Synthesis and Biological Studies of New 2-Benzoxazolinone Derivatives as Antibacterial Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.1.1. 3-(2-Oxobenzo[d]oxazol-3(2H)-yl)propanehydrazide (3)
2.1.2. 3-(2-Oxobenzo[d]oxazol-3(2H)-yl)-N-(4-sulfamoylphenyl)propanamide (4)
2.2. General Procedure for the Preparation of Benzimidazoles 5–7
2.2.1. 3-(2-(1H-Benzo[d]imidazol-2-yl)ethyl)benzo[d]oxazol-2(3H)-one (5)
2.2.2. 3-(2-(5-Fluoro-1H-benzo[d]imidazol-2-yl)ethyl)benzo[d]oxazol-2(3H)-one (6)
2.2.3. 3-(2-(5-Chloro-1H-benzo[d]imidazol-2-yl)ethyl)benzo[d]oxazol-2(3H)-one (7)
2.3. General Procedure for the Preparation of Hydrazones 8–23
2.3.1. N′-Benzylidene-3-(2-oxobenzo[d]oxazol-3(2H)-yl)propanehydrazide (8)
2.3.2. N′-(4-Fluorobenzylidene)-3-(2-oxobenzo[d]oxazol-3(2H)-yl)propanehydrazide (9)
2.3.3. N′-(2,4-Difluorobenzylidene)-3-(2-oxobenzo[d]oxazol-3(2H)-yl)propanehydrazide (10)
2.3.4. N′-(2-Chlorobenzylidene)-3-(2-oxobenzo[d]oxazol-3(2H)-yl)propanehydrazide (11)
2.3.5. N′-(3-Chlorobenzylidene)-3-(2-oxobenzo[d]oxazol-3(2H)-yl)propanehydrazide (12)
2.3.6. N′-(4-Chlorobenzylidene)-3-(2-oxobenzo[d]oxazol-3(2H)-yl)propanehydrazide (13)
2.3.7. N′-(4-Bromobenzylidene)-3-(2-oxobenzo[d]oxazol-3(2H)-yl)propanehydrazide (14)
2.3.8. N′-(4-Nitrobenzylidene)-3-(2-oxobenzo[d]oxazol-3(2H)-yl)propanehydrazide (15)
2.3.9. N′-(4-(Dimethylamino)benzylidene)-3-(2-oxobenzo[d]oxazol-3(2H)-yl)propanehydrazide (16)
2.3.10. N′-(2-Chloro-5-nitrobenzylidene)-3-(2-oxobenzo[d]oxazol-3(2H)-yl)propanehydrazide (17)
2.3.11. 3-(2-Oxobenzo[d]oxazol-3(2H)-yl)-N′-(2,3,4-trimethoxybenzylidene)propanehydrazide (18)
2.3.12. 3-(2-Oxobenzo[d]oxazol-3(2H)-yl)-N′-(3,4,5-trimethoxybenzylidene)propanehydrazide (19)
2.3.13. 3-(2-Oxobenzo[d]oxazol-3(2H)-yl)-N′-(thiophen-2-ylmethylene)propanehydrazide (20)
2.3.14. N′-((5-Nitrothiophen-2-yl)methylene)-3-(2-oxobenzo[d]oxazol-3(2H)-yl)propanehydrazide (21)
2.3.15. N′-(Furan-2-ylmethylene)-3-(2-oxobenzo[d]oxazol-3(2H)-yl)propanehydrazide (22)
2.3.16. N′-((5-Nitrofuran-2-yl)methylene)-3-(2-oxobenzo[d]oxazol-3(2H)-yl)propanehydrazide (23)
2.3.17. 3-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-oxopropyl)benzo[d]oxazol-2(3H)-one (24)
2.3.18. N-(2,5-Dimethyl-1H-pyrrol-1-yl)-3-(2-oxobenzo[d]oxazol-3(2H)-yl)propanamide (25)
2.4. Biology
2.4.1. Preparation of Bacterial Cultures
2.4.2. Determination of the Minimum Inhibitory Concentration (MIC) by the Broth Microdilution Method
2.4.3. Determination of the Minimum Bactericidal Concentration (MBC)
2.4.4. Agar Diffusion Methods
2.4.5. The Agar Well Diffusion Method
2.4.6. The Disk Diffusion Method
3. Results and Discussion
3.1. Chemistry
3.2. Biology
3.2.1. Evaluation of the Antibacterial Activity by the Determination of MIC and MBC Values
3.2.2. Evaluation of the Antibacterial Activity by the Determination of IZDs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doron, S.; Gorbach, S.L. Bacterial Infections: Overview. Int. Encycl. Public Health 2008, 273–282. [Google Scholar] [CrossRef]
- Hasan, R.; Acharjee, M.; Noor, R. Prevalence of vancomycin resistant Staphylococcus aureus (VRSA) in methicillin resistant S. aureus (MRSA) strains isolated from burn wound infections. Tzu Chi Med. J. 2016, 28, 49–53. [Google Scholar] [CrossRef]
- UN Environment Programme. Available online: https://www.unep.org/topics/chemicals-and-pollution-action/pollution-and-health/antimicrobial-resistance-global-threat (accessed on 25 April 2024).
- Kamal, U.; Javed, N.M.; Arun, K. Biological potential of benzoxazole derivatives: An updated review. Asian J. Pharm. Clin. Res. 2020, 13, 28–41. [Google Scholar] [CrossRef]
- Fan, L.; Luo, Z.; Yang, C.; Guo, B.; Miao, J.; Chen, L.; Tang, Y.; Li, Y. Design and synthesis of small molecular 2-aminobenzoxazoles as potential antifungal agents against phytopathogenic fungi. Mol. Divers. 2022, 26, 981–992. [Google Scholar] [CrossRef]
- Ryu, C.K.; Lee, R.Y.; Kim, N.Y.; Kim, Y.H.; Song, A.L. Synthesis and antifungal activity of benzo[d]oxazole-4,7-diones. Bioorg. Med. Chem. Lett. 2009, 19, 5924–5926. [Google Scholar] [CrossRef]
- Moraski, G.C.; Chang, M.; Villegas-Estrada, A.; Franzblau, S.G.; Möllmann, U.; Miller, M.J. Structure-activity relationship of new anti-tuberculosis agents derived from oxazoline and oxazole benzyl esters. Eur. J. Med. Chem. 2010, 45, 1703–1716. [Google Scholar] [CrossRef]
- Davidson, J.P.; Corey, E.J. First enantiospecific total synthesis of the antitubercular marine natural product pseudopteroxazole. Revision of assigned stereochemistry. J. Am. Chem. Soc. 2003, 125, 13486–13489. [Google Scholar] [CrossRef]
- Kuzu, B.; Hepokur, C.; Alagoz, M.A.; Burmaoglu, S.; Algul, O. Synthesis, Biological Evaluation and In Silico Studies of Some 2-Substituted Benzoxazole Derivatives as Potential Anticancer Agents to Breast Cancer. ChemistrySelect 2022, 7, e202103559. [Google Scholar] [CrossRef]
- Perron-Sierra, F.M.; Pierré, A.; Burbridge, M.; Guilbaud, N. Novel bicyclic oxazolone derivatives as anti-angiogenic agents. Bioorg. Med. Chem. Lett. 2002, 12, 1463–1466. [Google Scholar] [CrossRef]
- Aiello, S.; Wells, G.; Stone, E.L.; Kadri, H.; Bazzi, R.; Bell, D.R.; Stevens, M.F.G.; Matthews, C.S.T.; Bradshaw, D.; Westwell, A.D. Synthesis and Biological Properties of Benzothiazole, Benzoxazole, and Chromen-4-one Analogues of the Potent Antitumor Agent 2-(3,4-Dimethoxyphenyl)-5-fluorobenzothiazole (PMX 610, NSC 721648). J. Med. Chem. 2008, 51, 5135–5139. [Google Scholar] [CrossRef]
- Tipparaju, S.K.; Joyasawal, S.; Pieroni, M.; Kaiser, M.; Brun, R.; Kozikowski, A.P. In Pursuit of Natural Product Leads: Synthesis and Biological Evaluation of 2-[3-hydroxy-2-[(3-hydroxypyridine-2-carbonyl)amino]phenyl]benzoxazole-4-carboxylic acid (A-33853) and Its Analogues: Discovery of N-(2-Benzoxazol-2-ylphenyl)benzamides as Novel Antileishmanial Chemotypes. J. Med. Chem. 2008, 51, 7344–7347. [Google Scholar] [CrossRef]
- Salgin-Gökşen, U.; Gökhan-Kelekçi, N.; Göktaş, O.; Köysal, Y.; Kiliç, E.; Işik, S.; Aktay, G.; Ozalp, M. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: Synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorg. Med. Chem. 2007, 15, 5738–5741. [Google Scholar] [CrossRef]
- Sondhi, S.M.; Singh, N.; Kumar, A.; Lozach, O.; Meijer, L. Synthesis, anti-inflammatory, analgesic and kinase (CDK-1, CDK-5 and GSK-3) inhibition activity evaluation of benzimidazole/benzoxazole derivatives and some Schiff’s bases. Bioorg. Med. Chem. 2006, 14, 3758–3765. [Google Scholar] [CrossRef]
- Roy, R.S.; Kelleher, N.L.; Milne, J.C.; Walsh, C.T. In viva processing and antibiotic activity of microcin B17 analogs with varying ring content and altered bisheterocyclic sites. Chem. Biol. 1999, 6, 305–318. [Google Scholar] [CrossRef]
- Balaswamy, G.; Srinivas, K.; Pradeep, P.; Sarangapani, M. Synthesis, characterization and anti-microbial activity of novel substituted benzoxazole derivatives. Int. J. Chem. Sci. 2012, 10, 619–626. [Google Scholar]
- Chilumula, N.R.; Gudipati, R.; Ampati, S.; Manda, S.; Gadhe, D. Synthesis of some novel methyl-2-(2-(arylideneamino)oxazol-4-ylamino)benzoxazole-5-carboxylate derivatives as antimicrobial agents. Int. J. Chem. Res. 2010, 1, 1–6. [Google Scholar]
- Laeeq, S.; Sirbaiya, A.K.; Siddiqui, H.H. Benzoxazole: Progress report on chemistry, synthesis and biological activities. Ind-Am. J. Pharm. Res. 2013, 3, 1660–1683. [Google Scholar]
- Önkol, T.; Gökçe, M.; Tosun, A.U.; Polat, S.; Serin, M.S.; Tezcan, S. Microwave synthesis and antimicrobial evaluation of 5-chloro-2(3h)-benzoxazolinone-3- acetyl-2-(p-substituted benzal)hydrazone and 5- chloro-2(3h)-benzoxazolinone-3-acetyl-2-(psubstituted acetophenone)hydrazone derivatives. Turk. J. Pharm. Sci. 2008, 5, 155–166. [Google Scholar]
- Alheety, N.F. Synthesis, Characterization and Antimicrobial Activity Study of Some New Substituted Benzoxazole Derivatives. Baghdad Sci. J. 2019, 16, 616–625. [Google Scholar] [CrossRef]
- Katsura, Y.; Inoue, Y.; Nishino, S.; Tomoi, M.; Itoh, H.; Takasugi, H. Studies on antiulcer drugs. III. Synthesis and antiulcer activities of imidazo[1,2-a]pyridinylethylbenzoxazoles and related compounds. A novel class of histamine H2-receptor antagonists. Chem. Pharm. Bull. 1992, 40, 1424–1438. [Google Scholar] [CrossRef]
- Smith, P.; Ward, D.N. Heterocyclic Benzoxazole Compositions as Inhibitors of Hepatitis c Virus. U.S. Patent WO 2011/047390 A3, 21 April 2011. [Google Scholar]
- Sato, Y.; Yamada, M.; Yoshida, S.; Soneda, T.; Ishikawa, M.; Nizato, T.; Suzuki, K.; Konno, F. Benzoxazole Derivatives as Novel 5-HT3 Receptor Partial Agonists in the Gut. J. Med. Chem. 1998, 41, 3015–3021. [Google Scholar] [CrossRef]
- Sun, L.Q.; Chen, J.; Bruce, M.; Deksus, J.A.; Epperson, J.R.; Takaki, K.; Johnson, G.; Iben, L.; Mahle, C.D.; Ryan, E.; et al. Synthesis and structure-activity relationship of novel benzoxazole derivatives as melatonin receptor agonists. Bioorg. Med. Chem. Lett. 2004, 14, 3799–3802. [Google Scholar] [CrossRef]
- Razavi, H.; Palaninathan, S.K.; Powers, E.T.; Wiseman, R.L.; Purkey, H.E.; Mohamedmohaideen, N.N.; Deechongkit, S.; Chiang, K.P.; Dendle, M.T.A.; Sacchettini, J.C.; et al. Benzoxazoles as Transthyretin Amyloid Fibril Inhibitors: Synthesis, Evaluation, and Mechanism of Action. Angew. Chem. Int. Ed. 2003, 42, 2758–2761. [Google Scholar] [CrossRef]
- Sessions, E.H.; Yin, Y.; Bannister, T.D.; Weiser, A.; Griffin, E.; Pocas, J.; Cameron, M.D.; Ruiz, C.; Lin, L.; Schürer, S.C.; et al. Benzimidazole- and benzoxazole-based inhibitors of Rho kinase. Bioorg. Med. Chem. Lett. 2008, 18, 6390–6393. [Google Scholar] [CrossRef]
- Soni, S.; Sahiba, N.; Teli, S.; Teli, P.; Agarwal, L.K.; Agarwal, S. Advances in the synthetic strategies of benzoxazoles using 2-aminophenol as a precursor: An up-to-date review. RSC Adv. 2023, 13, 24093–24111. [Google Scholar] [CrossRef]
- Voss, M.H.; Gordon, M.S.; Mita, M.; Rini, B.; Makker, V.; Macarulla, T.; Smith, D.C.; Cervantes, A.; Puzanov, I.; Pili, R.; et al. Phase 1 study of mTORC1/2 inhibitor sapanisertib (TAK-228) in advanced solid tumours, with an expansion phase in renal, endometrial or bladder cancer. Br. J. Cancer 2020, 123, 1590–1598. [Google Scholar] [CrossRef]
- Muntoni, F.; Tejura, B.; Spinty, S.; Roper, H.; Hughes, I.; Layton, G.; Davies, K.E.; Harriman, S.; Tinsley, J. A Phase 1b Trial to Assess the Pharmacokinetics of Ezutromid in Pediatric Duchenne Muscular Dystrophy Patients on a Balanced Diet. Clin. Pharmacol. Drug Dev. 2019, 8, 922–933. [Google Scholar] [CrossRef]
- Köksal, M.; Gökhan, N.; Erdoğan, H.; Özalp, M.; Ekizoğlu, M. Synthesis of 3-(4-substituted benzoylmethyl)-2-benzoxazolinones and screening antimicrobial activities. Farmaco 2002, 57, 535–538. [Google Scholar] [CrossRef]
- Gökhan, N.; Erdogan, H.; Durlu, N.T.; Demirdamar, R.; Ozalp, M. Synthesis and evaluation of analgesic, anti-inflammatory and antimicrobial activities of 6-acyl-3-piperazinomethyl-2-benzoxazolinones. Arzneimittelforschung 2003, 53, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Szymański, P.; Zurek, A.E.; Mikiciuk-Olasik, E. Design, synthesis and biological evaluation of new 2-benzoxazolinone derivatives as potential cholinesterase inhibitors for therapy of Alzheimer’s disease. Pharmazie 2011, 66, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Çalış, Ü.; Gökhan, N.; Erdoğan, H. Synthesis of some novel 3-methyl-6-(2-substituted propanoyl/propyl)-2-benzoxazolinone derivatives and anti-nociceptive activity. Farmaco 2001, 56, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Verma, H.; Silakari, O. Benzoxazolinone: A Scaffold with Diverse Pharmacological Significance. In Key Heterocycle Cores for Designing Multitargeting Molecules; Elsevier: Amsterdam, The Netherlands, 2018; Chapter-10; pp. 343–367. [Google Scholar] [CrossRef]
- Gökhan-Kelekçi, N.; Köksal, M.; Ünüvar, S.; Aktay, G.; Erdoğan, H. Synthesis and characterization of some new 2(3H)-benzoxazolones with analgesic and antiinflammatory activities. J. Enzyme Inhib. Med. Chem. 2009, 24, 29–37. [Google Scholar] [CrossRef]
- Salgin-Gökşen, U.; Gökhan-Kelekçi, N.; Yabanoglu-Çiftci, S.; Yelekçi, K.; Uçar, G. Synthesis, molecular modeling, and in vitro screening of monoamine oxidase inhibitory activities of some novel hydrazone derivatives. J. Neural Transm. 2013, 120, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Wanga, H.X.; Liub, F.; Ng, T.B. Examination of pineal indoles and 6-methoxy-2-benzoxazolinone for antioxidant and antimicrobial effects. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 130, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Soyer, Z.; Eraç, B. Evaluation of Antimicrobial Activities of Some 2(3H)-Benzoxazolone Derivatives. FABAD J. Pharm. Sci. 2007, 32, 167–171. [Google Scholar]
- Safakish, M.; Hajimahdi, Z.; Zabihollahi, R.; Aghasadeghi, M.R.; Vahabpour, R.; Zarghi, A. Design, synthesis, and docking studies of new 2-benzoxazolinone derivatives as anti-HIV-1 agents. Med. Chem. Res. 2017, 26, 2718–2726. [Google Scholar] [CrossRef]
- Pal, S.; Manjunath, B.; Ghorai, S.; Sasmal, S. Chapter Two—Benzoxazole Alkaloids: Occurrence, Chemistry, and Biology. Alkaloids Chem. Biol. 2018, 79, 71–137. [Google Scholar] [CrossRef]
- Wong, X.K.; Yeong, K.Y. A patent review on the current developments of benzoxazoles in drug discovery. ChemMedChem 2021, 16, 3237–3262. [Google Scholar] [CrossRef] [PubMed]
- Kavaliauskas, P.; Grybaitė, B.; Vaickelionienė, R.; Sapijanskaitė-Banevič, B.; Anusevičius, K.; Kriaučiūnaitė, A.; Smailienė, G.; Petraitis, V.; Petraitienė, R.; Naing, E.; et al. Synthesis and Development of N-2,5-Dimethylphenylthioureido Acid Derivatives as Scaffolds for New Antimicrobial Candidates Targeting Multidrug-Resistant Gram-Positive Pathogens. Antibiotics 2023, 12, 220. [Google Scholar] [CrossRef] [PubMed]
- Minickaitė, R.; Grybaitė, B.; Vaickelionienė, R.; Kavaliauskas, P.; Petraitis, V.; Petraitienė, R.; Tumosienė, I.; Jonuškienė, I.; Mickevičius, V. Synthesis of Novel Aminothiazole Derivatives as Promising Antiviral, Antioxidant and Antibacterial Candidates. Int. J. Mol. Sci. 2022, 23, 7688. [Google Scholar] [CrossRef]
- Mackeviciute, M.; Vaickelioniene, R.; Anusevicius, K.; Siugzdaite, J.; Lelesius, R.; Kavaliauskas, P.; Mickevicius, V. Synthesis and characterization of sulphanilamide and benzimidazole pharmacophores containing γ-amino acid derivatives as dual antimicrobial and anticancer agents. Arkivoc 2023, 7, 202312015. [Google Scholar] [CrossRef]
- Vaickelionienė, R.; Petrikaitė, V.; Vaškevičienė, I.; Pavilonis, A.; Mickevičius, V. Synthesis of novel sulphamethoxazole derivatives and exploration of their anticancer and antimicrobial properties. PLoS ONE 2023, 18, e0283289. [Google Scholar] [CrossRef]
- Kovaitė, E.; Ramanauskaitė, I.; Jonuškienė, I.; Anusevičius, K.; Mickevičius, V. Synthesis and investigation of the influence of new amino acid derivatives with indole and benzoxazolinone moieties on the rapeseed (Brassica napus L.) growth in vitro. Cheminė Technol. 2013, 2, 35–44. [Google Scholar]
- Kania, A.; Tejchman, W.; Pawlak, A.M.; Mokrzyński, K.; Różanowski, B.; Musielak, B.M.; Greczek Stachura, M. Preliminary studies of antimicrobial activity of new synthesized hybrids of 2-thiohydantoin and 2-quinolone derivatives activated with blue light. Molecules 2022, 27, 1069. [Google Scholar] [CrossRef]
- Mancilla, M. Commentary: A Novel and Validated Protocol for Performing MIC Tests to Determine the Susceptibility of Piscirickettsia salmonis Isolates to Florfenicol and Oxytetracycline. Front. Microbiol. 2018, 9, 483. [Google Scholar] [CrossRef]
- Ramchuran, E.J.; Somboro, A.M.; Abdel Monaim, S.A.H.; Amoako, D.G.; Parboosing, R.; Kumalo, H.M.; Agrawal, N.; Albericio, F.; Torre, B.G.; Bester, L.A. In Vitro Antibacterial Activity of Teixobactin Derivatives on Clinically Relevant Bacterial Isolates. Front. Microbiol. 2018, 9, 1535. [Google Scholar] [CrossRef]
- Riaz, N.; Rehman, F.; Ahmad, M. β-Amino Acids: Role in Human Biology and Medicinal Chemistry—A Review. Med. Chem. 2017, 7, 302–307. [Google Scholar] [CrossRef]
- Ramanauskaitė, I.; Jonuškienė, I.; Vaickelionienė, R.; Mickevičius, V. The influence of sodium salts of 3-(3- benzoxazolonyl)- and 3-(6-nitro-3-benzoxazolonyl)propanoic acids on the growth and biomass energy parameters of dactylis grass (Dactylis glomerata L.). Cheminė Technol. 2014, 1, 16–20. [Google Scholar] [CrossRef]
- Mickevičius, V.; Baltrušis, R.; Beresnevičius, Z.J. Synthesis and cyclization of N-(2-hydroxyphenyl)-β-alanines and N-(2-benzylhydroxyphenyl)-β-alanines. Khim. Geterotsikl. Soedin. 1991, 4, 527–531. [Google Scholar]
- Kakkar, S.; Tahlan, S.; Lim, S.M.; Ramasamy, K.; Mani, V.; Shah, S.A.A.; Narasimhan, B. Benzoxazole derivatives: Design, synthesis and biological evaluation. Chem. Centr. J. 2018, 12, 92–108. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Bao, X.-L.; Zhu, W.-B.; Wang, Y.-H.; Thi Phuong Anh, N.; Wu, X.-F.; Yan, Y.-J.; Chen, Z.L. Design, Synthesis, and Biological Evaluation of 6-Benzoxazole Benzimidazole Derivatives with Antihypertension Activities. ACS Med. Chem. Lett. 2019, 10, 40–43. [Google Scholar] [CrossRef]
- Phillip, M.J. The formation of 2-substituted benziminazoles. Chem. Soc. 1928, 2393–2399. [Google Scholar] [CrossRef]
- Wyrzykiewicz, E.; Prukała, D. Electron Impact-Induced Mass Spectral Study of New Isomeric N-Substituted Hydrazones of Ortho-, Meta- and Para-Hydroxybenzaldehydes. Eur. Mass Spectrom. 1999, 5, 183–190. [Google Scholar] [CrossRef]
Compounds | Gram-Positive Bacteria Strains | Gram-Negative Bacteria Strains | ||||||
---|---|---|---|---|---|---|---|---|
S. aureus | B. subtilis | E. coli | S. enteritidis | |||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
μg/mL | ||||||||
1 | 125 | 500 | 250 | 500 | 125 | 500 | 125 | 500 |
2 | 125 | 500 | 250 | 500 | 125 | 250 | 125 | 500 |
3 | 125 | 500 | 125 | 250 | 125 | 500 | 125 | 500 |
4 | 62.5 | 500 | 62.5 | 125 | 62.5 | 500 | 125 | 500 |
5 | 125 | 500 | 250 | 500 | 125 | 500 | 125 | 500 |
6 | 125 | 500 | 500 | 500 | 125 | 500 | 125 | 500 |
7 | 125 | 500 | 62.5 | 125 | 125 | 500 | 125 | 500 |
8 | 125 | 500 | 125 | 250 | 125 | 500 | 125 | 500 |
9 | 125 | 500 | 62.5 | 125 | 125 | 500 | 125 | 500 |
10 | 125 | 500 | 125 | 250 | 125 | 500 | 125 | 500 |
11 | 125 | 500 | 62.5 | 125 | 125 | 500 | 125 | 500 |
12 | 62.5 | 500 | 62.5 | 125 | 62.5 | 500 | 125 | 500 |
13 | 125 | 500 | 62.5 | 125 | 125 | 500 | 125 | 500 |
14 | 125 | 500 | 250 | 500 | 125 | 500 | 125 | 500 |
15 | 125 | 500 | 62.5 | 125 | 125 | 500 | 125 | 500 |
16 | 125 | 500 | 62.5 | 250 | 125 | 500 | 125 | 500 |
17 | 125 | 500 | 250 | 500 | 125 | 500 | 125 | 500 |
18 | 125 | 500 | 125 | 250 | 125 | 500 | 125 | 500 |
19 | 125 | 500 | 250 | 500 | 125 | 500 | 125 | 500 |
20 | 125 | 500 | 125 | 250 | 125 | 500 | 125 | 500 |
21 | 125 | 500 | 250 | 500 | 125 | 500 | 125 | 500 |
22 | 125 | 500 | 62.5 | 125 | 62.5 | 500 | 125 | 500 |
23 | 62.5 | 500 | 62.5 | 125 | 15.6 | 500 | 62.5 | 500 |
24 | 62.5 | 500 | 125 | 250 | 62.5 | 125 | 125 | 500 |
25 | 62.5 | 500 | 125 | 250 | 125 | 500 | 125 | 500 |
26 | 62.5 | 500 | 125 | 500 | 125 | 500 | 125 | 500 |
CFN | 15.6 | 15.6 | 62.5 | 62.5 | 15.6 | 15.6 | 15.6 | 15.6 |
Compounds | Diameter of the Zone of Inhibition (mm) | ||||
---|---|---|---|---|---|
Gram-Positive Bacteria | Gram-Negative Bacteria | ||||
S. aureus | B. subtilis | E. coli | S. enteritidis | ||
4 | 25 µg | NI | NI | NI | NI |
50 µg | NI | NI | NI | NI | |
7 | 25 µg | NI | NI | NI | NI |
50 µg | NI | NI | NI | NI | |
12 | 25 µg | NI | NI | NI | NI |
50 µg | NI | NI | NI | NI | |
22 | 25 µg | NI | NI | NI | NI |
50 µg | NI | NI | NI | NI | |
23 | 25 µg | 13.11 ± 0.01 | 18.16 ± 0.03 | NI | NI |
50 µg | 18.15 ± 0.21 | 21.67 ± 0.08 | NI | NI | |
Ciprofloxacin, 5 µg | 26.00 ± 1.41 | 26.50 ± 0.71 | 31.50 ± 0.71 | 29.50 ± 2.12 |
Compounds | Diameter of the Zone of Inhibition (mm) | ||||
---|---|---|---|---|---|
Gram-Positive Bacteria | Gram-Negative Bacteria | ||||
S. aureus | B. subtilis | E. coli | S. enteritidis | ||
4 | 3 µg | NI | NI | NI | NI |
5 µg | NI | NI | NI | NI | |
7 | 3 µg | NI | NI | NI | NI |
5 µg | NI | NI | NI | NI | |
12 | 3 µg | NI | NI | NI | NI |
5 µg | NI | NI | NI | NI | |
22 | 3 µg | NI | NI | NI | NI |
5 µg | NI | NI | NI | NI | |
23 | 3 µg | 6.73 ± 0.01 | 10.38 ± 0.04 | NI | NI |
5 µg | 14.03 ± 0.01 | 16.07 ± 014 | NI | NI | |
Ciprofloxacin, 5 µg | 26.00 ± 1.41 | 26.50 ± 0.71 | 31.50 ± 0.71 | 29.50 ± 2.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šiugždaitė, J.; Lelešius, R.; Grybaitė, B.; Vaickelionienė, R.; Mickevičius, V. Synthesis and Biological Studies of New 2-Benzoxazolinone Derivatives as Antibacterial Agents. Appl. Sci. 2024, 14, 4783. https://doi.org/10.3390/app14114783
Šiugždaitė J, Lelešius R, Grybaitė B, Vaickelionienė R, Mickevičius V. Synthesis and Biological Studies of New 2-Benzoxazolinone Derivatives as Antibacterial Agents. Applied Sciences. 2024; 14(11):4783. https://doi.org/10.3390/app14114783
Chicago/Turabian StyleŠiugždaitė, Jūratė, Raimundas Lelešius, Birutė Grybaitė, Rita Vaickelionienė, and Vytautas Mickevičius. 2024. "Synthesis and Biological Studies of New 2-Benzoxazolinone Derivatives as Antibacterial Agents" Applied Sciences 14, no. 11: 4783. https://doi.org/10.3390/app14114783
APA StyleŠiugždaitė, J., Lelešius, R., Grybaitė, B., Vaickelionienė, R., & Mickevičius, V. (2024). Synthesis and Biological Studies of New 2-Benzoxazolinone Derivatives as Antibacterial Agents. Applied Sciences, 14(11), 4783. https://doi.org/10.3390/app14114783