabska, J.; Beć, K.B.; Huck, C.W. Performance of Benchtop and Portable Spectroscopy Equipment for Discriminating Iberian Ham According to Breed. Curr. Res. Food Sci. 2024, 8, 100675. [Google Scholar] [CrossRef]
- Tejerina, D.; García Torres, S.; Cabeza de Vaca, M.; Ortiz, A.; Romero, M.P. Evaluation of Near-Infrared Spectroscopy (NIRS) for the Quality Control of Packaged Cured Ham-Sliced from Iberian Pigs. Arch. Zootec. 2018, 356, 231–234. [Google Scholar] [CrossRef]
- Piotrowski, C.; Garcia, R.; Garrido-Varo, A.; Pérez-Marín, D.; Riccioli, C.; Fearn, T. Short Communication: The Potential of Portable near Infrared Spectroscopy for Assuring Quality and Authenticity in the Food Chain, Using Iberian Hams as an Example. Animal 2019, 13, 3018–3021. [Google Scholar] [CrossRef]
- RD 4/2014, de 10 de Enero, Por el que se Aprueba la Norma de Calidad para la Carne, el Jamón, la Paleta y la Caña de Lomo Ibérico. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2014-318 (accessed on 16 November 2024).
- Hernández-Jiménez, M.; Revilla, I.; Hernández-Ramos, P.; Vivar-Quintana, A.M. Prediction of the Fatty Acid Profiles of Iberian Pig Products by Near Infrared Spectroscopy: A Comparison Between Multiple Regression Tools and Artificial Neural Networks. Food Biorpocess Technol. 2024, 1–19. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Hernández-Jiménez, M.; González-Martín, M.I.; Martínez-Martín, I.; Revilla, I.; Vivar-Quintana, A.M. Carbon Stable Isotopes, Fatty Acids and the Use of NIRS to Differentiate IBERIAN Pigs. Meat Sci. 2021, 182, 108619. [Google Scholar] [CrossRef] [PubMed]
- Pezzei, C.K.; Schönbichler, S.A.; Kirchler, C.G.; Schmelzer, J.; Hussain, S.; Huck-Pezzei, V.A.; Popp, M.; Krolitzek, J.; Bonn, G.K.; Huck, C.W. Application of Benchtop and Portable Near-Infrared Spectrometers for Predicting the Optimum Harvest Time of Verbena Officinalis. Talanta 2017, 169, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Mayr, S.; Schmelzer, J.; Kirchler, C.G.; Pezzei, C.K.; Beć, K.B.; Grabska, J.; Huck, C.W. Theae Nigrae Folium: Comparing the Analytical Performance of Benchtop and Handheld near-Infrared Spectrometers. Talanta 2021, 221, 121165. [Google Scholar] [CrossRef] [PubMed]
- Henn, R.; Schwab, A.; Huck, C.W. Evaluation of Benchtop versus Portable Near-Infrared Spectroscopic Method Combined with Multivariate Approaches for the Fast and Simultaneous Quantitative Analysis of Main Sugars in Syrup Formulations. Food Control 2016, 68, 97–104. [Google Scholar] [CrossRef]
- Nørgaard, L.; Haunstrup, I.; Petersen, M.; Weimann, J.; Sørensen, K. Chemometric Terminology for Qualitative and Quantitative Analysis—IQ2. InFocus 2014, 1, 15. [Google Scholar]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the Most Common Pre-Processing Techniques for near-Infrared Spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Fernández-Cabanás, V.M.; Garrido-Varo, A.; García Olmo, J.; De Pedro, E.; Dardenne, P. Optimisation of the Spectral Pre-Treatments Used for Iberian Pig Fat NIR Calibrations. Chemom. Intell. Lab. Syst. 2007, 87, 104–112. [Google Scholar] [CrossRef]
- Prado, N.; Fernández-Ibáñez, V.; González, P.; Soldado, A. On-Site NIR Spectroscopy to Control the Shelf Life of Pork Meat. Food Anal. Methods 2011, 4, 582–589. [Google Scholar] [CrossRef]
- Reiss, P.T.; Ogden, R.T. Functional Principal Component Regression and Functional Partial Least Squares. J. Am. Stat. Assoc. 2007, 102, 984–996. [Google Scholar] [CrossRef]
- De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D.L. The Mahalanobis Distance. Chemom. Intell. Lab. Syst. 2000, 50, 1–18. [Google Scholar] [CrossRef]
- Williams, P.; Norris, K. Near-Infrared Technology in the Agricultural and Food Industries; American Association of Cereal Chemists, Inc.: St Paul, MN, USA, 1987; ISBN 0-913250-49-X. [Google Scholar]
- Williams, P.C. Implementation of Near-Infrared Technology; Williams, P.C., Norris, K., Eds.; AACC: St Paul, MN, USA, 2001; pp. 145–169. [Google Scholar]
- Turgut, S.S.; Entrenas, J.A.; Taşkın, E.; Garrido-Varo, A.; Pérez-Marín, D. Estimation of the Sensory Properties of Black Tea Samples Using Non-Destructive near-Infrared Spectroscopy Sensors. Food Control 2022, 142, 109260. [Google Scholar] [CrossRef]
- Grabska, J.; Beć, K.B.; Ishigaki, M.; Wójcik, M.J.; Ozaki, Y. Spectra-Structure Correlations of Saturated and Unsaturated Medium-Chain Fatty Acids. Near-Infrared and Anharmonic DFT Study of Hexanoic Acid and Sorbic Acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 185, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Grabska, J.; Beć, K.B.; Ishigaki, M.; Huck, C.W.; Ozaki, Y. NIR Spectra Simulations by Anharmonic DFT-Saturated and Unsaturated Long-Chain Fatty Acids. J. Phys. Chem. B 2018, 122, 6931–6944. [Google Scholar] [CrossRef] [PubMed]
- Dixit, Y.; Casado-Gavalda, M.P.; Cama-Moncunill, R.; Cama-Moncunill, X.; Cullen, P.J.; Sullivan, C. Prediction of Beef Fat Content Simultaneously under Static and Motion Conditions Using near Infrared Spectroscopy. J. Infrared Spectrosc. 2016, 24, 353–361. [Google Scholar] [CrossRef]
- ElMasry, G.; Sun, D.-W.; Allen, P. Chemical-Free Assessment and Mapping of Major Constituents in Beef Using Hyperspectral Imaging. J. Food Eng. 2013, 117, 235–246. [Google Scholar] [CrossRef]
- Murray, I. The NIR Spectra of Homologous Series of Organic Compounds; Akademiai Kiado: Budapest, Hungary, 1986; pp. 13–28. [Google Scholar]
- Cozzolino, D.; Murray, I. Identification of Animal Meat Muscles by Visible and near Infrared Reflectance Spectroscopy. LWT Food Sci. Technol. 2004, 37, 447–452. [Google Scholar] [CrossRef]
- Sierra, V.; Aldai, N.; Castro, P.; Osoro, K.; Coto-Montes, A.; Oliván, M. Prediction of the Fatty Acid Composition of Beef by near Infrared Transmittance Spectroscopy. Meat Sci. 2008, 78, 248–255. [Google Scholar] [CrossRef]
- Prieto, N.; López-Campos, Ó.; Aalhus, J.L.; Dugan, M.E.R.; Juárez, M.; Uttaro, B. Use of near Infrared Spectroscopy for Estimating Meat Chemical Composition, Quality Traits and Fatty Acid Content from Cattle Fed Sunflower or Flaxseed. Meat Sci. 2014, 98, 279–288. [Google Scholar] [CrossRef]
- Zamora-Rojas, E.; Garrido-Varo, A.; De Pedro-Sanz, E.; Guerrero-Ginel, J.E.; Pérez-Marín, D. Prediction of Fatty Acids Content in Pig Adipose Tissue by near Infrared Spectroscopy: At-Line versus in-Situ Analysis. Meat Sci. 2013, 95, 503–511. [Google Scholar] [CrossRef]
- Ventanas, S.; Ventanas, J.; Jurado, Á.; Estévez, M. Quality Traits in Muscle Biceps Femoris and Back-Fat from Purebred Iberian and Reciprocal Iberian×Duroc Crossbred Pigs. Meat Sci. 2006, 73, 651–659. [Google Scholar] [CrossRef]
- Tejeda, J.F.; Gandemer, G.; Antequera, T.; Viau, M.; García, C. Lipid Traits of Muscles as Related to Genotype and Fattening Diet in Iberian Pigs: Total Intramuscular Lipids and Triacylglycerols. Meat Sci. 2002, 60, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Carrascal, J.; Ventanas, J.; Cava, R.; Andrés, A.I.; García, C. Texture and Appearance of Dry Cured Ham as Affected by Fat Content and Fatty Acid Composition. Food Res. Int. 2000, 33, 91–95. [Google Scholar] [CrossRef]
- Fernández-Cabanás, V.M.; Polvillo, O.; Rodríguez-Acuña, R.; Botella, B.; Horcada, A. Rapid Determination of the Fatty Acid Profile in Pork Dry-Cured Sausages by NIR Spectroscopy. Food Chem. 2011, 124, 373–378. [Google Scholar] [CrossRef]
- González-Martín, I.; González-Pérez, C.; Alvarez-García, N.; González-Cabrera, J.M. On-Line Determination of Fatty Acid Composition in Intramuscular Fat of Iberian Pork Loin by NIRs with a Remote Reflectance Fibre Optic Probe. Meat Sci. 2005, 69, 243–248. [Google Scholar] [CrossRef]
- Olivan, M.; Delaroza, B.; Mocha, M.; Martinez, M.J. Prediction of physico-chemical and texture characteristics of beef by near infrared transmittance spectroscopy. In Proceedings of the 10th International Conference on Near Infrared Spectroscopy, Kyongju, Republic of Korea, 10–15 June 2002; pp. 197–202. [Google Scholar]
- Davies, A.M.C.; Grant, A. Review: Near Infra-Red Analysis of Food. Int. J. Food Sci. Technol. 1987, 22, 191–207. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.-W.; Allen, P. Non-Destructive Assessment of Instrumental and Sensory Tenderness of Lamb Meat Using NIR Hyperspectral Imaging. Food Chem. 2013, 141, 389–396. [Google Scholar] [CrossRef]
- Gandemer, G. Lipids and Meat Quality: Lipolysis, Oxidation, Maillard Reaction and Flavour. Sci. Aliments Food Sci. Int. J. Food Sci. Technol. 1999, 19, 439–458. [Google Scholar]
Fatty Acid | Mean | Min | Max | SD | CV |
---|---|---|---|---|---|
C12:0 | 0.09 | 0.07 | 0.20 | 0.02 | 20.88 |
C13:0 | 0.00 | 0.00 | 0.04 | 0.01 | 247.33 |
C14:0 | 1.34 | 1.03 | 2.06 | 0.15 | 11.36 |
C14:1 n5 | 0.03 | 0.01 | 0.10 | 0.01 | 36.45 |
C15:0 | 0.03 | 0.02 | 0.08 | 0.01 | 26.90 |
C15:1 | 0.00 | 0.00 | 0.07 | 0.01 | 613.80 |
C16:0 | 21.91 | 19.05 | 24.91 | 1.26 | 5.74 |
C16:1 | 4.53 | 3.15 | 5.68 | 0.58 | 12.86 |
C17:0 | 0.18 | 0.14 | 0.24 | 0.02 | 12.68 |
C17:1 | 0.19 | 0.12 | 0.27 | 0.03 | 14.75 |
C18:0 | 8.23 | 6.27 | 10.77 | 0.97 | 11.74 |
C18:1 n9t | 0.23 | 0.13 | 0.34 | 0.04 | 18.69 |
C18:1 | 50.68 | 46.38 | 53.61 | 1.61 | 3.17 |
C18:1 n7 | 4.66 | 3.43 | 5.48 | 0.48 | 10.27 |
C18:2 n6t | 0.02 | 0.00 | 0.17 | 0.02 | 98.91 |
C18:2 n6 | 5.38 | 3.81 | 7.20 | 0.90 | 16.73 |
C20:0 | 0.17 | 0.12 | 0.48 | 0.04 | 26.96 |
C18:3 n6 | 0.02 | 0.01 | 0.12 | 0.01 | 66.45 |
C20:1 n9 | 0.05 | 0.00 | 0.11 | 0.03 | 72.91 |
C18:3 n3 | 1.33 | 1.10 | 1.54 | 0.12 | 8.92 |
C21:0 | 0.07 | 0.04 | 0.12 | 0.01 | 18.78 |
C20:2 n6 | 0.25 | 0.19 | 0.32 | 0.04 | 14.57 |
C22:0 | 0.03 | 0.02 | 0.05 | 0.01 | 19.42 |
C20:3 n6 | 0.06 | 0.04 | 0.08 | 0.01 | 15.77 |
C22:1 n9 | 0.10 | 0.07 | 0.28 | 0.03 | 28.39 |
C20:3 n3 | 0.25 | 0.00 | 0.34 | 0.05 | 22.10 |
C20:4 n6 | 0.08 | 0.02 | 0.18 | 0.03 | 45.21 |
C23:0 | 0.00 | 0.00 | 0.04 | 0.01 | 187.08 |
C22:2 n6 | 0.04 | 0.00 | 1.32 | 0.17 | 463.49 |
C24:0 | 0.02 | 0.00 | 0.05 | 0.01 | 44.39 |
C20:5 n3 | 0.00 | 0.00 | 0.03 | 0.00 | 464.18 |
C24:1 n9 | 0.01 | 0.00 | 0.23 | 0.03 | 387.71 |
C22:6 n3 | 0.06 | 0.00 | 0.13 | 0.02 | 24.89 |
SFAs | 32.06 | 28.38 | 37.25 | 2.10 | 6.54 |
MUFAs | 60.47 | 56.39 | 62.91 | 1.53 | 2.53 |
PUFAs | 7.45 | 5.72 | 10.16 | 1.10 | 14.74 |
n3 | 1.64 | 1.35 | 1.93 | 0.15 | 9.17 |
n6 | 5.81 | 4.22 | 8.33 | 0.97 | 16.67 |
Fatty Acid | NIRFlex N-500 | MicroPHAZIR | SCiO Sensor | Enterprise Sensor | MicroNIR | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | SEC | RPD | RSQ | SECV | RSQcv | N | SEC | RPD | RSQ | SECV | RSQcv | N | SEC | RPD | RSQ | SECV | RSQcv | N | SEC | RPD | RSQ | SECV | RSQcv | N | SEC | RPD | RSQ | SECV | RSQcv | |
C12:0 | 55 | 0.00 | 2.03 | 0.75 | 0.01 | 0.02 | ||||||||||||||||||||||||
C14:0 | 57 | 0.06 | 1.81 | 0.70 | 0.09 | 0.30 | ||||||||||||||||||||||||
C14:1 n5 | 58 | 0.00 | 2.32 | 0.82 | 0.01 | 0.15 | 57 | 0.00 | 1.57 | 0.60 | 0.01 | 0.05 | ||||||||||||||||||
C15:0 | 58 | 0.003 | 1.40 | 0.50 | 0.00 | 0.13 | ||||||||||||||||||||||||
C16:0 | 57 | 0.34 | 3.55 | 0.92 | 0.87 | 0.47 | 57 | 0.730 | 1.56 | 0.59 | 0.89 | 0.37 | 59 | 0.64 | 1.91 | 0.73 | 1.19 | 0.03 | 58 | 0.73 | 1.69 | 0.65 | 0.99 | 0.34 | 57 | 0.73 | 1.67 | 0.64 | 0.85 | 0.50 |
∑ C16:1 | 59 | 0.23 | 2.51 | 0.84 | 0.46 | 0.37 | 57 | 0.22 | 2.66 | 0.86 | 0.47 | 0.31 | ||||||||||||||||||
C17:0 | ||||||||||||||||||||||||||||||
C17:1 | 59 | 0.01 | 3.85 | 0.93 | 0.03 | 0.00 | 57 | 0.015 | 1.59 | 0.60 | 0.02 | 0.09 | ||||||||||||||||||
C18:0 | 60 | 0.26 | 3.66 | 0.93 | 0.90 | 0.12 | 59 | 0.58 | 1.65 | 0.63 | 0.90 | 0.11 | ||||||||||||||||||
C18:1 | 57 | 0.51 | 2.98 | 0.89 | 0.98 | 0.58 | 53 | 1.00 | 1.55 | 0.58 | 1.31 | 0.27 | 57 | 0.93 | 1.61 | 0.61 | 1.43 | 0.06 | 58 | 0.64 | 1.52 | 0.56 | 0.79 | 0.33 | ||||||
C18:1 n7 | 60 | 0.20 | 2.39 | 0.83 | 0.38 | 0.37 | 57 | 0.22 | 1.98 | 0.75 | 0.41 | 0.06 | ||||||||||||||||||
C18:2 n6 | 57 | 0.34 | 2.53 | 0.84 | 0.57 | 0.56 | 58 | 0.45 | 1.98 | 0.75 | 0.81 | 0.18 | 58 | 0.38 | 2.34 | 0.82 | 0.67 | 0.41 | 58 | 0.53 | 1.63 | 0.62 | 0.65 | 0.43 | ||||||
C20:0 | 58 | 0.01 | 2.69 | 0.86 | 0.01 | 0.12 | 58 | 0.02 | 1.53 | 0.58 | 0.02 | 0.38 | ||||||||||||||||||
C18:3 n6 | 58 | 0.00 | 1.52 | 0.55 | 0.00 | 0.15 | 57 | 0.021 | 1.14 | 0.54 | 0.03 | 0.22 | ||||||||||||||||||
C18:3 n3 | 56 | 0.02 | 6.26 | 0.97 | 0.06 | 0.69 | 58 | 0.08 | 1.49 | 0.55 | 0.11 | 0.16 | 59 | 0.08 | 1.48 | 0.54 | 0.11 | 0.16 | 56 | 0.07 | 1.79 | 0.69 | 0.08 | 0.53 | ||||||
C21:0 | 58 | 0.00 | 3.68 | 0.93 | 0.01 | 0.31 | 56 | 0.01 | 1.62 | 0.62 | 0.01 | 0.07 | ||||||||||||||||||
C20:2 n6 | 58 | 0.01 | 2.49 | 0.84 | 0.03 | 0.38 | 59 | 0.02 | 1.75 | 0.67 | 0.04 | 0.01 | 56 | 0.02 | 1.69 | 0.65 | 0.02 | 0.48 | ||||||||||||
C22:0 | 57 | 0.00 | 2.09 | 0.77 | 0.00 | 0.06 | ||||||||||||||||||||||||
C20:3 n6 | 58 | 0.01 | 1.48 | 0.54 | 0.01 | 0.12 | ||||||||||||||||||||||||
C22:1 n9 | 59 | 0.00 | 4.67 | 0.95 | 0.01 | 0.18 | ||||||||||||||||||||||||
C20:3 n3 | 57 | 0.03 | 1.46 | 0.53 | 0.04 | 0.13 | ||||||||||||||||||||||||
C22:2 n6 | ||||||||||||||||||||||||||||||
C24:0 | 54 | 0.00 | 8.75 | 0.99 | 0.01 | 0.20 | 56 | 0.004 | 1.80 | 0.69 | 0.01 | 0.04 | 53 | 0.00 | 1.50 | 0.55 | 0.01 | 0.23 | 53 | 0.00 | 1.45 | 0.51 | 0.01 | 0.37 | ||||||
SFAs | 60 | 0.85 | 2.47 | 0.84 | 1.65 | 0.37 | 59 | 0.95 | 2.14 | 0.78 | 1.67 | 0.31 | 56 | 1.28 | 1.55 | 0.59 | 1.75 | 0.22 | 54 | 0.96 | 1.90 | 0.72 | 1.19 | 0.56 | ||||||
MUFAs | 56 | 0.66 | 2.22 | 0.80 | 1.15 | 0.38 | 52 | 0.63 | 1.96 | 0.74 | 1.07 | 0.23 | 57 | 0.88 | 1.55 | 0.58 | 1.23 | 0.17 | 57 | 1.02 | 1.43 | 0.51 | 1.19 | 0.33 | ||||||
PUFAs | 56 | 0.32 | 3.13 | 0.90 | 0.64 | 0.60 | 55 | 0.44 | 2.32 | 0.81 | 0.80 | 0.38 | 58 | 0.47 | 2.30 | 0.81 | 0.79 | 0.46 | 56 | 0.61 | 1.69 | 0.65 | 0.71 | 0.51 | ||||||
n3 | 58 | 0.03 | 5.30 | 0.96 | 0.11 | 0.36 | 59 | 0.09 | 1.63 | 0.63 | 0.15 | 0.00 | 57 | 0.10 | 1.47 | 0.54 | 0.12 | 0.28 | 57 | 0.09 | 1.53 | 0.57 | 0.12 | 0.32 | ||||||
n6 | 57 | 0.23 | 3.93 | 0.94 | 0.62 | 0.53 | 55 | 0.42 | 2.12 | 0.78 | 0.65 | 0.46 | 57 | 0.38 | 2.52 | 0.84 | 0.67 | 0.50 | 57 | 0.53 | 1.69 | 0.65 | 0.67 | 0.42 |
Fatty Acid | NIRFlex N-500 | MicroPHAZIR | SCiO Sensor | Enterprise Sensor | MicroNIR | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | SEC | RPD | RSQ | SECV | RSQcv | N | SEC | RPD | RSQ | SECV | RSQcv | N | SEC | RPD | RSQ | SECV | RSQcv | N | SEC | RPD | RSQ | SECV | RSQcv | N | SEC | RPD | RSQ | SECV | RSQcv | |
C12:0 | 56 | 0.00 | 7.90 | 0.98 | 0.01 | −0.07 | 53 | 0.00 | 1.82 | 0.69 | 0.01 | −0.1542 | ||||||||||||||||||
C14:0 | 56 | 0.03 | 3.06 | 0.89 | 0.10 | 0.08 | 59 | 0.07 | 1.67 | 0.64 | 0.11 | 0.07 | 57 | 0.05 | 2.09 | 0.77 | 0.09 | 0.26 | ||||||||||||
C14:1 n5 | 56 | 0.00 | 3.53 | 0.92 | 0.00 | 0.18 | 56 | 0.00 | 1.61 | 0.62 | 0.01 | −0.04 | ||||||||||||||||||
C15:0 | 57 | 0.00 | 2.86 | 0.88 | 0.00 | 0.12 | ||||||||||||||||||||||||
C16:0 | 59 | 0.37 | 3.28 | 0.91 | 1.05 | 0.24 | 54 | 0.79 | 1.47 | 0.53 | 0.88 | 0.42 | 57 | 0.43 | 2.64 | 0.86 | 0.80 | 0.51 | 59 | 0.86 | 1.47 | 0.54 | 1.01 | 0.35 | ||||||
∑ C16:1 | 58 | 0.27 | 1.97 | 0.74 | 0.49 | 0.13 | 59 | 0.35 | 1.61 | 0.61 | 0.53 | 0.13 | ||||||||||||||||||
C17:0 | 57 | 0.01 | 2.26 | 0.80 | 0.02 | 0.32 | 57 | 0.02 | 1.42 | 0.50 | 0.02 | 0.23 | 59 | 0.01 | 1.58 | 0.60 | 0.02 | 0.34 | ||||||||||||
C17:1 | 57 | 0.01 | 2.51 | 0.84 | 0.03 | 0.12 | 56 | 0.02 | 1.51 | 0.56 | 0.03 | −0.1011 | ||||||||||||||||||
C18:0 | 59 | 0.30 | 3.13 | 0.90 | 0.84 | 0.21 | 60 | 0.67 | 1.45 | 0.52 | 1.05 | −0.19 | 56 | 0.63 | 1.49 | 0.55 | 0.75 | 0.35 | ||||||||||||
C18:1 n9t | 59 | 0.01 | 3.49 | 0.92 | 0.03 | 0.35 | 53 | 0.03 | 1.51 | 0.56 | 0.04 | 0.12 | 57 | 0.03 | 1.45 | 0.53 | 0.03 | 0.22 | ||||||||||||
C18:1 | 58 | 0.37 | 4.13 | 0.94 | 1.29 | 0.27 | 58 | 0.73 | 2.08 | 0.77 | 1.26 | 0.30 | 57 | 0.79 | 1.92 | 0.73 | 1.43 | 0.10 | 59 | 1.14 | 1.42 | 0.50 | 1.37 | 0.27 | ||||||
C18:1 n7 | 58 | 0.22 | 2.09 | 0.77 | 0.39 | 0.23 | ||||||||||||||||||||||||
C18:2 n6 | 56 | 0.13 | 6.27 | 0.97 | 0.58 | 0.52 | 53 | 0.51 | 1.59 | 0.61 | 0.56 | 0.51 | 58 | 0.27 | 3.38 | 0.91 | 0.65 | 0.49 | 57 | 0.59 | 1.49 | 0.55 | 0.85 | 0.06 | ||||||
C20:0 | 58 | 0.00 | 10.40 | 0.99 | 0.02 | −0.01 | 60 | 0.02 | 1.81 | 0.69 | 0.03 | 0.22 | 55 | 0.02 | 1.42 | 0.50 | 0.02 | 0.36 | 54 | 0.01 | 3.41 | 0.91 | 0.03 | 0.18 | ||||||
C18:3 n6 | 59 | 0.00 | 2.25 | 0.81 | 0.00 | 0.06 | 56 | 0.00 | 1.75 | 0.68 | 0.00 | 0.37 | 57 | 0.00 | 1.44 | 0.53 | 0.00 | 0.26 | ||||||||||||
C18:3 n3 | 59 | 0.03 | 3.94 | 0.94 | 0.10 | 0.26 | 56 | 0.08 | 1.44 | 0.52 | 0.09 | 0.34 | 60 | 0.08 | 1.47 | 0.54 | 0.11 | 0.13 | 57 | 0.07 | 1.75 | 0.67 | 0.08 | 0.53 | ||||||
C21:0 | 58 | 0.00 | 2.32 | 0.81 | 0.01 | −0.31 | ||||||||||||||||||||||||
C20:2 n6 | 60 | 0.02 | 1.56 | 0.59 | 0.03 | 0.14 | 54 | 0.02 | 1.48 | 0.54 | 0.03 | 0.26 | 60 | 0.02 | 1.49 | 0.55 | 0.03 | 0.13 | ||||||||||||
C22:0 | 59 | 0.00 | 1.71 | 0.65 | 0.00 | 0.31 | ||||||||||||||||||||||||
C20:3 n6 | 58 | 0.00 | 8.00 | 0.98 | 0.01 | 0.45 | 59 | 0.01 | 1.45 | 0.52 | 0.01 | 0.31 | ||||||||||||||||||
C22:1 n9 | 58 | 0.01 | 1.76 | 0.68 | 0.01 | −0.32 | 55 | 0.01 | 1.45 | 0.53 | 0.01 | 0.28 | 56 | 0.01 | 1.49 | 0.55 | 0.01 | 0.39 | ||||||||||||
C20:3 n3 | 56 | 0.00 | 9.60 | 0.99 | 0.03 | 0.53 | 57 | 0.02 | 1.96 | 0.74 | 0.04 | 0.28 | 55 | 0.02 | 1.80 | 0.69 | 0.03 | 0.52 | ||||||||||||
C24:0 | 58 | 0.00 | 1.76 | 0.68 | 0.01 | −0.15 | 55 | 0.00 | 1.78 | 0.68 | 0.01 | 0.26 | 56 | 0.01 | 1.42 | 0.50 | 0.01 | 0.01 | ||||||||||||
SFAs | 58 | 0.27 | 7.26 | 0.98 | 1.45 | 0.43 | 57 | 1.39 | 1.53 | 0.57 | 2.00 | 0.10 | 58 | 0.87 | 2.18 | 0.79 | 1.61 | 0.27 | 58 | 1.31 | 1.62 | 0.62 | 1.66 | 0.37 | ||||||
MUFAs | 57 | 0.25 | 5.30 | 0.96 | 1.16 | 0.19 | 55 | 0.54 | 2.64 | 0.86 | 1.35 | 0.08 | 56 | 0.89 | 1.50 | 0.55 | 1.20 | 0.17 | 53 | 0.69 | 1.68 | 0.64 | 0.78 | 0.53 | ||||||
PUFAs | 57 | 0.09 | 11.11 | 0.99 | 0.75 | 0.48 | 52 | 0.63 | 1.57 | 0.59 | 0.69 | 0.49 | 58 | 0.49 | 2.25 | 0.80 | 0.82 | 0.43 | 57 | 0.73 | 1.48 | 0.54 | 0.88 | 0.33 | ||||||
n3 | 57 | 0.03 | 5.17 | 0.96 | 0.11 | 0.42 | 56 | 0.08 | 1.84 | 0.70 | 0.11 | 0.45 | ||||||||||||||||||
n6 | 56 | 0.14 | 6.71 | 0.98 | 0.62 | 0.53 | 52 | 0.55 | 1.58 | 0.60 | 0.60 | 0.50 | 57 | 0.27 | 3.67 | 0.93 | 0.64 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Jiménez, M.; Revilla, I.; Vivar-Quintana, A.M.; Grabska, J.; Beć, K.B.; Huck, C.W. Comparison of Miniaturized and Benchtop NIR Spectrophotometers for Quantifying the Fatty Acid Profile of Iberian Ham. Appl. Sci. 2024, 14, 10680. https://doi.org/10.3390/app142210680
Hernández-Jiménez M, Revilla I, Vivar-Quintana AM, Grabska J, Beć KB, Huck CW. Comparison of Miniaturized and Benchtop NIR Spectrophotometers for Quantifying the Fatty Acid Profile of Iberian Ham. Applied Sciences. 2024; 14(22):10680. https://doi.org/10.3390/app142210680
Chicago/Turabian StyleHernández-Jiménez, Miriam, Isabel Revilla, Ana M. Vivar-Quintana, Justyna Grabska, Krzysztof B. Beć, and Christian W. Huck. 2024. "Comparison of Miniaturized and Benchtop NIR Spectrophotometers for Quantifying the Fatty Acid Profile of Iberian Ham" Applied Sciences 14, no. 22: 10680. https://doi.org/10.3390/app142210680
APA StyleHernández-Jiménez, M., Revilla, I., Vivar-Quintana, A. M., Grabska, J., Beć, K. B., & Huck, C. W. (2024). Comparison of Miniaturized and Benchtop NIR Spectrophotometers for Quantifying the Fatty Acid Profile of Iberian Ham. Applied Sciences, 14(22), 10680. https://doi.org/10.3390/app142210680