Mapping Social Vulnerability to Multi-Hazard Scenarios: A GIS-Based Approach at the Census Tract Level
Abstract
:1. Introduction
Multi-Hazard Context in the Basilicata Region
2. Materials and Methods
2.1. Study Area Selection and Hazard Assessment
2.2. Social Vulnerability Evaluation and Hazard Integration
3. Results
3.1. Municipality Selection
3.2. Hazard Assessment
3.2.1. Qualitative Evaluation
3.2.2. Quantitative Investigation
3.3. Social Vulnerability Evaluation
3.4. Integration between Social Vulnerability, Single-Hazard, and Multi-Hazard Classes
4. Discussion and Conclusions
4.1. Integration Studies at the Sub-Municipality Level as a Tool for Emergency Planning
4.2. Limitations and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNDRR (United Nation Office for Disaster Risk Reduction). Making Development Sustainable: The Future of Disaster Risk Management; Global Assessment Report on Disaster Risk Reduction; United Nations: Geneva, Switzerland, 2015. [Google Scholar]
- Clark, G.E.; Moser, S.C.; Ratick, S.J.; Dow, K.; Meyer, W.B.; Emani, S.; Jin, W.; Kasperson, J.X.; Kasperson, R.E.; Schwarz, H.E. Assessing the Vulnerability of Coastal Communities to Extreme Storms: The Case of Revere, MA, USA. Mitig. Adapt. Strateg. Glob. Chang. 1998, 3, 59–82. [Google Scholar] [CrossRef]
- UNDRR. Living with Risk: A Global Review of Disaster Reduction Initiatives; 2004 Version; United Nations: New York, NY, USA, 2004. [Google Scholar]
- UNISDR. Terminology on Disaster Risk Reduction; United Nations International Strategy for Disaster Reduction: Geneva, Switzerland, 2009. [Google Scholar]
- UNDRR. Global Assessment Report on Disaster Risk Reduction 2022. In Our World at Risk: Transforming Governance for a Resilient Future; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2022. [Google Scholar]
- Nguyen, H.D.; Dang, D.-K.; Bui, Q.-T.; Petrisor, A.-I. Multi-hazard Assessment Using Machine Learning and Remote Sensing in the North Central Region of Vietnam. Trans. GIS 2023, 27, 1614–1640. [Google Scholar] [CrossRef]
- UNISDR. Flood Hazard and Risk Assessment 2017. In Words into Action Guidelines: National Disaster Risk Assessment Hazard Specific Risk Assessment. Available online: https://www.unisdr.org/files/52828_04floodhazardandriskassessment.pdf (accessed on 12 April 2024).
- Varnes, D.; IAEG. Landslide Hazard Zonation: A Review of Principles and Practice; United Nations Scientific and Cultural Organization: Paris, France, 1984; pp. 1–6. [Google Scholar]
- Versace, P.; Zuccaro, G.; Albarello, D.; Mugnozza, G.S. Natural and anthropogenic risks: Proposal for an interdisciplinary glossary. Ital. J. Eng. Geol. Environ. 2023, 1, 5–18. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q. (Eds.) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change 2012, 1st ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Drakes, O.; Tate, E. Social Vulnerability in a Multi-Hazard Context: A Systematic Review. Environ. Res. Lett. 2022, 17, 033001. [Google Scholar] [CrossRef]
- Kalaycıoğlu, M.; Kalaycıoğlu, S.; Çelik, K.; Christie, R.; Filippi, M.E. An Analysis of Social Vulnerability in a Multi-Hazard Urban Context for Improving Disaster Risk Reduction Policies: The Case of Sancaktepe, İstanbul. Int. J. Disaster Risk Reduct. 2023, 91, 103679. [Google Scholar] [CrossRef]
- Hejazi, S.J.; Sharifi, A.; Arvin, M. Assessment of Social Vulnerability in Areas Exposed to Multiple Hazards: A Case Study of the Khuzestan Province, Iran. Int. J. Disaster Risk Reduct. 2022, 78, 103127. [Google Scholar] [CrossRef]
- Bixler, R.; Yang, P.E.; Richter, S.M.; Coudert, M. Boundary Crossing for Urban Community Resilience: A Social Vulnerability and Multi-Hazard Approach in Austin, Texas, USA. Int. J. Disaster Risk Reduct. 2021, 66, 102613. [Google Scholar] [CrossRef]
- Pagliacci, F.; Russo, M. Be (and Have) Good Neighbours! Factors of Vulnerability in the Case of Multiple Hazards. Ecol. Indic. 2020, 111, 105969. [Google Scholar] [CrossRef]
- Frigerio, I.; De Amicis, M. Mapping Social Vulnerability to Natural Hazards in Italy: A Suitable Tool for Risk Mitigation Strategies. Environ. Sci. Policy 2016, 63, 187–196. [Google Scholar] [CrossRef]
- Guillard-Gonçalves, C.; Cutter, S.L.; Emrich, C.T.; Zêzere, J.L. Application of Social Vulnerability Index (SoVI) and Delineation of Natural Risk Zones in Greater Lisbon, Portugal. J. Risk Res. 2015, 18, 651–674. [Google Scholar] [CrossRef]
- Rød, J.K.; Berthling, I.; Lein, H.; Lujala, P.; Vatne, G.; Bye, L.M. Integrated Vulnerability Mapping for Wards in Mid-Norway. Local Environ. 2012, 17, 695–716. [Google Scholar] [CrossRef]
- Tate, E. Social Vulnerability Indices: A Comparative Assessment Using Uncertainty and Sensitivity Analysis. Nat. Hazards 2012, 63, 325–347. [Google Scholar] [CrossRef]
- Lazzari, M.; Gioia, D.; Anzidei, B. Landslide Inventory of the Basilicata Region (Southern Italy). J. Maps 2018, 14, 348–356. [Google Scholar] [CrossRef]
- Dal Sasso, S.F.; Manfreda, S.; Capparelli, G.; Versace, P.; Samela, C.; Spilotro, G.; Fiorentino, M. Hydrological and Geological Hazards in Basilicata. L’Acqua 2017, 3, 77–85. Available online: http://centrofunzionalebasilicata.it/it/pdf/2017_Dal_Sasso_et_al__L%27Acqua%20n.%203_bassa.pdf (accessed on 4 April 2024).
- Lazzari, M.; Piccarreta, M. Landslide Disasters Triggered by Extreme Rainfall Events: The Case of Montescaglioso (Basilicata, Southern Italy). Geosciences 2018, 8, 377. [Google Scholar] [CrossRef]
- Schiattarella, M.; Giannandrea, P.; Corrado, G.; Gioia, D. Landscape Planning-Addressed Regional-Scale Mapping of Geolithological Units: An Example from Southern Italy. J. Maps 2024, 20, 2303335. [Google Scholar] [CrossRef]
- Colacicco, R.; Refice, A.; Nutricato, R.; Bovenga, F.; Caporusso, G.; D’Addabbo, A.; La Salandra, M.; Lovergine, F.P.; Nitti, D.O.; Capolongo, D. High-Resolution Flood Monitoring Based on Advanced Statistical Modeling of Sentinel-1 Multi-Temporal Stacks. Remote Sens. 2024, 16, 294. [Google Scholar] [CrossRef]
- Pellicani, R.; Argentiero, I.; Spilotro, G. GIS-Based Predictive Models for Regional-Scale Landslide Susceptibility Assessment and Risk Mapping along Road Corridors. Geomat. Nat. Hazards Risk 2017, 8, 1012–1033. [Google Scholar] [CrossRef]
- Perrone, A.; Canora, F.; Calamita, G.; Bellanova, J.; Serlenga, V.; Panebianco, S.; Tragni, N.; Piscitelli, S.; Vignola, L.; Doglioni, A.; et al. A Multidisciplinary Approach for Landslide Residual Risk Assessment: The Pomarico Landslide (Basilicata Region, Southern Italy) Case Study. Landslides 2021, 18, 353–365. [Google Scholar] [CrossRef]
- Greco, M.; Martino, G. Vulnerability Assessment for Preliminary Flood Risk Mapping and Management in Coastal Areas. Nat. Hazards 2016, 82, 7–26. [Google Scholar] [CrossRef]
- De Musso, N.; Capolongo, D.; Refice, A.; Lovergine, F.P.; D’Addabbo, A.; Pennetta, L. Spatial Evolution of the December 2013 Metaponto Plain (Basilicata, Italy) Flood Event Using Multi-Source and High-Resolution Remotely Sensed Data. J. Maps 2018, 14, 219–229. [Google Scholar] [CrossRef]
- Refice, A.; Capolongo, D.; Chini, M.; D’Addabbo, A. Improving Flood Detection and Monitoring through Remote Sensing. Water 2022, 14, 364. [Google Scholar] [CrossRef]
- La Salandra, M.; Roseto, R.; Mele, D.; Dellino, P.; Capolongo, D. Probabilistic Hydro-Geomorphological Hazard Assessment Based on UAV-Derived High-Resolution Topographic Data: The Case of Basento River (Southern Italy). Sci. Total Environ. 2022, 842, 156736. [Google Scholar] [CrossRef]
- Lapietra, I.; Rizzo, A.; Colacicco, R.; Dellino, P.; Capolongo, D. Evaluation of Social Vulnerability to Flood Hazard in Basilicata Region (Southern Italy). Water 2023, 15, 1175. [Google Scholar] [CrossRef]
- Corbau, C.; Greco, M.; Martino, G.; Olivo, E.; Simeoni, U. Assessment of the Vulnerability of the Lucana Coastal Zones (South Italy) to Natural Hazards. J. Mar. Sci. Eng. 2022, 10, 888. [Google Scholar] [CrossRef]
- La Salandra, M.; Colacicco, R.; Dellino, P.; Capolongo, D. An Effective Approach for Automatic River Features Extraction Using High-Resolution UAV Imagery. Drones 2023, 7, 70. [Google Scholar] [CrossRef]
- ISPRA. Landslides and Floods in Italy: Hazard and Risk Indicators—2021 Edition; ISPRA: Rome, Italy, 2021; ISBN 978-88-448-1085-6.
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Batabyal, S.; McCollum, M. Should Population Density Be Used to Rank Social Vulnerability in Disaster Preparedness Planning? Econ. Model. 2023, 125, 106165. [Google Scholar] [CrossRef]
- Ehrlich, D.; Kemper, T.; Pesaresi, M.; Corbane, C. Built-up Area and Population Density: Two Essential Societal Variables to Address Climate Hazard Impact. Environ. Sci. Policy 2018, 90, 73–82. [Google Scholar] [CrossRef]
- Frigerio, I.; Ventura, S.; Strigaro, D.; Mattavelli, M.; De Amicis, M.; Mugnano, S.; Boffi, M. A GIS-Based Approach to Identify the Spatial Variability of Social Vulnerability to Seismic Hazard in Italy. Appl. Geogr. 2016, 74, 12–22. [Google Scholar] [CrossRef]
- Holand, I.S.; Lujala, P.; Rød, J.K. Social Vulnerability Assessment for Norway: A Quantitative Approach. Nor. Geogr. Tidsskr. Nor. J. Geogr. 2011, 65, 1–17. [Google Scholar] [CrossRef]
- Holand, I.S.; Lujala, P. Replicating and Adapting an Index of Social Vulnerability to a New Context: A Comparison Study for Norway. Prof. Geogr. 2013, 65, 312–328. [Google Scholar] [CrossRef]
- Martins, V.N.; Sousa, E.; Silva, D.; Cabral, P. Social Vulnerability Assessment to Seismic Risk Using Multicriteria Analysis: The Case Study of Vila Franca Do Campo (São Miguel Island, Azores, Portugal). Nat. Hazards 2012, 62, 385–404. [Google Scholar] [CrossRef]
- Von Szombathely, M.; Hanf, F.S.; Bareis, J.; Meier, L.; Oßenbrügge, J.; Pohl, T. An Index-Based Approach to Assess Social Vulnerability for Hamburg, Germany. Int. J. Disaster Risk Sci. 2023, 14, 782–794. [Google Scholar] [CrossRef]
- Chakraborty, J.; Graham, A.T.; Burrell, E.M. Population Evacuation: Assessing Spatial Variability in Geophysical Risk and Social Vulnerability to Natural Hazards. Nat. Hazards Rev. 2005, 6, 23–33. [Google Scholar] [CrossRef]
- Rana, S.; Dharanirajan, K.T.J.; Mandal, K.K. Assessment of Social Vulnerability of Landslides in the Darjeeling District Using MCDA-Based GIS Techniques. Disaster Adv. 2022, 15, 8–15. [Google Scholar] [CrossRef]
- Lee, Y.-J. Social Vulnerability Indicators as a Sustainable Planning Tool. Environ. Impact Assess. Rev. 2014, 44, 31–42. [Google Scholar] [CrossRef]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A Place-Based Model for Understanding Community Resilience to Natural Disasters. Glob. Environ. Chang. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- De Loyola Hummell, B.M.; Cutter, S.L.; Emrich, C.T. Social Vulnerability to Natural Hazards in Brazil. Int. J. Disaster Risk Sci. 2016, 7, 111–122. [Google Scholar] [CrossRef]
- Yi, L.; Zhang, X.; Ge, L.; Zhao, D. Analysis of Social Vulnerability to Hazards in China. Environ. Earth Sci. 2014, 71, 3109–3117. [Google Scholar] [CrossRef]
- Armaş, I. Multi-Criteria Vulnerability Analysis to Earthquake Hazard of Bucharest, Romania. Nat. Hazards 2012, 63, 1129–1156. [Google Scholar] [CrossRef]
- Flanagan, B.E.; Gregory, E.W.; Hallisey, E.J.; Heitgerd, J.L.; Lewis, B.A. Social Vulnerability Index for Disaster Management. J. Homel. Secur. Emerg. Manag. 2011, 8, 0000102202154773551792. [Google Scholar] [CrossRef]
- Fekete, A. Validation of a Social Vulnerability Index in Context to River-Floods in Germany. Nat. Hazards Earth Syst. Sci. 2009, 9, 393–403. [Google Scholar] [CrossRef]
- Schmidtlein, M.C.; Deutsch, R.C.; Piegorsch, W.W.; Cutter, S.L. A Sensitivity Analysis of the Social Vulnerability Index. Risk Anal. 2008, 28, 1099–1114. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Cutter, S.L.; Emrich, C.T.; Shi, P. Measuring Social Vulnerability to Natural Hazards in the Yangtze River Delta Region, China. Int. J. Disaster Risk Sci. 2013, 4, 169–181. [Google Scholar] [CrossRef]
- Tasnuva, A.; Hossain, M.R.; Salam, R.; Islam AR, M.T.; Patwary, M.M.; Ibrahim, S.M. Employing Social Vulnerability Index to Assess Household Social Vulnerability of Natural Hazards: An Evidence from Southwest Coastal Bangladesh. Environ. Dev. Sustain. 2021, 23, 10223–10245. [Google Scholar] [CrossRef]
- Fatemi, F.; Ardalan, A.; Aguirre, B.; Mansouri, N.; Mohammadfam, I. Social Vulnerability Indicators in Disasters: Findings from a Systematic Review. Int. J. Disaster Risk Reduct. 2017, 22, 219–227. [Google Scholar] [CrossRef]
- Goltermann, D.; Marengwa, J. SAWA Final Report Summary, Hamburg. 2012. Available online: http://archive.northsearegion.eu/files/repository/20130814132256_SAWA_Final_Report_Summary.pdf (accessed on 22 May 2024).
- Andersson-Sköld, Y.; Lars, N. Effective and sustainable flood and landslide risk reduction measures: An investigation of two assessment frameworks. Int. J. Disaster Risk Sci. 2016, 7, 374–392. [Google Scholar] [CrossRef]
- Ramesh, M.V.; Thirugnanam, H.; Mohanan, N.K.; Singh, B.; Ekkirala, H.C.; Guntha, R. Community Scale Landslide Resilience: A Citizen-Science Approach. In Progress in Landslide Research and Technology 2023; Alcántara-Ayala, I., Arbanas, Z., Huntley, D., Konagi, K., Arbanas, S.M., Mikš, S., Ramesh, M.V., Sassa, S., Eds.; Springer: Cham, Switzerland, 2023; Volume 2, Issue 2. [Google Scholar] [CrossRef]
- Kocaman, S.; Anbaroglu, B.; Gokceoglu, C.; Altan, O. A review on citizen science (CitSci) applications for disaster management. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 301–306. [Google Scholar] [CrossRef]
- Paul, J.D.; Buytaert, W.; Allen, S.; Ballesteros-Cánovas, J.A.; Bhusal, J.; Cieslik, K.; Supper, R. Citizen Science for Hydrological Risk Reduction and Resilience Building. Wiley Interdiscip. Rev. Water 2018, 5, e1262. [Google Scholar] [CrossRef]
- Mechler, R.; Czajkowski, J.; Kunreuther, H.; Michel-Kerjan, E.; Botzen, W.; Keating, A.; McQuistan, C.; Cooper, N.; O’Donnell, I. Making Communities More Flood Resilient: The Role of Cost Benefit Analysis and Other Decision-Support Tools in Disaster Risk Reduction 2014. Available online: https://pure.iiasa.ac.at/id/eprint/11193/1/Mechler%20et%20al%20White%20paper%20Making%20communities%20more%20flood%20resilient%20-%20the%20role%20of%20cost-benefit%20analysis%20and%20other%20decision-support%20tools%202015.pdf (accessed on 21 May 2024).
- Galve, J.P.; Cevasco, A.; Brandolini, P.; Piacentini, D.; Azañón, J.M.; Notti, D.; Soldati, M. Cost-based analysis of mitigation measures for shallow-landslide risk reduction strategies. Eng. Geol. 2016, 213, 142–157. [Google Scholar] [CrossRef]
- Lyu, H.-M.; Yin, Z.-Y. An improved MCDM combined with GIS for risk assessment of multi-hazards in Hong Kong. Sustain. Cities Soc. 2023, 91, 104427. [Google Scholar] [CrossRef]
- Righi, E.; Lauriola, P.; Ghinoi, A.; Giovannetti, E.; Soldati, M. Disaster Risk Reduction and Interdisciplinary Education and Training. Prog. Disaster Sci. 2021, 10, 100165. [Google Scholar] [CrossRef]
- Lahiri, S.; Snowden, B.; Gu, J.; Krishnan, N.; Yellin, H.; Ndiaye, K. Multidisciplinary Team Processes Parallel Natural Disaster Preparedness and Response: A Qualitative Case Study. Int. J. Disaster Risk Reduct. 2021, 61, 102369. [Google Scholar] [CrossRef]
- Murray-Rust, P. Open Data in Science. Nat. Preced. 2008. [Google Scholar] [CrossRef]
- Istat. Atti del 9° Censimento Generale Dell’industria e dei servizi e Censimento Delle Istituzioni Non Prot. Le Sezioni di Censimento 2016. Available online: https://www.istat.it/it/files//2016/02/Atti-CIS_Fascicolo_5.pdf (accessed on 12 April 2024).
- Raduszynski, T.; Numada, M. Measure and Spatial Identification of Social Vulnerability, Exposure and Risk to Natural Hazards in Japan Using Open Data. Sci. Rep. 2023, 13, 664. [Google Scholar] [CrossRef] [PubMed]
- Karanja, J.; Lawrence, M.K. Scale Implications and Evolution of a Social Vulnerability Index in Atlanta, Georgia, USA. Nat. Hazards 2022, 113, 789–812. [Google Scholar] [CrossRef]
- Tate, E.; Rahman, M.d.A.; Emrich, C.T.; Sampson, C.C. Flood Exposure and Social Vulnerability in the United States. Nat. Hazards 2021, 106, 435–457. [Google Scholar] [CrossRef]
- Lapietra, I.; Colacicco, R.; Capolongo, D.; La Salandra, M.; Rinaldi, A.; Dellino, P. Unveiling Social Vulnerability to Natural Hazards in the EEA and UK: A Systematic Review with Insights for Enhanced Emergency Planning and Risk Reduction. Int. J. Disaster Risk Reduct. 2024, 108, 104507. [Google Scholar] [CrossRef]
- Rizzo, A.; Vandelli, V.; Buhagiar, G.; Micallef, A.S.; Soldati, M. Coastal Vulnerability Assessment along the North-Eastern Sector of Gozo Island (Malta, Mediterranean Sea). Water 2020, 12, 1405. [Google Scholar] [CrossRef]
- Batista, E.F.; De Brum Passini, L. Development and Application of a Social Vulnerability Index (SOVI) to Landslide Risk Analysis in Ribeira Medium Valley, Brazil. Obs. Econ. Latinoam. 2023, 21, 2801–2829. [Google Scholar] [CrossRef]
- Guillard-Gonçalves, C.; Zêzere, J. Combining Social Vulnerability and Physical Vulnerability to Analyse Landslide Risk at the Municipal Scale. Geosciences 2018, 8, 294. [Google Scholar] [CrossRef]
- Bera, S.; Balamurugan, G.; Oommen, T. Indicator-Based Approach for Assigning Physical Vulnerability of the Houses to Landslide Hazard in the Himalayan Region of India. Int. J. Disaster Risk Reduct. 2020, 50, 101891. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, L.; Gui, L.; Yin, K.; Shrestha, D.P.; Du, J.; Cao, X. Assessment of the Physical Vulnerability of Buildings Affected by Slow-Moving Landslides. Nat. Hazards Earth Syst. Sci. 2020, 20, 2547–2565. [Google Scholar] [CrossRef]
- Tilloy, A.; Malamud, B.D.; Winter, H.; Joly-Laugel, A. A review of quantification methodologies for multi-hazard interrelationships. Earth-Sci. Rev. 2019, 196, 102881. [Google Scholar] [CrossRef]
Event | Time Period | Location |
---|---|---|
Flood | 7–8 October 2013 | Municipality of Bernalda, Montescaglioso, Pisticci, Scanzano Jonico |
Flood | 1–3 December 2013 | Several municipalities located in Matera and Potenza province |
Landslide | 3 December 2013 | Municipality of Montescaglioso |
Landslide | Triggered in February 2014 and declaration of the state of emergency in December 2017 | Municipality of Stigliano |
Landslide | 29 January 2019 | Municipality of Pomarico |
Flood | 11–12 November 2019 | Basilicata Region |
Hazard Type | Class | Territory (km2) | Population (%) | Household (%) | Buildings (%) | Business (%) | Cultural Heritage (%) |
---|---|---|---|---|---|---|---|
Flood | HPH | 264.06 | 0.7 | 0.7 | 1 | 0.8 | 2.8 |
MPH | 349.25 | 1.1 | 1.1 | 1.4 | 1.3 | 2.9 | |
LPH | 378.91 | 1.2 | 1.2 | 1.5 | 1.5 | 3.1 | |
Landslide | P4 | 268.07 | 3.3 | 3.4 | 4.3 | 2.9 | 8.3 |
P3 | 334.23 | 3.7 | 3.9 | 4.4 | 3.7 | 4.8 | |
P2 | 549.82 | 4.4 | 4.5 | 5 | 4.2 | 5 | |
P1 | 212.35 | 2.4 | 2.4 | 2.5 | 2.4 | 3 |
Landslide | Flood | Multi-Hazard | |||
---|---|---|---|---|---|
Hazard_Type | Scenario | Hazard_Type | Scenario | Hazard_Type | Scenario |
P1 | LH1 | LPH | FH1 | MPH LPH P1 P2 | MH1 |
P2 | LH2 | MPH HPH | FH2 | MPH LPH P2 P3 | MH2 |
P3 | LH3 | HPH MPH LPH | FH3 | MPH LPH P1 P2 P3 P4 | MH3 |
P4 | LH4 | HPH MPH LPH P1 | MH4 | ||
P1 P2 | LH5 | HPH MPH LPH P2 | MH5 | ||
P1 P3 | LH6 | HPH MPH LPH P3 | MH6 | ||
P2 P3 | LH7 | HPH MPH LPH P4 | MH7 | ||
P2 P4 | LH8 | HPH MPH LPH P1 P2 | MH8 | ||
P3 P4 | LH9 | HPH MPH LPH P2 P3 | MH9 | ||
P1 P2 P3 | LH10 | HPH MPH LPH P2 P4 | MH10 | ||
P1 P2 P4 | LH11 | HPH MPH LPH P1 P2 P3 | MH11 | ||
P2 P3 P4 | LH12 | HPH MPH LPH P1 P2 P4 | MH12 | ||
P1 P2 P3 P4 | LH13 | HPH MPH LPH P2 P3 P4 | MH13 | ||
HPH MPH LPH P1 P2 P3 P4 | MH14 | ||||
MPH LPH P2 | MH15 |
Indicator | Variable | Description | References |
---|---|---|---|
Population density | Pop_density | Number of inhabitants/km2 | [35,36,37,38,39,40,41] |
Build up density | Build_density | Number of buildings/km2 | [37,42,43] |
Age | Eld | % of inhabitants with age > 65 | [16,44,45] |
Child | % of inhabitants with age < 15 | [43,46] | |
Gender | Wom | % of women residents | [34,44,47] |
Education | Low_ed | % of illiterate residents or with low education | [38,47,48,49] |
Employment | Unemp | % of unemployed residents | [38,50,51,52] |
Foreign | For | % of foreign people | [16,39,47,53] |
Household | House6+ | % of households with 6 or more family members | [54,55] |
Municipality | Population 2021 (N.) | Census Tract (N.) |
---|---|---|
Bernalda | 11,964 | 179 |
Colobraro | 1070 | 42 |
Craco | 644 | 51 |
Montalbano Jonico | 6.796 | 59 |
Montecaglioso | 9.247 | 108 |
Nova Siri | 6.708 | 87 |
Pisticci | 16.836 | 305 |
Policoro | 17.685 | 148 |
Pomarico | 3.832 | 86 |
Rotondella | 2.448 | 44 |
Scanzano Jonico | 7.525 | 96 |
Tursi | 4.753 | 93 |
Valsinni | 1.373 | 33 |
Municipality | Low MH (Class 2–4) | MH Code | Medium MH (Class 5) | MH Code | High MH (Class 6–8) | MH Code |
---|---|---|---|---|---|---|
BERNALDA | 2 | MH5, MH8 | 0 | 0 | ||
COLOBRARO | 5 | MH3, MH6, MH9, MH13 | 0 | 3 | MH7, MH10 | |
CRACO | 6 | MH5, MH9, MH11 | 0 | 7 | MH5, MH8, MH9 | |
MONTALBANO JONICO | 4 | MH4, MH8, MH11, MH14 | 0 | 3 | MH5 | |
MONTESCAGLIOSO | 5 | MH4, MH7, MH9, MH10, MH12 | 0 | 0 | ||
NOVA SIRI | 4 | MH5, MH9, MH13 | 0 | 0 | ||
PISTICCI | 20 | MH5, MH8, MH14 | 3 | MH5, MH8, MH14 | 19 | MH4, MH5, MH8, |
POMARICO | 5 | MH9, MH11, MH14 | 2 | MH11, MH13 | 1 | MH5 |
ROTONDELLA | 2 | MH11, MH14 | ||||
SCANZANO JONICO | 2 | MH5 | 0 | 0 | ||
TURSI | 17 | MH1, MH5, MH8, MH9, MH12, MH14, MH15, | 0 | 1 | MH5 | |
VALSINNI | 5 | MH14 | 2 | MH7, MH10 | 2 | MH7, MH13 |
Municipality | Level | SVI x LH | LH Code | SVI x FH | FH Code | SVI x MH | MH Code |
---|---|---|---|---|---|---|---|
Bernalda | L | 24 | LH2, LH5, LH7, LH8, LH10, LH11 | 86 | FH2, FH3 | 2 | MH5, MH8 |
M | 4 | FH2, FH3 | |||||
H | 15 | FH2, FH3 | |||||
Colobraro | L | 12 | LH2, LH3, LH4, LH5, LH6, LH7, LH8, LH12 | 9 | FH2, FH3 | 2 | MH6, MH13 |
M | 1 | LH12 | 6 | MH3, MH7, MH9, MH10, MH13 | |||
Craco | L | 18 | LH2, LH3, LH5, LH7, LH10, LH12, LH13 | 7 | FH3 | 4 | MH5, MH9, MH11 |
M | 4 | LH9, LH13 | 7 | MH5, MH8, MH9 | |||
H | 1 | LH4 | 2 | MH11 | |||
Montalbano Jonico | L | 15 | LH2, LH4, LH5, LH8, LH12 | 11 | FH2, FH3 | 3 | MH5 |
M | 4 | LH7, LH8, LH12 | 3 | MH5, MH8, MH9 | |||
H | 1 | MH14 | |||||
Montescaglioso | L | 34 | LH3, LH4, LH5, LH8, LH9, LH12 | 26 | FH2, FH3 | 3 | MH4, MH7, MH12 |
M | 4 | LH4, LH8 | 2 | MH9, MH10 | |||
H | 8 | LH4, LH9 | 1 | MH14 | |||
Nova Siri | L | 6 | LH4, LH7, LH12 | 40 | FH2, FH3 | 1 | MH5 |
M | 2 | LH7, LH8 | 3 | FH2, FH3 | 2 | MH9, MH13 | |
H | 1 | FH2 | |||||
Pisticci | L | 59 | LH1, LH2, LH4, LH5, LH8, LH13, LH11, LH12, LH13 | 77 | FH2, FH3 | 17 | MH5, MH8, MH14 |
M | 10 | LH2, LH4, LH5, LH8, LH13 | 4 | FH3 | 27 | MH4, MH5, MH8 | |
H | 4 | LH4, LH5, LH8 | 2 | MH5, MH14 | |||
Policoro | L | 46 | FH3 | ||||
M | 3 | FH1, FH2, FH3 | |||||
Pomarico | L | 30 | LH2, LH4, LH5, LH7, LH10, LH11, LH12, LH13 | 17 | FH3 | 19 | MH11, MH13, MH14 |
M | 4 | LH2, LH7, LH9 | 3 | MH5, MH11, MH14 | |||
Rotondella | L | 1 | LH1 | 18 | FH3 | 2 | MH11, MH14 |
Tursi | L | 29 | LH2, LH4, LH5, LH6, LH7, LH10, LH12, LH13 | 19 | FH3 | 8 | MH1, MH5, MH8, MH12 |
M | 3 | LH4, LH8, LH9 | 5 | MH4, MH5, MH8 | |||
H | 1 | LH2 | |||||
Valsinni | L | 9 | LH2, LH7, LH8, LH13, | 8 | FH2, FH3 | 2 | MH7, MH10 |
M | 2 | LH7, LH12 | 7 | MH7, MH13, MH14 | |||
Scanzano Jonico | L | 56 | FH2, FH3 | 8 | MH1, MH5, MH8, MH12 | ||
M | 1 | FH3 | 3 | MH5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lapietra, I.; Colacicco, R.; Rizzo, A.; Capolongo, D. Mapping Social Vulnerability to Multi-Hazard Scenarios: A GIS-Based Approach at the Census Tract Level. Appl. Sci. 2024, 14, 4503. https://doi.org/10.3390/app14114503
Lapietra I, Colacicco R, Rizzo A, Capolongo D. Mapping Social Vulnerability to Multi-Hazard Scenarios: A GIS-Based Approach at the Census Tract Level. Applied Sciences. 2024; 14(11):4503. https://doi.org/10.3390/app14114503
Chicago/Turabian StyleLapietra, Isabella, Rosa Colacicco, Angela Rizzo, and Domenico Capolongo. 2024. "Mapping Social Vulnerability to Multi-Hazard Scenarios: A GIS-Based Approach at the Census Tract Level" Applied Sciences 14, no. 11: 4503. https://doi.org/10.3390/app14114503
APA StyleLapietra, I., Colacicco, R., Rizzo, A., & Capolongo, D. (2024). Mapping Social Vulnerability to Multi-Hazard Scenarios: A GIS-Based Approach at the Census Tract Level. Applied Sciences, 14(11), 4503. https://doi.org/10.3390/app14114503