Hermetia illucens Frass Fertilization: A Novel Approach for Enhancing Lettuce Resilience and Photosynthetic Efficiency under Drought Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design, Plant Material and Growing Conditions
2.2. Drought Implication
2.3. Photosynthesis and Chlorophyll Fluorescence
2.4. Plant Harvesting and Yield
2.5. Mineral Profile of Lettuce Leaves
2.6. Antioxidant Activity and Polyphenolic Compounds in Lettuce Leaves
2.7. Soil Respiration
2.8. Statistical Analysis
3. Results
3.1. Plant Yield
3.2. Photosynthetic Activity
3.3. Chlorophyll Fluorescence
3.4. Mineral Profile
3.5. Antioxidant Activity and Polyphenolic Compounds
3.6. Soil Respiration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghosh, D.; Chethan, C.R.; Chander, S.; Kumar, B.; Dubey, R.P.; Bisen, H.S.; Parey, S.K.; Singh, P.K. Conservational tillage and weed management practices enhance farmers income and system productivity of rice–wheat cropping system in Central India. Agric. Res. 2021, 10, 398–406. [Google Scholar] [CrossRef]
- Boysen, O.; Boysen-Urban, K.; Matthews, A. Stabilizing European Union farm incomes in the era of climate change. Appl. Econ. Perspect. Policy 2023, 45, 1634–1658. [Google Scholar] [CrossRef]
- García Azcárate, T.; Sumpsi, J.M.; Capitanio, F.; Garrido, A.; Felis, A.; Blanco, I.; Enjolras, G.; Bardají, I. State of Play of Risk Management Tools Implemented by Member States during the Period 2014–2020: National and European Frameworks; Committee on Agriculture and Rural Development: Brussels, Belgium, 2016. [Google Scholar]
- Naumann, G.; Cammalleri, C.; Mentaschi, L.; Feyen, L. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Change 2021, 11, 485–491. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Selinske, M.J.; Garrard, G.E.; Gregg, E.A.; Kusmanoff, A.M.; Kidd, L.R.; Cullen, M.T.; Cooper, M.; Geary, W.L.; Hatty, M.A.; Hames, F.; et al. Identifying and prioritizing human behaviors that benefit biodiversity. Conserv. Sci. Pract. 2020, 2, e249. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; De Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Riches, N. The Agricultural Revolution in Norfolk; Psychology Press: London, UK, 1967. [Google Scholar]
- Glendining, M.J.; Poulton, P.R.; Macdonald, A.J. Broadbalk Wheat Experiment cropping 1843–2021. Electron. Rothamsted Arch. Rothamsted Res. 2021, 10, 1–8. [Google Scholar]
- Stine, A.R. Global demonstration of local Liebig’s law behavior for tree-ring reconstructions of climate. Paleoceanogr. Paleoclimatology 2019, 34, 203–216. [Google Scholar] [CrossRef]
- Evans, J.R.; Lawson, T. From green to gold: Agricultural revolution for food security. J. Exp. Bot. 2020, 71, 2211–2215. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, X.; Li, J. A 1961–2010 record of fertilizer use, pesticide application and cereal yields: A review. Agron. Sustain. Dev. 2015, 35, 83–93. [Google Scholar] [CrossRef]
- Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; De Ruiter, P.C.; Van Der Putten, W.H.; Birkhofer, K.; Hemerik, L.; De Vries, F.T.; Bardgett, R.D.; Brady, M.V.; et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 2015, 21, 973–985. [Google Scholar] [CrossRef]
- Ilampooranan, I.; Van Meter, K.J.; Basu, N.B. Intensive agriculture, nitrogen legacies, and water quality: Intersections and implications. Environ. Res. Lett. 2022, 17, 035006. [Google Scholar] [CrossRef]
- Dudley, N.; Alexander, S. Agriculture and biodiversity: A review. Biodiversity 2017, 18, 45–49. [Google Scholar] [CrossRef]
- Dodds, W.K.; Smith, V.H. Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 2016, 6, 155–164. [Google Scholar] [CrossRef]
- Withers, P.J.; Neal, C.; Jarvie, H.P.; Doody, D.G. Agriculture and eutrophication: Where do we go from here? Sustainability 2014, 6, 5853–5875. [Google Scholar] [CrossRef]
- Insausti, M.; Timmis, R.; Kinnersley, R.; Rufino, M.C. Advances in sensing ammonia from agricultural sources. Sci. Total Environ. 2020, 706, 135124. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, D.; Bai, E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 2018, 120, 126–133. [Google Scholar] [CrossRef]
- Guo, J.; Ling, N.; Chen, Z.; Xue, C.; Li, L.; Liu, L.; Gao, L.; Wang, M.; Ruan, J.; Guo, S.; et al. Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. New Phytol. 2020, 226, 232–243. [Google Scholar] [CrossRef]
- Lu, C.; Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 2017, 9, 181–192. [Google Scholar] [CrossRef]
- Randive, K.; Raut, T.; Jawadand, S. An overview of the global fertilizer trends and India’s position in 2020. Miner. Econ. 2021, 34, 371–384. [Google Scholar] [CrossRef]
- Brunelle, T.; Dumas, P.; Souty, F.; Dorin, B.; Nadaud, F. Evaluating the impact of rising fertilizer prices on crop yields. Agric. Econ. 2015, 46, 653–666. [Google Scholar] [CrossRef]
- Britt, J.H.; Cushman, R.A.; Dechow, C.D.; Dobson, H.; Humblot, P.; Hutjens, M.F. Review: Perspective on high-performing dairy cows and herds. Animal 2021, 15, 100298. [Google Scholar] [CrossRef]
- Thornton, P.K.; Herrero, M. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nat. Clim. Chang. 2015, 5, 830–836. [Google Scholar] [CrossRef]
- Kanter, D.R.; Chodos, O.; Nordland, O.; Rutigliano, M.; Winiwarter, W. Gaps and opportunities in nitrogen pollution policies around the world. Nat. Sustain. 2020, 3, 956–963. [Google Scholar] [CrossRef]
- Chen, Y.H.; Wen, X.W.; Wang, B.; Nie, P.Y. Agricultural pollution and regulation: How to subsidize agriculture? J. Clean. Prod. 2017, 164, 258–264. [Google Scholar] [CrossRef]
- Xu, L.Y.; Jiang, J.; Du, J.G. How do environmental regulations and financial support for agriculture affect agricultural green development? The mediating role of agricultural infrastructure. J. Environ. Plan. Manag. 2023, 1–28. [Google Scholar] [CrossRef]
- Garske, B.; Stubenrauch, J.; Ekardt, F. Sustainable phosphorus management in European agricultural and environmental law. Rev. Eur. Comp. Int. Environ. Law 2020, 29, 107–117. [Google Scholar] [CrossRef]
- Heyl, K.; Döring, T.; Garske, B.; Stubenrauch, J.; Ekardt, F. The Common Agricultural Policy beyond 2020: A critical review in light of global environmental goals. Rev. Eur. Comp. Int. Environ. Law 2021, 30, 95–106. [Google Scholar] [CrossRef]
- Gravel, A.; Doyen, A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov. Food Sci. Emerg. Technol. 2020, 59, 102272. [Google Scholar] [CrossRef]
- Hawkey, K.J.; Lopez-Viso, C.; Brameld, J.M.; Parr, T.; Salter, A.M. Insects: A potential source of protein and other nutrients for feed and food. Annu. Rev. Anim. Biosci. 2021, 9, 333–354. [Google Scholar] [CrossRef]
- Gasco, L.; Acuti, G.; Bani, P.; Dalle Zotte, A.; Danieli, P.P.; De Angelis, A.; Fortina, R.; Marino, R.; Parisi, G.; Piccolo, G.; et al. Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. Ital. J. Anim. Sci. 2020, 19, 360–372. [Google Scholar] [CrossRef]
- Vauterin, A.; Steiner, B.; Sillman, J.; Kahiluoto, H. The potential of insect protein to reduce food-based carbon footprints in Europe: The case of broiler meat production. J. Clean. Prod. 2021, 320, 128799. [Google Scholar] [CrossRef]
- Hopkins, I.; Newman, L.P.; Gill, H.; Danaher, J. The influence of food waste rearing substrates on black soldier fly larvae protein composition: A systematic review. Insects 2021, 12, 608. [Google Scholar] [CrossRef]
- Lange, K.W.; Nakamura, Y. Edible insects as future food: Chances and challenges. J. Future Foods 2021, 1, 38–46. [Google Scholar] [CrossRef]
- Pippinato, L.; Gasco, L.; Di Vita, G.; Mancuso, T. Current scenario in the European edible-insect industry: A preliminary study. J. Insects Food Feed 2020, 6, 371–381. [Google Scholar] [CrossRef]
- Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/HTML/?uri=CELEX:02015R2283-20210327 (accessed on 15 January 2024).
- van Huis, A. Prospects of insects as food and feed. Org. Agric. 2021, 11, 301–308. [Google Scholar] [CrossRef]
- Ståhls, G.; Meier, R.; Sandrock, C.; Hauser, M.; Šašić Zorić, L.; Laiho, E.; Aracil, A.; Doderović, J.; Badenhorst, R.; Unadirekkul, P.; et al. The puzzling mitochondrial phylogeography of the black soldier fly (Hermetia illucens), the commercially most important insect protein species. BMC Evol. Biol. 2020, 20, 60. [Google Scholar] [CrossRef]
- Dicke, M. Insects as feed and the Sustainable Development Goals. J. Insects Food Feed 2018, 4, 147–156. [Google Scholar] [CrossRef]
- Gligorescu, A.; Macavei, L.I.; Larsen, B.F.; Markfoged, R.; Fischer, C.H.; Koch, J.D.; Jensen, K.; Heckmann, L.-H.L.; Nørgaard, J.V.; Maistrello, L. Pilot scale production of Hermetia illucens (L.) larvae and frass using former foodstuffs. Clean. Eng. Technol. 2022, 10, 100546. [Google Scholar] [CrossRef]
- Beesigamukama, D.; Mochoge, B.; Korir, N.K.; Fiaboe, K.K.; Nakimbugwe, D.; Khamis, F.M.; Subramanian, S.; Dubois, T.; Musyoka, M.W.; Ekesi, S.; et al. Exploring black soldier fly frass as novel fertilizer for improved growth, yield, and nitrogen use efficiency of maize under field conditions. Front. Plant Sci. 2020, 11, 574592. [Google Scholar] [CrossRef] [PubMed]
- Tanga, C.M.; Beesigamukama, D.; Kassie, M.; Egonyu, P.J.; Ghemoh, C.J.; Nkoba, K.; Subramanian, S.; Anyega, A.; Ekesi, S. Performance of black soldier fly frass fertiliser on maize (Zea mays L.) growth, yield, nutritional quality, and economic returns. J. Insects Food Feed 2022, 8, 185–196. [Google Scholar] [CrossRef]
- Beesigamukama, D.; Subramanian, S.; Tanga, C.M. Nutrient quality and maturity status of frass fertilizer from nine edible insects. Sci. Rep. 2022, 12, 7182. [Google Scholar] [CrossRef] [PubMed]
- Berggren, Å.; Jansson, A.; Low, M. Approaching ecological sustainability in the emerging insects-as-food industry. Trends Ecol. Evol. 2019, 34, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Radzikowska, D.; Kowalczewski, P.Ł.; Grzanka, M.; Głowicka-Wołoszyn, R.; Nowicki, M.; Sawinska, Z. Succinate dehydrogenase inhibitor seed treatments positively affect the physiological condition of maize under drought stress. Front. Plant Sci. 2022, 13, 984248. [Google Scholar] [CrossRef] [PubMed]
- Morales, F.; Pavlovič, A.; Abadía, A.; Abadía, J. Photosynthesis in poor nutrient soils, in compacted soils, and under drought. Leaf A Platf. Perform. Photosynth. 2018, 44, 371–399. [Google Scholar]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Bhatta, S. Influence of organic fertilizer on growth yield and quality of lettuce (Lactuca sativa L.): A review. Pharma Innov. J. 2022, 11, 1073–1077. [Google Scholar]
- Ouyang, Z.; Tian, J.; Yan, X.; Shen, H. Effects of different concentrations of dissolved oxygen or temperatures on the growth, photosynthesis, yield and quality of lettuce. Agric. Water Manag. 2020, 228, 105896. [Google Scholar] [CrossRef]
- Peiris, P.U.S.; Weerakkody, W.A.P. Effect of organic based liquid fertilizers on growth performance of leaf lettuce (Lactuca sativa L.). In Proceedings of the International Conference on Agricultural, Ecological and Medical Sciences, Phuket, Thailand, 7–8 April 2015; pp. 7–8. [Google Scholar]
- Shatilov, M.V.; Razin, A.F.; Ivanova, M.I. Analysis of the world lettuce market. IOP Conf. Ser. Earth Environ. Sci. 2019, 395, 012053. [Google Scholar] [CrossRef]
- Radzikowska-Kujawska, D.; Sawinska, Z.; Grzanka, M.; Kowalczewski, P.Ł.; Sobiech, Ł.; Świtek, S.; Skrzypczak, G.; Drożdżyńska, A.; Ślachciński, M.; Nowicki, M. Hermetia illucens frass improves the physiological state of basil (Ocimum basilicum L.) and its nutritional value under drought. PLoS ONE 2023, 18, e0280037. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Sublett, W.L.; Barickman, T.C.; Sams, C.E. The effect of environment and nutrients on hydroponic lettuce yield, quality, and phytonutrients. Horticulturae 2018, 4, 48. [Google Scholar] [CrossRef]
- Houben, D.; Daoulas, G.; Faucon, M.P.; Dulaurent, A.M. Potential use of mealworm frass as a fertilizer: Impact on crop growth and soil properties. Sci. Rep. 2020, 10, 4659. [Google Scholar] [CrossRef]
- Setti, L.; Francia, E.; Pulvirenti, A.; Gigliano, S.; Zaccardelli, M.; Pane, C.; Caradonia, F.; Bortolini, S.; Maistrello, L.; Ronga, D. Use of black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae processing residue in peat-based growing media. Waste Manag. 2019, 95, 278–288. [Google Scholar] [CrossRef]
- Gärttling, D.; Kirchner, S.M.; Schulz, H. Assessment of the N-and P-fertilization effect of black soldier fly (Diptera: Stratiomyidae) by-products on maize. J. Insect Sci. 2020, 20, 8. [Google Scholar] [CrossRef]
- Alromian, F.M. Effect of type of compost and application rate on growth and quality of lettuce plant. J. Plant Nutr. 2020, 43, 2797–2809. [Google Scholar] [CrossRef]
- Kagata, H.; Ohgushi, T. Positive and negative impacts of insect frass quality on soil nitrogen availability and plant growth. Popul. Ecol. 2012, 54, 75–82. [Google Scholar] [CrossRef]
- Klammsteiner, T.; Turan, V.; Fernandez-Delgado Juarez, M.; Oberegger, S.; Insam, H. Suitability of black soldier fly frass as soil amendment and implication for organic waste hygienization. Agronomy 2020, 10, 1578. [Google Scholar] [CrossRef]
- Watson, C.; Schlösser, C.; Vögerl, J.; Wichern, F. Excellent excrement? Frass impacts on a soil’s microbial community, processes and metal bioavailability. Appl. Soil Ecol. 2021, 168, 104110. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef]
- Zagoskina, N.V.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M.; Baranova, E.N.; Aksenova, M.A. Polyphenols in plants: Structure, biosynthesis, abiotic stress regulation, and practical applications. Int. J. Mol. Sci. 2023, 24, 13874. [Google Scholar] [CrossRef] [PubMed]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.M.; Niemeyer, E.D. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.). J. Agric. Food Chem. 2008, 56, 8685–8691. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, J.; Wieczorek, Z. Związki fenolowe ogółem w popularnych warzywach liściowych i kapustnych oraz wybranych roślinach dziko rosnących. Bromatol. I Chem. Toksykol. 2016, 49, 427–431. [Google Scholar]
- Hęś, M.; Golcz, A.; Gramza-Michałowska, A.; Jędrusek-Golińska, A.; Dziedzic, K.; Mildner-Szkudlarz, S. Influence of Nitrogen Fertilizer on the Antioxidative Potential of Basil Varieties (Ocimum basilicum L.). Molecules 2022, 27, 5636. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S. Agronomic biofortification of plant foods with minerals, vitamins and metabolites with chemical fertilizers and liming. J. Plant Nutr. 2020, 43, 1534–1554. [Google Scholar] [CrossRef]
- Deng, B.; Jin, X.; Yang, Y.; Lin, Z.; Zhang, Y. The regulatory role of riboflavin in the drought tolerance of tobacco plants depends on ROS production. Plant Growth Regul. 2014, 72, 269–277. [Google Scholar] [CrossRef]
- Osuagwu, G.G.E.; Edeoga, H.O. The effect of NPK inorganic fertilizer application on the concentration of mineral and vitamin in the leaves of Gongronema latifolium (Benth). Drug Plants 2010, 30, 167–177. [Google Scholar]
- Tuma, J.; Skalicky, M.; Tumova, L.; Bláhová, P.; Rosulkova, M. Potassium, magnesium and calcium content in individual parts of Phaseolus vulgaris L. plant as related to potassium and magnesium nutrition. Plant Soil Environ. 2004, 50, 18–26. [Google Scholar] [CrossRef]
Water Regime | Fertilizer | Dose (g/L) | Leaf Biomass (g) |
---|---|---|---|
Watered | Control | - | 29.6 ab |
Cattle manure | 10 | 25.7 abc | |
HI frass | 10 | 36 a | |
HI frass | 12.5 | 30.4 ab | |
Drought | Control | - | 12.6 bc |
Cattle manure | 10 | 9.5 c | |
HI frass | 10 | 9.9 bc | |
HI frass | 12.5 | 10.5 bc |
Water Regime | Fertilizer | Dose (g/L) | A (umol/m × s) | E (mmol/m × s) | Gs (mol/m × s) | Ci (vpm) |
---|---|---|---|---|---|---|
Watered | Control | - | 3.30 bc | 0.97 bc | 0.04 bc | 219 ab |
Cattle manure | 10 | 4.91 ab | 1.43 ab | 0.06 abc | 220 ab | |
HI frass | 10 | 6.14 a | 1.71 ab | 0.08 ab | 216 ab | |
HI frass | 12.5 | 6.62 a | 2.22 a | 0.11 a | 246 a | |
Drought | Control | - | 0.51 d | 0.17 c | 0.00 c | 233 ab |
Cattle manure | 10 | 0.84 d | 0.23 c | 0.00 c | 204 ab | |
HI frass | 10 | 1.51 cd | 0.33 c | 0.01 c | 157 b | |
HI frass | 12.5 | 1.06 d | 0.27 c | 0.01 c | 166 ab |
Water Regime | Fertilizer | Dose (g/L) | F0 (-) | Fm (-) | Fv/Fm (-) | Yield (-) | ETR (-) |
---|---|---|---|---|---|---|---|
Watered | Control | - | 206 abc | 1006 d | 0.79 e | 0.20 b | 29.3 c |
Cattle manure | 10 | 208 ab | 1010 d | 0.80 d | 0.21 b | 29.9 c | |
HI frass | 10 | 192 c | 1016 d | 0.81 bc | 0.23 a | 32.3 b | |
HI frass | 12.5 | 198 bc | 1021 d | 0.81 cd | 0.23 a | 33.2 a | |
Drought | Control | - | 212 ab | 1081 c | 0.80 cd | 0.10 c | 13.5 f |
Cattle manure | 10 | 214 a | 1129 b | 0.81 bc | 0.10 c | 14.1 ef | |
HI frass | 10 | 200 abc | 1135 ab | 0.81 b | 0.10 c | 14.9 de | |
HI frass | 12.5 | 197 bc | 1146 a | 0.82 a | 0.10 c | 15.2 d |
Mineral | Fertilizer | Dose (g/L) | Watered (mg/g) | Drought (mg/g) |
---|---|---|---|---|
Ca | Control | - | 95.1 ± 6.4 a,A | 82.3 ± 7.8 a,B |
Cattle manure | 10 | 78.7 ± 6.3 c,B | 84.4 ± 6.0 a,A | |
HI frass | 10 | 83.7 ± 7.3 bc,A | 75.2 ± 5.5 b,A | |
HI frass | 12.5 | 87.4 ± 8.0 b,A | 78.8 ± 5.5 b,A | |
Mg | Control | - | 36.9 ± 3.1 a,A | 34.2 ± 2.8 a,A |
Cattle manure | 10 | 33.2 ± 2.8 a,A | 32.1 ± 2.8 a,A | |
HI frass | 10 | 31.7 ± 2.7 a,A | 30.8 ± 2.4 a,A | |
HI frass | 12.5 | 34.4 ± 2.8 a,A | 32.4 ± 3.0 a,A | |
K | Control | - | 37.6 ± 2.5 b,B | 49.5 ± 3.8 b,A |
Cattle manure | 10 | 57.8 ± 4.0 a,A | 60.2 ± 5.0 a,A | |
HI frass | 10 | 56.3 ± 4.7 a,A | 59.9 ± 4.2 a,A | |
HI frass | 12.5 | 68.7 ± 5.0 a,A | 65.5 ± 4.4 a,A | |
Na | Control | - | 27.9 ± 1.5 a,A | 25.7 ± 1.6 a,A |
Cattle manure | 10 | 25.9 ± 1.8 a,A | 24.6 ± 1.5 a,A | |
HI frass | 10 | 23.7 ± 1.5 a,A | 25.0 ± 1.6 a,A | |
HI frass | 12.5 | 23.1 ± 1.6 a,A | 24.5 ± 1.5 a,A | |
Cu | Control | - | 0.28 ± 0.04 a,A | 0.22 ± 0.03 a,A |
Cattle manure | 10 | 0.20 ± 0.04 a,A | 0.25 ± 0.03 a,A | |
HI frass | 10 | 0.22 ± 0.04 a,A | 0.28 ± 0.04 a,A | |
HI frass | 12.5 | 0.18 ± 0.03 a,B | 0.31 ± 0.04 a,A | |
Fe | Control | - | 0.37 ± 0.02 a,B | 0.43 ± 0.02 b,A |
Cattle manure | 10 | 0.38 ± 0.02 a,A | 0.39 ± 0.02 b,A | |
HI frass | 10 | 0.33 ± 0.02 a,B | 0.47 ± 0.03 b,A | |
HI frass | 12.5 | 0.39 ± 0.02 a,B | 0.73 ± 0.02 a,A | |
Mn | Control | - | 0.31 ± 0.02 a,A | 0.30 ± 0.02 a,A |
Cattle manure | 10 | 0.11 ± 0.01 b,B | 0.29 ± 0.02 a,A | |
HI frass | 10 | 0.13 ± 0.02 b,B | 0.30 ± 0.02 a,A | |
HI frass | 12.5 | 0.30 ± 0.02 a,A | 0.30 ± 0.02 a,A | |
Zn | Control | - | 0.07 ± 0.01 a,A | 0.06 ± 0.01 a,A |
Cattle manure | 10 | 0.06 ± 0.01 a,A | 0.05 ± 0.01 a,A | |
HI frass | 10 | 0.06 ± 0.01 a,A | 0.07 ± 0.01 a,A | |
HI frass | 12.5 | 0.07 ± 0.01 a,A | 0.07 ± 0.01 a,A | |
Pb | Control | - | 0.60 ± 0.02 a,A | 0.43 ± 0.03 a,B |
Cattle manure | 10 | 0.45 ± 0.02 b,A | 0.38 ± 0.03 a,A | |
HI frass | 10 | 0.31 ± 0.02 c,B | 0.52 ± 0.02 a,A | |
HI frass | 12.5 | 0.34 ± 0.02 c,B | 0.64 ± 0.02 a,A | |
P | Control | - | 21.6 ± 1.2 b,A | 23.2 ± 1.5 ab,A |
Cattle manure | 10 | 27.4 ± 1.5 a,A | 19.9 ± 1.2 c,B | |
HI frass | 10 | 22.4 ± 1.0 b,A | 21.6 ± 1.4 bc,A | |
HI frass | 12.5 | 25.9 ± 1.5 a,A | 25.0 ± 1.3 a,A |
Water Regime | Fertilizer | Dose (g/L) | FAE (mg/g dm) | TEAC ABTS (mmol Trolox/g dm) | TEAC FRAP (mmol Trolox/g dm) |
---|---|---|---|---|---|
Watered | Control | - | 16.6 ± 0.7 a,A | 97 ± 18 a,A | 33.68 ± 1.82 a,A |
Cattle manure | 10 | 14.1 ± 0.9 b,A | 94 ± 13 a,A | 19.57 ± 2.26 b,A | |
HI frass | 10 | 14.2 ± 0.7 b,A | 75 ± 15 ab,A | 11.92 ± 4.01 c,A | |
HI frass | 12.5 | 13.1 ± 0.6 c,A | 58 ± 9 b,A | 10.53 ± 1.06 c,A | |
Drought | Control | - | 14.2 ± 1.0 a,B | 66 ± 16 ab,B | 14.63 ± 1.79 a,B |
Cattle manure | 10 | 11.1 ± 1.3 b,B | 52 ± 11 bc,B | 10.44 ± 1.50 ab,B | |
HI frass | 10 | 10.3 ± 1.5 b,B | 53 ± 17 bc,B | 9.81 ± 0.67 b,B | |
HI frass | 12.5 | 10.2 ± 1.4 b,B | 45 ± 14 c,A | 4.61 ± 2.26 c,B |
Water Regime | Fertilizer | Dose (mg/L) | Riboflavin (mg/g) | p-HyDroxybenzoic Acid (µg/g) | Chlorogenic Acid (µg/g) | Ferulic Acid (µg/g dm) | o-Coumaric Acid (µg/g dm) |
---|---|---|---|---|---|---|---|
Watered | Control | - | 0.006 c,A | 0.472 c,A | 2303 a,A | 4548 a,A | 1.011 b,B |
Cattle manure | 10 | 0.006 c,A | 0.704 a,A | 1401 b,A | 2825 b,A | 1.136 a,B | |
HI frass | 10 | 0.009 b,A | 0.733 a,A | 1190 c,A | 2545 b,A | 1.135 a,B | |
HI frass | 12.5 | 0.013 a,A | 0.576 b,A | 26.3 d,B | 692 c,B | 1.079 b,B | |
Drought | Control | - | 0.004 a,A | 0.460 a,A | 531 b,B | 1667 a,B | 1.650 a,A |
Cattle manure | 10 | 0.004 a,B | 0.386 c,B | 568 a,B | 1318 c,B | 1.463 b,A | |
HI frass | 10 | 0.004 a,B | 0.412 b,B | 426 c,B | 1292 c,B | 1.639 a,A | |
HI frass | 12.5 | 0.005 a,B | 0.463 a,B | 570 a,A | 1506 b,A | 1.514 ab,A |
Water Regime | Fertilizer | Dose (g/L) | Ce (vpm) | NCER (µmol m−2 s−1) |
---|---|---|---|---|
Watered | Control | - | 11.9 c | 1.2 c |
Cattle manure | 10 | 82.9 ab | 8.7 ab | |
HI frass | 10 | 130.1 a | 13.6 a | |
HI frass | 12.5 | 127.5 a | 13.4 a | |
Drought | Control | - | 1.7 c | 0.18 c |
Cattle manure | 10 | 20.2 c | 2.1 c | |
HI frass | 10 | 29.0 c | 3.1 c | |
HI frass | 12.5 | 31.9 bc | 3.4 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawinska, Z.; Radzikowska-Kujawska, D.; Kowalczewski, P.Ł.; Grzanka, M.; Sobiech, Ł.; Skrzypczak, G.; Drożdżyńska, A.; Ślachciński, M.; Świtek, S. Hermetia illucens Frass Fertilization: A Novel Approach for Enhancing Lettuce Resilience and Photosynthetic Efficiency under Drought Stress Conditions. Appl. Sci. 2024, 14, 2386. https://doi.org/10.3390/app14062386
Sawinska Z, Radzikowska-Kujawska D, Kowalczewski PŁ, Grzanka M, Sobiech Ł, Skrzypczak G, Drożdżyńska A, Ślachciński M, Świtek S. Hermetia illucens Frass Fertilization: A Novel Approach for Enhancing Lettuce Resilience and Photosynthetic Efficiency under Drought Stress Conditions. Applied Sciences. 2024; 14(6):2386. https://doi.org/10.3390/app14062386
Chicago/Turabian StyleSawinska, Zuzanna, Dominika Radzikowska-Kujawska, Przemysław Łukasz Kowalczewski, Monika Grzanka, Łukasz Sobiech, Grzegorz Skrzypczak, Agnieszka Drożdżyńska, Mariusz Ślachciński, and Stanisław Świtek. 2024. "Hermetia illucens Frass Fertilization: A Novel Approach for Enhancing Lettuce Resilience and Photosynthetic Efficiency under Drought Stress Conditions" Applied Sciences 14, no. 6: 2386. https://doi.org/10.3390/app14062386
APA StyleSawinska, Z., Radzikowska-Kujawska, D., Kowalczewski, P. Ł., Grzanka, M., Sobiech, Ł., Skrzypczak, G., Drożdżyńska, A., Ślachciński, M., & Świtek, S. (2024). Hermetia illucens Frass Fertilization: A Novel Approach for Enhancing Lettuce Resilience and Photosynthetic Efficiency under Drought Stress Conditions. Applied Sciences, 14(6), 2386. https://doi.org/10.3390/app14062386