Atom Exchange Radical Cyclization: A Sustainable Synthetic Approach towards New Functionalized Targets
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. ARGET-ATRC towards 2
2.3. SARA-AERC towards 3 or 6
- EA found: C 47.7 H 4.2 N 4.8; calcd for (C12H13NOClBr): C 47.63 H 4.33 N 4.63
- MS molecular peak [3]+ isotopic pattern: calcd m/z = 300.9 (76.8%); 301.9 (10.4%); 302.9 (100.0%); 303.9 (13.5%); 304.9 (24.9%); 305.9 (3.3%); 306.9 (0.3%). Found m/z = 300.9 (76.2%); 301.9 (10.6%); 302.9 (100.0%); 303.9 (13.9%); 304.9 (25.2%); 305.9 (3.0%).
- EA found: C 42.9 H 3.7 N 4.2; calcd for (C12H12NOCl2Br): C 42.76 H 3.59 N 4.16
- MS molecular peak [6]+ isotopic pattern: calcd m/z = 334.9 (61.6%); 335.9 (8.4%); 336.9 (100.0%); 337.9 (13.5%); 338.9 (45.7%); 339.9 (6.1%); 340.9 (6.6%); 341.9 (0.9%); 342.9 (0.1%). Found m/z = 334.9 (60.9%); 335.9 (8.7%); 336.9 (100.0%); 337.9 (13.8%); 338.9 (45.2%); 339.9 (6.3%); 340.9 (6.9%).
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101, 2921–2990. [Google Scholar] [CrossRef] [PubMed]
- Pintauer, T. Catalyst Regeneration in Transition-Metal-Mediated Atom-Transfer Radical Addition (ATRA) and Cyclization (ATRC) Reactions. Eur. J. Inorg. Chem. 2010, 2010, 2449–2460. [Google Scholar] [CrossRef]
- Clark, A.J. Copper Catalyzed Atom Transfer Radical Cyclization Reactions. Eur. J. Org. Chem. 2016, 2016, 2231–2243. [Google Scholar] [CrossRef]
- Clark, A.J.; Cornia, A.; Felluga, F.; Gennaro, A.; Ghelfi, F.; Isse, A.A.; Menziani, M.C.; Muniz-Miranda, F.; Roncaglia, F.; Spinelli, D. Arylsulfonyl Groups: The Best Cyclization Auxiliaries for the Preparation of ATRC γ-Lactams Can Be Acidolytically Removed. Eur. J. Org. Chem. 2014, 2014, 6734–6745. [Google Scholar] [CrossRef]
- Fischer, H. The Persistent Radical Effect: A Principle for Selective Radical Reactions and Living Radical Polymerizations. Chem. Rev. 2001, 101, 3581–3610. [Google Scholar] [CrossRef] [PubMed]
- Casolari, R.; Felluga, F.; Frenna, V.; Ghelfi, F.; Pagnoni, U.M.; Parsons, A.F.; Spinelli, D. A Green Way to γ-Lactams through a Copper Catalyzed ARGET-ATRC in Ethanol and in the Presence of Ascorbic Acid. Tetrahedron 2011, 67, 408–416. [Google Scholar] [CrossRef]
- Bergmann, R.; Gericke, R. Synthesis and Antihypertensive Activity of 4-(1,2-Dihydro-2-Oxo-1-Pyridyl)-2H-1-Benzopyrans and Related Compounds, New Potassium Channel Activators. J. Med. Chem. 1990, 33, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Moody, C.M.; Young, D.W. Stereospecific Synthesis of 4-Alkylglutamates and 4-Alkylprolines. Tetrahedron Lett. 1994, 35, 7277–7280. [Google Scholar] [CrossRef]
- Corey, E.J.; Li, W.-D.Z. Total Synthesis and Biological Activity of Lactacystin, Omuralide and Analogs. Chem. Pharm. Bull. 1999, 47, 1–10. [Google Scholar] [CrossRef]
- Nilsson, B.M.; Hacksell, U. Base-Catalyzed Cyclization of N-propargylamides to Oxazoles. J. Heterocycl. Chem. 1989, 26, 269–275. [Google Scholar] [CrossRef]
- Oda, K.; Moriyasu, K.; Hayashi, M.; Nishida, M.; Oyamada, M.; Fujiwara, A.; Watanabe, J. 1-(3-Substituted Benzyl)-3-Halogenoalkyl)-2-Pyrrolidinone Derivatives and Herbicides Containing Them. EP0402893 A1, 13 June 1990. pp. 1–34.. [Google Scholar]
- Woolard, F.X. N-Benzyl-4-Alkyl-Pyrrolidinone Herbicides. US5302726, 12 April 1994. pp. 1–5.. [Google Scholar]
- Ghelfi, F.; Pattarozzi, M.; Roncaglia, F.; Parsons, A.; Felluga, F.; Pagnoni, U.; Valentin, E.; Mucci, A.; Bellesia, F. Preparation of the Maleic Anhydride Nucleus from Dichloro γ-Lactams: Focus on the Role of the N-Substituent in the Functional Rearrangement and in the Hydrolytic Steps. Synthesis 2008, 2008, 3131–3141. [Google Scholar] [CrossRef]
- Slough, G.A. (Ph3P)3RuCl2 Catalyzed Equilibration and Elimination of α-Chloro-N-Tosyl-2-Pyrrolidinones: A Unique Route to Unsaturated 2-Pyrrolidinones. Tetrahedron Lett. 1993, 34, 6825–6828. [Google Scholar] [CrossRef]
- Kornblum, N.; Jones, W.J.; Anderson, G.J. A New and Selective Method of Oxidation. The Conversion of Alkyl Halides and Alkyl Tosylates to Aldehydes. J. Am. Chem. Soc. 1959, 81, 4113–4114. [Google Scholar] [CrossRef]
- Tang, J.; Zhu, J.; Shen, Z.; Zhang, Y. Efficient and Convenient Oxidation of Organic Halides to Carbonyl Compounds by H2O2 in Ethanol. Tetrahedron Lett. 2007, 48, 1919–1921. [Google Scholar] [CrossRef]
- Patil, R.D.; Adimurthy, S. Direct and Selective Conversion of Benzyl Bromides to Benzaldehydes with Aqueous H2O2 Without Catalyst. Synth. Commun. 2011, 41, 2712–2718. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, R. Oxidation of Alcohols Using H2O2 as Oxidant Catalyzed by AlCl3. Catal. Commun. 2008, 9, 740–742. [Google Scholar] [CrossRef]
- Zheng, P.; Yan, L.; Ji, X.; Duan, X. A Green Procedure for the Oxidation of Benzyl Halides to Aromatic Aldehydes or Ketones in Aqueous Media. Synth. Commun. 2010, 41, 16–19. [Google Scholar] [CrossRef]
- Smith, M.B. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020; Section 10.45; p. 534. [Google Scholar]
- Boivin, J.; Yousfi, M.; Zard, S.Z. A Versatile Radical Based Synthesis of γ-Lactams Using Nickel Powder/Acetic Acid. Tetrahedron Lett. 1994, 35, 5629–5632. [Google Scholar] [CrossRef]
- Peng, C.-H.; Kong, J.; Seeliger, F.; Matyjaszewski, K. Mechanism of Halogen Exchange in ATRP. Macromolecules 2011, 44, 7546–7557. [Google Scholar] [CrossRef]
- Ince, J.; Ross, T.M.; Shipman, M.; Slawin, A.M.Z.; Ennis, D.S. Observations on the Synthesis of Functionalised Methyleneaziridines. Tetrahedron 1996, 52, 7037–7044. [Google Scholar] [CrossRef]
- Bellesia, F.; D’Anna, F.; Felluga, F.; Frenna, V.; Ghelfi, F.; Parsons, A.; Reverberi, F.; Spinelli, D. Breakthrough in the α-Perchlorination of Acyl Chlorides. Synthesis 2012, 2012, 605–609. [Google Scholar] [CrossRef]
- Bellesia, F.; Clark, A.J.; Felluga, F.; Gennaro, A.; Isse, A.A.; Roncaglia, F.; Ghelfi, F. Efficient and Green Route to γ-Lactams by Copper-Catalysed Reversed Atom Transfer Radical Cyclisation of α-Polychloro-N-allylamides, Using a Low Load of Metal (0.5 mol%). Adv. Synth. Catal. 2013, 355, 1649–1660. [Google Scholar] [CrossRef]
- Benedetti, M.; Forti, L.; Ghelfi, F.; Pagnoni, U.M.; Ronzoni, R. Halogen Atom Transfer Radical Cyclization of N-Allyl-N-Benzyl-2,2-Dihaloamides to 2-Pyrrolidinones, Promoted by Fe0-FeCl3 or CuCl-TMEDA. Tetrahedron 1997, 53, 14031–14042. [Google Scholar] [CrossRef]
- McGivern, W.S.; Derecskei-Kovacs, A.; North, S.W.; Francisco, J.S. Computationally Efficient Methodology to Calculate C−H and C−X (X = F, Cl, and Br) Bond Dissociation Energies in Haloalkanes. J. Phys. Chem. A 2000, 104, 436–442. [Google Scholar] [CrossRef]
- Peng, C.-H.; Zhong, M.; Wang, Y.; Kwak, Y.; Zhang, Y.; Zhu, W.; Tonge, M.; Buback, J.; Park, S.; Krys, P.; et al. Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Activation of Alkyl Halides by Cu0. Macromolecules 2013, 46, 3803–3815. [Google Scholar] [CrossRef]
- Clark, A.J.; Duckmanton, J.N.; Felluga, F.; Gennaro, A.; Ghelfi, F.; Hardiman, J.R.D.; Isse, A.A.; Manferdini, C.; Spinelli, D. Cu0-Promoted Cyclisation of Unsaturated α-Halogeno Amides to Give β-and γ-Lactams. Eur. J. Org. Chem. 2016, 2016, 2479–2491. [Google Scholar] [CrossRef]
- Braidi, N.; Buffagni, M.; Ghelfi, F.; Parenti, F.; Gennaro, A.; Isse, A.A.; Bedogni, E.; Bonifaci, L.; Cavalca, G.; Ferrando, A.; et al. ARGET ATRP of Styrene in EtOAc/EtOH Using Only Na2CO3 to Promote the Copper Catalyst Regeneration. J. Macromol. Sci. A 2021, 58, 376–386. [Google Scholar] [CrossRef]
- Pattarozzi, M.; Roncaglia, F.; Giangiordano, V.; Davoli, P.; Prati, F.; Ghelfi, F. ‘Ligand-Free-Like’ CuCl-Catalyzed Atom Transfer Radical Cyclization of N-Substituted N-Allyl Polychloroamides to γ-Lactams. Synthesis 2010, 2010, 694–700. [Google Scholar] [CrossRef]
Entry | EtOAc (mL) | EtOH (mL) | Bromide | Carbonate | Yield of 2 (%) | Yield of 3 (%) |
---|---|---|---|---|---|---|
1 | 1.5 | 0.5 | - | Na2CO3 | 100 | - |
2 | 1.5 | 0.5 | LiBr | Li2CO3 | 30 | 57 |
3 | 1.5 | 0.5 | NaBr | Na2CO3 | 13 | 71 |
4 | 1.5 | 0.5 | KBr | K2CO3 | 54 | 30 |
5 | 1.7 | 0.3 | NaBr | Na2CO3 | 35 | 32 |
6 | 1.0 | 1.0 | NaBr | Na2CO3 | 15 | 75 |
7 | 0.5 | 1.0 | NaBr | Na2CO3 | 15 | 75 |
Entry | Cosolvent (mL) | Conversion of 1 (%) | Yield of 2 (%) | Yield of 3 (%) |
---|---|---|---|---|
1 | MeCN (0.20) | 98 | 7 | 76 |
2 | DMSO (0.10) | 100 | 3 | 87 |
3 | DMSO (0.20) | 100 | 2 | 83 |
4 | DMSO (0.40) | 100 | 1 | 82 |
5 | H2O (0.02) | 100 | 2 | 97 |
6 | H2O (0.05) | 100 | 3 | 95 |
Entry | EtOAc (mL) | EtOH (mL) | Yield of 5 (%) | Yield of 6 (%) |
---|---|---|---|---|
1 | 1.75 | 0.25 | 76 | 20 |
2 | 1.50 | 0.50 | 13 | 81 |
3 | 1.00 | 1.00 | 12 | 82 |
4 | 0.50 | 1.50 | 22 | 73 |
5 | 0.75 | 0.752 | 5 | 96 |
6 | 0.50 | 0.502 | 13 | 86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderlini, B.; Severini, A.; Ferrari, C.; Fontanesi, C.; Ascari, V.; Braidi, N.; Roncaglia, F. Atom Exchange Radical Cyclization: A Sustainable Synthetic Approach towards New Functionalized Targets. Appl. Sci. 2024, 14, 4357. https://doi.org/10.3390/app14114357
Anderlini B, Severini A, Ferrari C, Fontanesi C, Ascari V, Braidi N, Roncaglia F. Atom Exchange Radical Cyclization: A Sustainable Synthetic Approach towards New Functionalized Targets. Applied Sciences. 2024; 14(11):4357. https://doi.org/10.3390/app14114357
Chicago/Turabian StyleAnderlini, Biagio, Andrea Severini, Camilla Ferrari, Claudio Fontanesi, Vittorio Ascari, Niccolò Braidi, and Fabrizio Roncaglia. 2024. "Atom Exchange Radical Cyclization: A Sustainable Synthetic Approach towards New Functionalized Targets" Applied Sciences 14, no. 11: 4357. https://doi.org/10.3390/app14114357
APA StyleAnderlini, B., Severini, A., Ferrari, C., Fontanesi, C., Ascari, V., Braidi, N., & Roncaglia, F. (2024). Atom Exchange Radical Cyclization: A Sustainable Synthetic Approach towards New Functionalized Targets. Applied Sciences, 14(11), 4357. https://doi.org/10.3390/app14114357