The Molecular Mechanisms of the Antibacterial Activity of Sumac (Rhus typhina L.) Tannin Against Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Bacterial Strain and Growth Conditions
2.3. Determination of P. aeruginosa Viability Using INT Assay
2.4. Measurements of P. aeruginosa Membrane Fluidity
2.5. Investigation of Functional Membrane Microdomains of P. aeruginosa
2.6. Fluorescence Analysis of Tannins Interactions with P. aeruginosa Membrane Proteins
2.7. Analysis of ϛ-Potential
2.8. Statistical Analysis
3. Results and Discussion
3.1. Bacterial Cell Viability of P. aeruginosa Under the Influence of C55H40O34
3.2. Changes in Lipid Order Parameter in P. aeruginosa Cell Membrane
3.3. Analysis of P. aeruginosa Membrane Microdomains in the Presence of C55H40O34
3.4. Fluorescent Analysis of C55H40O34 Binding to Membrane Proteins of P. aeruginosa
3.5. Thermodynamic Parameters of C55H40O34-Membrane Protein Interactions in P. aeruginosa
3.6. Zeta Potential and Bacterial Cell Size Determination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sathe, N.; Beech, P.; Croft, L.; Suphioglu, C.; Kapat, A.; Athan, E. Pseudomonas aeruginosa: Infections and Novel Approaches to Treatment “Knowing the Enemy” the Threat of Pseudomonas aeruginosa and Exploring Novel Approaches to Treatment. Infect. Med. 2023, 2, 178–194. [Google Scholar] [CrossRef] [PubMed]
- Giovagnorio, F.; De Vito, A.; Madeddu, G.; Parisi, S.G.; Geremia, N. Resistance in Pseudomonas aeruginosa: A Narrative Review of Antibiogram Interpretation and Emerging Treatments. Antibiotics 2023, 12, 1621. [Google Scholar] [CrossRef] [PubMed]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, Virulence Factors, Antibiotic Resistance, Interaction with Host, Technology Advances and Emerging Therapeutics. Signal. Transduct. Target Ther. 2022, 7, 199. [Google Scholar] [CrossRef]
- Breidenstein, E.B.M.; de la Fuente-Núñez, C.; Hancock, R.E.W. Pseudomonas aeruginosa: All Roads Lead to Resistance. Trends Microbiol. 2011, 19, 419–426. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic Resistance in Pseudomonas aeruginosa: Mechanisms and Alternative Therapeutic Strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Gandra, S.; Tseng, K.K.; Arora, A.; Bhowmik, B.; Robinson, M.L.; Panigrahi, B.; Laxminarayan, R.; Klein, E.Y. The Mortality Burden of Multidrug-Resistant Pathogens in India: A Retrospective, Observational Study. Clin. Infect. Dis. 2019, 69, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J.R.; Cherny, K.E.; Sauer, K. Susceptibility of Pseudomonas aeruginosa Dispersed Cells to Antimicrobial Agents Is Dependent on the Dispersion Cue and Class of the Antimicrobial Agent Used. Antimicrob. Agents Chemother. 2017, 61, e00846-17. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Huang, X.; Wang, Q.; Yao, D.; Lu, W. Virulence Factors of Pseudomonas aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Front. Cell. Infect. Microbiol. 2022, 12, 926758. [Google Scholar] [CrossRef]
- Cluck, D.; Lewis, P.; Stayer, B.; Spivey, J.; Moorman, J. Ceftolozane–Tazobactam: A New-Generation Cephalosporin. Am. J. Health-Syst. Pharm. 2015, 72, 2135–2146. [Google Scholar] [CrossRef]
- Olchowik-Grabarek, E.; Sekowski, S.; Bitiucki, M.; Dobrzynska, I.; Shlyonsky, V.; Ionov, M.; Burzynski, P.; Roszkowska, A.; Swiecicka, I.; Abdulladjanova, N.; et al. Inhibition of Interaction between Staphylococcus aureus α-Hemolysin and Erythrocytes Membrane by Hydrolysable Tannins: Structure-Related Activity Study. Sci. Rep. 2020, 10, 11168. [Google Scholar] [CrossRef] [PubMed]
- Rajkumari, J.; Borkotoky, S.; Murali, A.; Suchiang, K.; Mohanty, S.K.; Busi, S. Attenuation of Quorum Sensing Controlled Virulence Factors and Biofilm Formation in Pseudomonas aeruginosa by Pentacyclic Triterpenes, Betulin and Betulinic Acid. Microb. Pathog. 2018, 118, 48–60. [Google Scholar] [CrossRef]
- Vandeputte, O.M.; Kiendrebeogo, M.; Rajaonson, S.; Diallo, B.; Mol, A.; El Jaziri, M.; Baucher, M. Identification of Catechin as One of the Flavonoids from Combretum Albiflorum Bark Extract That Reduces the Production of Quorum-Sensing-Controlled Virulence Factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 2010, 76, 243–253. [Google Scholar] [CrossRef]
- Yi, S.; Zhu, J.; Fu, L.; Li, J. Tea Polyphenols Inhibit Pseudomonas aeruginosa through Damage to the Cell Membrane. Int. J. Food Microbiol. 2010, 144, 111–117. [Google Scholar] [CrossRef]
- Buzzini, P.; Arapitsas, P.; Goretti, M.; Branda, E.; Turchetti, B.; Pinelli, P.; Ieri, F.; Romani, A. Antimicrobial and Antiviral Activity of Hydrolysable Tannins. Mini-Rev. Med. Chem. 2008, 8, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Czerkas, K.; Olchowik-Grabarek, E.; Łomanowska, M.; Abdulladjanova, N.; Sękowski, S. Antibacterial Activity of Plant Polyphenols Belonging to the Tannins against Streptococcus Mutans—Potential against Dental Caries. Molecules 2024, 29, 879. [Google Scholar] [CrossRef]
- Kaczmarek, B. Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview. Materials 2020, 13, 3224. [Google Scholar] [CrossRef] [PubMed]
- Štumpf, S.; Hostnik, G.; Langerholc, T.; Pintarič, M.; Kolenc, Z.; Bren, U. The Influence of Chestnut Extract and Its Components on Antibacterial Activity against Staphylococcus aureus. Plants 2023, 12, 2043. [Google Scholar] [CrossRef]
- Olchowik-Grabarek, E.; Sękowski, S.; Kwiatek, A.; Płaczkiewicz, J.; Abdulladjanova, N.; Shlyonsky, V.; Swiecicka, I.; Zamaraeva, M. The Structural Changes in the Membranes of Staphylococcus aureus Caused by Hydrolysable Tannins Witness Their Antibacterial Activity. Membranes 2022, 12, 1124. [Google Scholar] [CrossRef]
- Olchowik-Grabarek, E.; Sekowski, S.; Mies, F.; Bitiucki, M.; Swiecicka, I.; Abdulladjanova, N.; Shlyonsky, V.; Zamaraeva, M. Electrophysiological and Spectroscopic Investigation of Hydrolysable Tannins Interaction with α-Hemolysin of S. aureus. Bioelectrochemistry 2023, 150, 108318. [Google Scholar] [CrossRef]
- Available online: https://www.invasive.org/browse/subinfo.cfm?sub=3950#references (accessed on 6 November 2024).
- Olchowik-Grabarek, E.; Mavlyanov, S.; Abdullajanova, N.; Gieniusz, R.; Zamaraeva, M. Specificity of Hy-drolysable Tannins from Rhus typhina L. to Oxidants in Cell and Cell-Free Models. Appl. Biochem. Biotechnol. 2017, 181, 495–510. [Google Scholar] [CrossRef] [PubMed]
- Sekowski, S.; Naziris, N.; Chountoulesi, M.; Olchowik-Grabarek, E.; Czerkas, K.; Veiko, A.; Abdulladjanova, N.; Demetzos, C.; Zamaraeva, M. Interaction of Rhus typhina Tannin with Lipid Nanoparticles: Implication for the Formulation of a Tannin–Liposome Hybrid Biomaterial with Antibacterial Activity. J. Funct. Biomater. 2023, 14, 296. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R.; Masters, B.R. Principles of Fluorescence Spectroscopy, Third Edition. J. Biomed. Opt. 2008, 13, 029901. [Google Scholar] [CrossRef]
- Naveenraj, S.; Anandan, S.; Kathiravan, A.; Renganathan, R.; Ashokkumar, M. The Interaction of Sonochemically Synthesized Gold Nanoparticles with Serum albumins. J. Pharm Biomed. Anal. 2010, 53, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Suryawanshi, V.D.; Walekar, L.S.; Gore, A.H.; Anbhule, P.V.; Kolekar, G.B. Spectroscopic Analysis on the Binding Interaction of Biologically Active Pyrimidine Derivative with Bovine Serum albumin. J. Pharm. Anal. 2016, 6, 56–63. [Google Scholar] [CrossRef]
- Borchardt, J.R. Antioxidant and Antimicrobial Activity of Seed from Plants of the Mississippi River Basin. J. Med. Plants Res. 2009, 3, 707–718. [Google Scholar]
- Vandal, J.; Abou-Zaid, M.M.; Ferroni, G.; Leduc, L.G. Antimicrobial Activity of Natural Products from the Flora of Northern Ontario, Canada. Pharm. Biol. 2015, 53, 800–806. [Google Scholar] [CrossRef]
- Alsamri, H.; Athamneh, K.; Pintus, G.; Eid, A.H.; Iratni, R. Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidants 2021, 10, 73. [Google Scholar] [CrossRef]
- Trentin, D.S.; Silva, D.B.; Amaral, M.W.; Zimmer, K.R.; Silva, M.V.; Lopes, N.P.; Giordani, R.B.; Macedo, A.J. Tannins Possessing Bacteriostatic Effect Impair Pseudomonas aeruginosa Adhesion and Biofilm Formation. PLoS ONE 2013, 8, e66257. [Google Scholar] [CrossRef]
- Virtanen, V.; Green, R.J.; Karonen, M. Interactions between Hydrolysable Tannins and Lipid Vesicles from Escherichia coli with Isothermal Titration Calorimetry. Molecules 2022, 27, 3204. [Google Scholar] [CrossRef]
- Sekowski, S.; Ionov, M.; Dubis, A.; Mavlyanov, S.; Bryszewska, M.; Zamaraeva, M. Biomolecular Interactions of Tannin Isolated from Oenothera gigas with Liposomes. J. Membr. Biol. 2016, 249, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, M.; Novović, K.; Malešević, M.; Dinić, M.; Stojković, D.; Jovčić, B.; Soković, M. Polyphenols as Inhibitors of Antibiotic Resistant Bacteria—Mechanisms Underlying Rutin Interference with Bacterial Virulence. Pharmaceuticals 2022, 15, 385. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.J.; Hinner, M.J. Getting Across the Cell Membrane: An Overview for Small Molecules, Peptides, and Proteins. Methods Mol. Biol. 2015, 1266, 29–53. [Google Scholar]
- Sekowski, S.; Veiko, A.; Olchowik-Grabarek, E.; Dubis, A.; Wilczewska, A.Z.; Markiewicz, K.H.; Zavodnik, I.B.; Lapshina, E.; Dobrzynska, I.; Abdulladjanova, N.; et al. Hydrolysable Tannins Change Physicochemical Parameters of Lipid Nano-Vesicles and Reduce DPPH Radical—Experimental Studies and Quantum Chemical Analysis. Biochim. Biophys. Acta (BBA) Biomembr. 2022, 1864, 183778. [Google Scholar] [CrossRef]
- Borisova, M.P.; Kataev, A.A.; Sivozhelezov, V.S. Action of Tannin on Cellular Membranes: Novel Insights from Concerted Studies on Lipid Bilayers and Native Cells. Biochim. Biophys. Acta (BBA) Biomembr. 2019, 1861, 1103–1111. [Google Scholar] [CrossRef]
- Mattio, L.M.; Dallavalle, S.; Musso, L.; Filardi, R.; Franzetti, L.; Pellegrino, L.; D’Incecco, P.; Mora, D.; Pinto, A.; Arioli, S. Antimicrobial Activity of Resveratrol-Derived Monomers and Dimers against Foodborne Pathogens. Sci. Rep. 2019, 9, 19525. [Google Scholar] [CrossRef]
- Huang, Z.; London, E. Cholesterol Lipids and Cholesterol-Containing Lipid Rafts in Bacteria. Chem. Phys Lipids 2016, 199, 11–16. [Google Scholar] [CrossRef]
- Dufour, C.; Dangles, O. Flavonoid–Serum Albumin Complexation: Determination of Binding Constants and Binding Sites by Fluorescence Spectroscopy. Biochim. Biophys. Acta (BBA) Gen. Subj. 2005, 1721, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Ramírez, M.; Silva-Jiménez, H.; Banat, I.M.; Díaz De Rienzo, M.A. Surfactants: Physicochemical Interactions with Biological Macromolecules. Biotechnol. Lett. 2021, 43, 523–535. [Google Scholar] [CrossRef]
- Mackie, A.; Wilde, P. The Role of Interactions in Defining the Structure of Mixed Protein–Surfactant Interfaces. Adv. Colloid Interface Sci. 2005, 117, 3–13. [Google Scholar] [CrossRef]
- Li, Y.; Lee, J.-S. Staring at Protein-Surfactant Interactions: Fundamental Approaches and Comparative Evaluation of Their Combinations—A Review. Anal. Chim. Acta 2019, 1063, 18–39. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Jin, C.; Lv, S.; Zhang, H.; Ren, F.; Wang, J. Molecular Mechanisms and Applications of Polyphenol-Protein Complexes with Antioxidant Properties: A Review. Antioxidants 2023, 12, 1577. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, P.; Yang, Z.; Du, F.; Li, Z.; Wu, C.; Fang, A.; Xu, X.; Zhou, G. Molecular Dynamics Simulation Exploration of the Interaction between Curcumin and Myosin Combined with the Results of Spectroscopy Techniques. Food Hydrocoll. 2020, 101, 105455. [Google Scholar] [CrossRef]
- Ferreyra Maillard, A.P.V.; Espeche, J.C.; Maturana, P.; Cutro, A.C.; Hollmann, A. Zeta Potential beyond Materials Science: Applications to Bacterial Systems and to the Development of Novel Antimicrobials. Biochim. Biophys. Acta (BBA) Biomembr. 2021, 1863, 183597. [Google Scholar] [CrossRef]
- Kurinčič, M.; Jeršek, B.; Klančnik, A.; Možina, S.S.; Fink, R.; Dražić, G.; Raspor, P.; Bohinc, K. Effects of Natural Antimicrobials on Bacterial Cell Hydrophobicity, Adhesion, and Zeta Potential/Vpliv Naravnih Protimikrobnih Snovi Na Bakterijsko Hidrofobnost, Adhezijo in Zeta Potencial. Arch. Ind. Hyg. Toxicol. 2016, 67, 39–45. [Google Scholar] [CrossRef]
Binding Parameters | C55H40O34 | ||
---|---|---|---|
Temperature [K] | |||
296 | 303 | 310 | |
KSV [M−1 × 105] | 1.66 ± 0.10 | 1.65 ± 0.10 | 1.76 ± 0.17 |
kq [M−1 s−1 × 1013] | 3.32 ± 0.20 | 3.30 ± 0.20 | 3.53 ± 0.34 |
Log Kb | 5.28 ± 0.21 | 5.46 ± 0.23 | 5.56 ± 0.47 |
Temperature [K] | ΔH [kJ × mol−1] | ΔS [kJ × mol−1 K−1] | ΔG [kJ × mol−1] |
---|---|---|---|
296 | 56.689 | 0.293 | −29.892 |
303 | −31.939 | ||
310 | −33.987 |
Concentration [µM] | 0 | 2 | 4 | 6 | 8 | 10 |
---|---|---|---|---|---|---|
Zeta potential [mV] | −14.75 ± 1.26 | −16.36 ± 1.55 | −16.44 ± 1.61 | −17.31 ± 1.57 | −16.58 ± 1.42 | −16.62 ± 1.56 |
Cell size [nm] | 1192.30 ± 139.09 | 1134.85 ± 173.89 | 1220.99 ± 185.52 | 1298.66 ± 191.28 | 1305.81 ± 227.61 | 1237.64 ± 126.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łomanowska, M.; Olchowik-Grabarek, E.; Czerkas, K.; Abdulladjanova, N.; Sękowski, S. The Molecular Mechanisms of the Antibacterial Activity of Sumac (Rhus typhina L.) Tannin Against Pseudomonas aeruginosa. Appl. Sci. 2024, 14, 10728. https://doi.org/10.3390/app142210728
Łomanowska M, Olchowik-Grabarek E, Czerkas K, Abdulladjanova N, Sękowski S. The Molecular Mechanisms of the Antibacterial Activity of Sumac (Rhus typhina L.) Tannin Against Pseudomonas aeruginosa. Applied Sciences. 2024; 14(22):10728. https://doi.org/10.3390/app142210728
Chicago/Turabian StyleŁomanowska, Magdalena, Ewa Olchowik-Grabarek, Krzysztof Czerkas, Nodira Abdulladjanova, and Szymon Sękowski. 2024. "The Molecular Mechanisms of the Antibacterial Activity of Sumac (Rhus typhina L.) Tannin Against Pseudomonas aeruginosa" Applied Sciences 14, no. 22: 10728. https://doi.org/10.3390/app142210728
APA StyleŁomanowska, M., Olchowik-Grabarek, E., Czerkas, K., Abdulladjanova, N., & Sękowski, S. (2024). The Molecular Mechanisms of the Antibacterial Activity of Sumac (Rhus typhina L.) Tannin Against Pseudomonas aeruginosa. Applied Sciences, 14(22), 10728. https://doi.org/10.3390/app142210728