Novel Q-Carbon Anodes for Sodium-Ion Batteries
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Narayan, J.; Bhaumik, A. Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 2015, 118, 215303. [Google Scholar] [CrossRef]
- Riley, P.R.; Joshi, P.; Khosla, N.; Narayan, R.J.; Narayan, J. Formation of Q-carbon with wafer scale integration. Carbon 2022, 196, 972–978. [Google Scholar] [CrossRef]
- Narayan, J.; Bhaumik, A.; Gupta, S.; Haque, A.; Sachan, R. Progress in Q-carbon and related materials with extraordinary properties. Mater. Res. Lett. 2018, 6, 353–364. [Google Scholar] [CrossRef]
- Kumar, A.; Nagar, S.; Anand, S. Climate change and existential threats. In Global Climate Change; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–31. [Google Scholar]
- Rugolo, J.; Aziz, M.J. Electricity storage for intermittent renewable sources. Energy Environ. Sci. 2012, 5, 7151–7160. [Google Scholar] [CrossRef]
- Lutsey, N. Global climate change mitigation potential from a transition to electric vehicles. Int. Counc. Clean Transp. 2015, 2015, 5. [Google Scholar]
- What Are Critical Materials and Critical Minerals? 2020. Available online: https://www.energy.gov/cmm/what-are-critical-materials-and-critical-minerals (accessed on 10 November 2024).
- Li, F.; Wei, Z.; Manthiram, A.; Feng, Y.; Ma, J.; Mai, L. Sodium-based batteries: From critical materials to battery systems. J. Mater. Chem. A 2019, 7, 9406–9431. [Google Scholar] [CrossRef]
- Rudola, A.; Wright, C.J.; Barker, J. Reviewing the safe shipping of lithium-ion and sodium-ion cells: A materials chemistry perspective. Energy Mater. Adv. 2021, 2021, 9798460. [Google Scholar] [CrossRef]
- Hanley, S. The Sodium-Ion Battery Is Coming to Production Cars This Year. Available online: https://cleantechnica.com/2023/04/22/the-sodium-ion-battery-is-coming-to-production-cars-this-year/ (accessed on 22 April 2023).
- Lilley, S. Sodium-ion Batteries: Inexpensive and Sustainable Energy Storage. Available online: https://www.faraday.ac.uk/wp-content/uploads/2021/06/Faraday_Insights_11_FINAL.pdf (accessed on 10 June 2021).
- Lu, Z.; Chung, C.Y. Electrochemical characterization of diamond like carbon thin films. Diam. Relat. Mater. 2008, 17, 1871–1876. [Google Scholar] [CrossRef]
- Nam, S.C.; Lee, J.M.; Pukha, V.E.; Seo, H.O.; Kim, Y.D.; Lee, H.J. Carbon anode thin films for lithium batteries. Curr. Appl. Phys. 2014, 14, 1010–1015. [Google Scholar] [CrossRef]
- Sarkar, S.; Roy, S.; Hou, Y.; Sun, S.; Zhang, J.; Zhao, Y. Recent Progress in Amorphous Carbon-Based Materials for Anodes of Sodium-Ion Batteries: Synthesis Strategies, Mechanisms, and Performance. ChemSusChem 2021, 14, 3693–3723. [Google Scholar] [CrossRef]
- Shao, W.; Shi, H.; Jian, X.; Wu, Z.-S.; Hu, F. Hard-carbon anodes for sodium-ion batteries: Recent status and challenging perspectives. Adv. Energy Sustain. Res. 2022, 3, 2200009. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, S.; Wu, P.; Wang, H.; Huang, Y.; Zhang, Y.; Sun, D.; Tang, Y.; Wang, H. Engineering surface oxygenated functionalities on commercial hard carbon toward superior sodium storage. Chem. Eng. J. 2022, 441, 135899. [Google Scholar] [CrossRef]
- Panda, M.R.; Dutta, D.P.; Mitra, S. Bio-derived mesoporous disordered carbon: An excellent anode in sodium-ion battery and full-cell lab prototype. Carbon 2019, 143, 402–412. [Google Scholar]
- Wang, Y.; Xiao, N.; Wang, Z.; Li, H.; Yu, M.; Tang, Y.; Hao, M.; Liu, C.; Zhou, Y.; Qiu, J. Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch. Chem. Eng. J. 2018, 342, 52–60. [Google Scholar] [CrossRef]
- Lv, W.; Wen, F.; Xiang, J.; Zhao, J.; Li, L.; Wang, L.; Liu, Z.; Tian, Y. Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim. Acta 2015, 176, 533–541. [Google Scholar] [CrossRef]
- Xie, F.; Xu, Z.; Jensen, A.C.; Au, H.; Lu, Y.; Araullo-Peters, V.; Drew, A.J.; Hu, Y.S.; Titirici, M.M. Hard–soft carbon composite anodes with synergistic sodium storage performance. Adv. Funct. Mater. 2019, 29, 1901072. [Google Scholar] [CrossRef]
- Agrawal, A.; Janakiraman, S.; Biswas, K.; Venimadhav, A.; Srivastava, S.; Ghosh, S. Understanding the improved electrochemical performance of nitrogen-doped hard carbons as an anode for sodium ion battery. Electrochim. Acta 2019, 317, 164–172. [Google Scholar] [CrossRef]
- Gaddam, R.R.; Yang, D.; Narayan, R.; Raju, K.; Kumar, N.A.; Zhao, X. Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 2016, 26, 346–352. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, X.; Liu, Y.; Fang, Y.; Zhou, X.; Bao, J. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon 2018, 127, 658–666. [Google Scholar] [CrossRef]
- Fan, C.; Zhang, R.; Luo, X.; Hu, Z.; Zhou, W.; Zhang, W.; Liu, J.; Liu, J. Epoxy phenol novolac resin: A novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries. Carbon 2023, 205, 353–364. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.S.; Titirici, M.M.; Chen, L.; Huang, X. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600659. [Google Scholar] [CrossRef]
- Qin, G.; Hao, K.-R.; Yan, Q.-B.; Hu, M.; Su, G. Exploring T-carbon for energy applications. Nanoscale 2019, 11, 5798–5806. [Google Scholar] [CrossRef] [PubMed]
- Rajkamal, A.; Thapa, R. Carbon allotropes as anode material for lithium-ion batteries. Adv. Mater. Technol. 2019, 4, 1900307. [Google Scholar] [CrossRef]
- Yadav, N.; Kumar, T.D. Ab initio characterization of N doped T-graphene and its application as an anode material for Na ion rechargeable batteries. Sustain. Energy Fuels 2021, 5, 4060–4068. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, Z.; Zhang, Y.; Zhang, Y.; Li, J.; Wang, H.; Jiang, Y.; Xing, G.; Liu, H.; Tang, Y. Revitalizing sodium-ion batteries via controllable microstructures and advanced electrolytes for hard carbon. eScience 2023, 4, 100181. [Google Scholar] [CrossRef]
- Alvin, S.; Yoon, D.; Chandra, C.; Susanti, R.F.; Chang, W.; Ryu, C.; Kim, J. Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries. J. Power Sources 2019, 430, 157–168. [Google Scholar] [CrossRef]
- Ding, J.; Ji, D.; Yue, Y.; Smedskjaer, M.M. Amorphous Materials for Lithium-Ion and Post-Lithium-Ion Batteries. Small 2024, 20, 2304270. [Google Scholar] [CrossRef]
- Suryawanshi, A.; Mhamane, D.; Nagane, S.; Patil, S.; Aravindan, V.; Ogale, S.; Srinivasan, M. Indanthrone derived disordered graphitic carbon as promising insertion anode for sodium ion battery with long cycle life. Electrochim. Acta 2014, 146, 218–223. [Google Scholar] [CrossRef]
- Fondard, J.; Irisarri, E.; Courreges, C.; Palacín, M.R.; Ponrouch, A.; Dedryvère, R. SEI composition on hard carbon in Na-ion batteries after long cycling: Influence of salts (NaPF6, NaTFSI) and additives (FEC, DMCF). J. Electrochem. Soc. 2020, 167, 070526. [Google Scholar] [CrossRef]
- Estrade-Szwarckopf, H. XPS photoemission in carbonaceous materials: A “defect” peak beside the graphitic asymmetric peak. Carbon 2004, 42, 1713–1721. [Google Scholar] [CrossRef]
- Li, W.; Guo, X.; Song, K.; Chen, J.; Zhang, J.; Tang, G.; Liu, C.; Chen, W.; Shen, C. Binder-Induced Ultrathin SEI for Defect-Passivated Hard Carbon Enables Highly Reversible Sodium-Ion Storage. Adv. Energy Mater. 2023, 13, 2300648. [Google Scholar] [CrossRef]
Carbon Type | Discharge Capacity [mAh·g−1] | Current Density [mA·g−1] | Ref. |
---|---|---|---|
Commercial hard carbon | 270 | 20 | [16] |
Cellulose | 300 | 37.2 | [17] |
Coal tar | 270 | 100 | [18] |
Peanut shells | 193 | 250 | [19] |
Hard–soft composite derived from biomass and oil waste | 282 | 30 | [20] |
Sucrose | 286 | 30 | [21] |
Coconut oil | 277 | 100 | [22] |
Rice husk | 372 | 25 | [23] |
Epoxy phenol novolac resin | 480.3 | 50 | [24] |
Cotton | 315 | 30 | [25] |
Sample | d002 (Å) | Lc002 (nm) | Id/Ig | Micropore Volume (cm3·g−1) | Mesopore Volume (cm3·g−1) | BET Surface Area (m2·g−1) | d (nm) | |
---|---|---|---|---|---|---|---|---|
Q1 | 3.629 | 6.81 | 4.37 | 0.002 | 0.005 | 8.7 | 74.3 | |
Q2 | 3.801 | 6.51 | 2.067 | 0.0228 | 0.0225 | 82.24 | 146.1 | 488.7 |
C Rate | Current Density (mA·g−1) | Q1: Average Capacity (mAh·g−1) | Q2: Average Capacity (mAh·g−1) |
---|---|---|---|
C/10 | 37.2 | 293.25 | 215.72 |
C/5 | 74.4 | 277.93 | 201.15 |
C/3 | 124 | 247.84 | 171.85 |
1C | 372 | 198.46 | 120.08 |
2C | 744 | 137.66 | 60.54 |
5C | 1860 | 55.18 | 20.46 |
10C | 3720 | 5.21 | 4.38 |
C/10 | 37.2 | 282.59 | 216.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pethe, S.P.; Sahoo, S.S.; Ganesan, A.; Meyer, H.M., III; Sun, X.-G.; Narayan, J.; Paranthaman, M.P. Novel Q-Carbon Anodes for Sodium-Ion Batteries. Appl. Sci. 2024, 14, 10679. https://doi.org/10.3390/app142210679
Pethe SP, Sahoo SS, Ganesan A, Meyer HM III, Sun X-G, Narayan J, Paranthaman MP. Novel Q-Carbon Anodes for Sodium-Ion Batteries. Applied Sciences. 2024; 14(22):10679. https://doi.org/10.3390/app142210679
Chicago/Turabian StylePethe, Saurabh Prakash, Siba Sundar Sahoo, Arvind Ganesan, Harry M. Meyer, III, Xiao-Guang Sun, Jagdish Narayan, and Mariappan Parans Paranthaman. 2024. "Novel Q-Carbon Anodes for Sodium-Ion Batteries" Applied Sciences 14, no. 22: 10679. https://doi.org/10.3390/app142210679
APA StylePethe, S. P., Sahoo, S. S., Ganesan, A., Meyer, H. M., III, Sun, X. -G., Narayan, J., & Paranthaman, M. P. (2024). Novel Q-Carbon Anodes for Sodium-Ion Batteries. Applied Sciences, 14(22), 10679. https://doi.org/10.3390/app142210679