Sideband Vibro-Acoustics Suppression and Numerical Prediction of Permanent Magnet Synchronous Motor Based on Markov Chain Random Carrier Frequency Modulation
Abstract
:1. Introduction
2. Sideband Component Feature Identification Based on DPWM
2.1. Principle of DPWM
2.2. Analysis of Sideband Current Harmonics and Radial Electromagnetic Force Characteristics
3. Principle and Implementation of Markov Chain Random Carrier Frequency Modulation
3.1. Principles of RCFM Technique and Random Number Analysis
3.2. Markov Chain Principle and Three-State Random Number Generation Process
3.3. Random Parameter Optimization Based on Particle Swarm Optimization Algorithm
4. Analytical Prediction of the Suppressive Impact of MRCFM on Sideband Constituents
4.1. Analysis and Prediction of Sideband Current Harmonic Suppression Effect
4.2. Modal Analysis
4.3. Analysis and Prediction of Sideband Vibration Suppression Effects
4.4. Analysis and Prediction of Sideband Acoustic Suppression Effects
5. The Validation of Experiments
5.1. Experiment Platform for the Test
5.2. The Sideband Current Harmonics Comparative Test
5.3. The Sideband Vibration Comparative Test
5.4. The Sideband Acoustic Comparative Test
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | |||
MRCFM | Markov chain random carrier frequency modulation | PMSM | Permanent magnet synchronous motor |
DPWM | Discontinuous pulse-width modulation | VSI | Voltage source inverter |
RCFM | Random carrier frequency modulation | PWM | Pulse-width modulation |
NVH | Noise, vibration and harshness | PSO | Particle swarm optimization |
CPWM | Continuous pulse-width modulation | SVPWM | Space vector pulse-width modulation |
Nomenclature | |||
TS | Switching period | ω0 | Modulating wave frequency |
ωc | Carrier frequency | iα1, iα2, iα3 | Current harmonic amplitude |
Br | Radial air-gap flux density | Bt | Tangential air-gap flux density |
μ0 | Vacuum permeability | Barm | Stator armature magnetic field |
Bmag | Rotor permanent magnet magnetic field | Fmag | Permanent magnet electromotive force |
Farm | Stator armature electromotive force | N | Number of coil turns |
p | Number of pole pairs | Nt | Unit motor |
μ, v | Harmonic orders | k | Winding coefficient |
[M] | Mass matrix | [C] | Damping matrix |
[K] | Stiffness matrix | N | Modal order |
References
- Lin, F.; Zuo, S.; Deng, W.; Wu, S. Noise Prediction and Sound Quality Analysis of Variable-Speed Permanent Magnet Synchronous Motor. IEEE Trans. Energy Convers. 2017, 32, 698–706. [Google Scholar] [CrossRef]
- Yang, Z.; Shang, F.; Brown, I.P.; Krishnamurthy, M. Comparative Study of Interior Permanent Magnet, Induction, and Switched Reluctance Motor Drives for EV and HEV Applications. IEEE Trans. Transp. Electrif. 2015, 1, 245–254. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, Y.; Li, Y.; Yang, G.; Zou, J. PWM Frequency Voltage Noise Cancelation in Three-Phase VSI Using the Novel SVPWM Strategy. IEEE Trans. Power Electron. 2018, 33, 8596–8606. [Google Scholar] [CrossRef]
- Hu, S.; Zuo, S.; Liu, M.; Wu, H.; Liu, Z. Modeling and Analysis of Radial Electromagnetic Force and Vibroacoustic Behaviour in Switched Reluctance Motors. Mech. Syst. Signal Process. 2020, 142, 106778. [Google Scholar] [CrossRef]
- Xu, Y.; Yuan, Q.; Zou, J.; Li, Y. Analysis of Triangular Periodic Carrier Frequency Modulation on Reducing Electromagnetic Noise of Permanent Magnet Synchronous Motor. IEEE Trans. Magn. 2012, 48, 4424–4427. [Google Scholar] [CrossRef]
- Liang, W.; Wang, J.; Luk, P.C.-K.; Fang, W.; Fei, W. Analytical Modeling of Current Harmonic Components in PMSM Drive with Voltage-Source Inverter by SVPWM Technique. IEEE Trans. Energy Convers. 2014, 29, 673–680. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, L.; Xu, Y.; Zou, J. PWM Harmonics Reduction for Dual-Branch Three-Phase PMSMs Using Interleaving Topology. Energy Rep. 2023, 9, 190–194. [Google Scholar] [CrossRef]
- Liu, J.-K.; Yao, X.-D.; Liu, H.-L. PWM Harmonic Cancellation of Permanent Magnet Synchronous Motor Based on Periodic Spread Spectrum Modulation. J. Electr. Eng. Technol. 2024, 19, 2413–2423. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, T. Sound Quality of the Acoustic Noise Radiated by PWM-Fed Electric Powertrain. IEEE Trans. Ind. Electron. 2018, 65, 4534–4541. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Li, N.; Li, T. Modelling and Analysis of Electromagnetic Force, Vibration, and Noise in Permanent Magnet Synchronous Motor for Electric Vehicles under Different Working Conditions Considering Current Harmonics. IET Electr. Power Appl. 2023, 17, 952–964. [Google Scholar] [CrossRef]
- Cassat, A.; Espanet, C.; Coleman, R.; Burdet, L.; Leleu, E.; Torregrossa, D.; M’Boua, J.; Miraoui, A. A Practical Solution to Mitigate Vibrations in Industrial PM Motors Having Concentric Windings. IEEE Trans. Ind. Appl. 2012, 48, 1526–1538. [Google Scholar] [CrossRef]
- Tsoumas, I.P.; Tischmacher, H. Influence of the Inverter’s Modulation Technique on the Audible Noise of Electric Motors. IEEE Trans. Ind. Appl. 2014, 50, 269–278. [Google Scholar] [CrossRef]
- Schulz, S.E.; Kowalewski, D.L. Implementation of Variable-Delay Random PWM for Automotive Applications. IEEE Trans. Veh. Technol. 2007, 56, 1427–1433. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y.; Huang, H.; Zou, J. Vibration Reduction for Dual-Branch Three-Phase Permanent Magnet Synchronous Motor with Carrier Phase-Shift Technique. IEEE Trans. Power Electron. 2020, 35, 607–618. [Google Scholar] [CrossRef]
- Xu, Y.; Yuan, Q.; Zou, J.; Yao, Y.; Zhu, G. Sinusoidal Periodic Carrier Frequency Modulation in Reducing Electromagnetic Noise of Permanent Magnet Synchronous Motor. IET Electr. Power Appl. 2013, 7, 223–230. [Google Scholar] [CrossRef]
- Qiu, Z.; Chen, Y.; Liu, X.; Kang, Y.; Liu, H. Analysis of the Sideband Current Harmonics and Vibro-acoustics in the PMSM with SVPWM. IET Power Electron. 2020, 13, 1033–1040. [Google Scholar] [CrossRef]
- Divyam; Saxena, A.; Singh, B.; Rai, J.N. Comparative Analysis of PWM Techniques and SVPWM Operated V/f Control of Induction Motor Having Different Power Ratings. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 6–11. [Google Scholar]
- Bouyahi, H.; Ben Smida, K.; Khedher, A. Experimental Study of PWM Strategy Effect on Acoustic Noise Generated by Inverter-fed Induction Machine. Int. Trans. Electr. Energy Syst. 2020, 30, e12249. [Google Scholar] [CrossRef]
- Shayestehfard, A.; Mekhilef, S.; Mokhlis, H. Modified Scalar Discontinuous Pulse-width Modulation Method for Two-level Three-wire Voltage Source Inverters under Unbalanced and Distorted Conditions. IET Power Electron. 2015, 8, 1339–1348. [Google Scholar] [CrossRef]
- Liu, F.; Xin, K.; Liu, Y. An Adaptive Discontinuous Pulse Width Modulation (DPWM) Method for Three Phase Inverter. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1467–1472. [Google Scholar]
- Huang, Y.; Xu, Y.; Zhang, W.; Zou, J. Hybrid RPWM Technique Based on Modified SVPWM to Reduce the PWM Acoustic Noise. IEEE Trans. Power Electron. 2019, 34, 5667–5674. [Google Scholar] [CrossRef]
- Pindoriya, R.M.; Rajpurohit, B.S.; Kumar, R. A Novel Application of Harmonics Spread Spectrum Technique for Acoustic Noise and Vibration Reduction of PMSM Drive. IEEE Access 2020, 8, 103273–103284. [Google Scholar] [CrossRef]
- Sivarani, T.S.; Joseph, J.S.; Agees, K.C. Intensive Random Carrier Pulse Width Modulation for Induction Motor Drives Based on Hopping between Discrete Carrier Frequencies. IET Power Electron. 2016, 9, 417–426. [Google Scholar] [CrossRef]
- Chen, K.; Xie, Y. Multiphase Optimal Injection PWM with Dual Carrier Frequency to Reduce Current THD. IET Power Electron. 2017, 10, 1061–1076. [Google Scholar] [CrossRef]
- Lee, K.; Shen, G.; Yao, W.; Lu, Z. Performance Characterization of Random Pulse Width Modulation Algorithms in Industrial and Commercial Adjustable-Speed Drives. IEEE Trans. Ind. Appl. 2017, 53, 1078–1087. [Google Scholar] [CrossRef]
- Trzynadlowski, A.M.; Blaabjerg, F.; Pedersen, J.K.; Kirlin, R.L.; Legowski, S. Random Pulse Width Modulation Techniques for Converter-Fed Drive Systems-a Review. IEEE Trans. Ind. Appl. 1994, 30, 1166–1175. [Google Scholar] [CrossRef]
- Andersson, A.; Lennstrom, D.; Nykanen, A. Influence of Inverter Modulation Strategy on Electric Drive Efficiency and Perceived Sound Quality. IEEE Trans. Transp. Electrif. 2016, 2, 24–35. [Google Scholar] [CrossRef]
- Bhavani, J.; Amarnath, J.; Subba Rayudu, D. Generalized PWM Algorithm for VSI Fed Induction Motor Drives Using the Only Sampled Reference Phase Voltages. In Proceedings of the 2012 IEEE 5th India International Conference on Power Electronics (IICPE), Delhi, India, 6–8 December 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–5. [Google Scholar]
- Liang, W.; Luk, P.C.-K.; Fei, W. Analytical Investigation of Sideband Electromagnetic Vibration in Integral-Slot PMSM Drive with SVPWM Technique. IEEE Trans. Power Electron. 2017, 32, 4785–4795. [Google Scholar] [CrossRef]
- Qiu, Z.; Huang, X.; Ma, K.; Kong, Z.; Liu, X. Sideband Vibro-Acoustic Responses and Improvements with Different Pulsewidth Modulation Strategies in Permanent Magnet Synchronous Motor for Electric Vehicle. IEEE J. Emerg. Sel. Topics Power Electron. 2022, 10, 7098–7108. [Google Scholar] [CrossRef]
- Wang, D.; Yang, W.; Yang, J.; Jiang, K.; Fu, Y. Research on Electromagnetic Vibration Characteristics of a Permanent Magnet Synchronous Motor Based on Multi-Physical Field Coupling. Energies 2023, 16, 3916. [Google Scholar] [CrossRef]
- Lu, Y.; Li, J.; Qu, R.; Ye, D.; Lu, H.; Sun, J.; Ge, M.; Xu, H. Electromagnetic Force and Vibration Analysis of Permanent-Magnet-Assisted Synchronous Reluctance Machines. IEEE Trans. Ind. Appl. 2018, 54, 4246–4256. [Google Scholar] [CrossRef]
DPWM Mode | ε1 | ε2 | ε3 | α1 | α2 | α3 |
0 | 1 | 1 | 0 | 2 | 4 | / |
1 | 1 | 1 | 1 | 4 | 6 | 8 |
2 | 1 | 1 | 0 | 2 | 4 | / |
3 | 1 | 1 | 1 | 4 | 6 | 8 |
MAX | 1 | 0 | 0 | 1 | / | / |
MIN | 1 | 0 | 0 | 1 | / | / |
Current Harmonics | Magnetic Flux Density | Radial Electromagnetic Force |
---|---|---|
ωc − 7ω0 | ωc − 7ω0 | ωc − 6ω0, ωc − 8ω0 |
ωc − 5ω0 | ωc − 5ω0 | ωc − 4ω0, ωc − 6ω0 |
ωc + 5ω0 | ωc + 5ω0 | ωc + 4ω0, ωc + 6ω0 |
ωc + 7ω0 | ωc + 7ω0 | ωc − 6ω0, ωc − 8ω0 |
Parameters | Values | Parameters | Values |
---|---|---|---|
Number of slots | 12 | Rated torque | 8 Nm |
Number of poles | 10 | d-axis inductance | 1.2 mH |
Rated speed | 2000 r/min | q-axis inductance | 3.4 mH |
Rated power | 3 kW | DC link voltage | 300 V |
Modal Order | Measured Result | Simulation Result | Relative Error |
2 | 2.9% | ||
1396.5 Hz | 1437.4 Hz | ||
3 | 0.4% | ||
2047.1 HZ | 2055.3 Hz | ||
4 | 1.0% | ||
2891.2 Hz | 2861.5 Hz | ||
5 | 4.6% | ||
3645.7 Hz | 3475.6 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yan, B.; Zhang, L.; Yao, K.; Jiang, X. Sideband Vibro-Acoustics Suppression and Numerical Prediction of Permanent Magnet Synchronous Motor Based on Markov Chain Random Carrier Frequency Modulation. Appl. Sci. 2024, 14, 4808. https://doi.org/10.3390/app14114808
Chen Y, Yan B, Zhang L, Yao K, Jiang X. Sideband Vibro-Acoustics Suppression and Numerical Prediction of Permanent Magnet Synchronous Motor Based on Markov Chain Random Carrier Frequency Modulation. Applied Sciences. 2024; 14(11):4808. https://doi.org/10.3390/app14114808
Chicago/Turabian StyleChen, Yong, Bingxiao Yan, Liming Zhang, Kefu Yao, and Xue Jiang. 2024. "Sideband Vibro-Acoustics Suppression and Numerical Prediction of Permanent Magnet Synchronous Motor Based on Markov Chain Random Carrier Frequency Modulation" Applied Sciences 14, no. 11: 4808. https://doi.org/10.3390/app14114808
APA StyleChen, Y., Yan, B., Zhang, L., Yao, K., & Jiang, X. (2024). Sideband Vibro-Acoustics Suppression and Numerical Prediction of Permanent Magnet Synchronous Motor Based on Markov Chain Random Carrier Frequency Modulation. Applied Sciences, 14(11), 4808. https://doi.org/10.3390/app14114808