The Influence of Yeast Strain on the Chemical, Chromatic, and Sensory Characteristics of ‘Wodarz’ Apple Cider
Abstract
:1. Introduction
2. Materials and Methods
2.1. Orchard
2.2. Cider Making
2.3. Cider Chemical Analysis
2.4. Cider Color Analysis
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Initial Characteristics of ‘Wodarz’ Apple
3.2. Fermentation Color Spectral Dynamic Changes
3.2.1. Lightness Changes during Fermentation
3.2.2. Chroma Changes during Fermentation
3.2.3. Hue Changes during Fermentation
3.2.4. Sugar Reduction during Fermentation
3.3. Final Cider Chemistry
3.4. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karl, A.D.; Zakalik, D.L.; Cook, B.S.; Krishna Kumar, S.; Peck, G.M. The Biochemical and Physiological Basis for Hard Cider Apple Fruit Quality. Plants People Planet 2023, 5, 178–189. [Google Scholar] [CrossRef]
- Heikefelt, C. Chemical and Sensory Analyses of Juice, Cider and Vinegar Produced from Different Apple Cultivars. Available online: https://stud.epsilon.slu.se/2481/ (accessed on 21 May 2024).
- Baiano, A.; Fiore, A.; la Gatta, B.; Gerardi, C.; Grieco, F.; Tufariello, M. A Chemometric Approach to the Evaluation of Sparkling Ciders Produced by Champenoise and Charmat Methods. Food Biosci. 2023, 55, 102917. [Google Scholar] [CrossRef]
- Rosend, J.; Kuldjärv, R.; Rosenvald, S.; Paalme, T. The Effects of Apple Variety, Ripening Stage, and Yeast Strain on the Volatile Composition of Apple Cider. Heliyon 2019, 5, e01953. [Google Scholar] [CrossRef] [PubMed]
- Del Campo, G.; Berregi, I.; Iturriza, N.; Santos, J.I. Ripening and Changes in Chemical Composition of Seven Cider Apple Varieties. Food Sci. Technol. Int. 2006, 12, 477–487. [Google Scholar] [CrossRef]
- Cairns, P.; Hamilton, L.; Racine, K.; Phetxumphou, K.; Ma, S.; Lahne, J.; Gallagher, D.; Huang, H.; Moore, A.N.; Stewart, A.C. Effects of Hydroxycinnamates and Exogenous Yeast Assimilable Nitrogen on Cider Aroma and Fermentation Performance. J. Am. Soc. Brew. Chem. 2022, 80, 236–247. [Google Scholar] [CrossRef]
- Tarko, T.; Kostrz, M.; Duda-Chodak, A.; Semik-Szczurak, D.; Sroka, P.; Senczyszyn, T. The Effect of Apple Cultivars and Yeast Strains on Selected Quality Parameters and Antioxidant Activity of Fermented Apple Beverages. CyTA J. Food 2018, 16, 892–900. [Google Scholar] [CrossRef]
- Laaksonen, O.; Kuldjärv, R.; Paalme, T.; Virkki, M.; Yang, B. Impact of Apple Cultivar, Ripening Stage, Fermentation Type and Yeast Strain on Phenolic Composition of Apple Ciders. Food Chem. 2017, 233, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Lorenzini, M.; Simonato, B.; Slaghenaufi, D.; Ugliano, M.; Zapparoli, G. Assessment of Yeasts for Apple Juice Fermentation and Production of Cider Volatile Compounds. LWT 2019, 99, 224–230. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Pretorius, I.S. Yeast Modulation of Wine Flavor. Adv. Appl. Microbiol. 2005, 57, 131–175. [Google Scholar] [CrossRef] [PubMed]
- Calugar, P.C.; Coldea, T.E.; Salanță, L.C.; Pop, C.R.; Pasqualone, A.; Burja-Udrea, C.; Zhao, H.; Mudura, E. An Overview of the Factors Influencing Apple Cider Sensory and Microbial Quality from Raw Materials to Emerging Processing Technologies. Processes 2021, 9, 502. [Google Scholar] [CrossRef]
- Way, M.L.; Jones, J.E.; Longo, R.; Dambergs, R.G.; Swarts, N.D. A Preliminary Study of Yeast Strain Influence on Chemical and Sensory Characteristics of Apple Cider. Fermentation 2022, 8, 455. [Google Scholar] [CrossRef]
- Yu, W.; Zhu, Y.; Zhu, R.; Bai, J.; Qiu, J.; Wu, Y.; Zhong, K.; Gao, H. Insight into the Characteristics of Cider Fermented by Single and Co-Culture with Saccharomyces cerevisiae and Schizosaccharomyces pombe Based on Metabolomic and Transcriptomic Approaches. LWT 2022, 163, 113538. [Google Scholar] [CrossRef]
- Hirst, M.B.; Richter, C.L. Review of Aroma Formation through Metabolic Pathways of Saccharomyces cerevisiae in Beverage Fermentations. Am. J. Enol. Vitic. 2016, 67, 361–370. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, Y.; Qiu, Y.; Guo, H.; Ju, H.; Wang, Y.; Yuan, Y.; Yue, T. Chemical Composition, Sensorial Properties, and Aroma-Active Compounds of Ciders Fermented with Hanseniaspora osmophila and Torulaspora quercuum in Co- and Sequential Fermentations. Food Chem. 2020, 306, 125623. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and Its Importance to Wine Aroma. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef]
- Kheir, J.; Salameh, D.; Strehaiano, P.; Brandam, C.; Lteif, R. Impact of Volatile Phenols and Their Precursors on Wine Quality and Control Measures of Brettanomyces/Dekkera Yeasts. Eur. Food Res. Technol. 2013, 237, 655–671. [Google Scholar] [CrossRef]
- Antón, M.J.; Suárez Valles, B.; García Hevia, A.; Picinelli Lobo, A. Aromatic Profile of Ciders by Chemical Quantitative, Gas Chromatography-Olfactometry, and Sensory Analysis. J. Food Sci. 2014, 79, S92–S99. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.A.; Tucknott, O.G.; Lewis, M.J. 4-Methoxyallylbenzene: An Important Aroma Component of Apples. J. Sci. Food Agric. 1977, 28, 185–190. [Google Scholar] [CrossRef]
- Le Quéré, J.-M.; Husson, F.; Renard, C.M.G.C.; Primault, J. French Cider Characterization by Sensory, Technological and Chemical Evaluations. LWT Food Sci. Technol. 2006, 39, 1033–1044. [Google Scholar] [CrossRef]
- Morata, A.; Gómez-Cordovés, M.C.; Colomo, B.; Suárez, J.A. Cell Wall Anthocyanin Adsorption by Different Saccharomyces Strains during the Fermentation of Vitis vinifera L. Cv Graciano Grapes. Eur. Food Res. Technol. 2005, 220, 341–346. [Google Scholar] [CrossRef]
- Morata, A.; Gómez-Cordovés, M.C.; Suberviola, J.; Bartolomé, B.; Colomo, B.; Suárez, J.A. Adsorption of Anthocyanins by Yeast Cell Walls during the Fermentation of Red Wines. J. Agric. Food Chem. 2003, 51, 4084–4088. [Google Scholar] [CrossRef] [PubMed]
- Medina, K.; Boido, E.; Dellacassa, E.; Carrau, F. Yeast Interactions with Anthocyanins during Red Wine Fermentation. Am. J. Enol. Vitic. 2005, 56, 104–109. [Google Scholar] [CrossRef]
- Maslov Bandić, L.; Žulj, M.M.; Fruk, G.; Babojelić, M.S.; Jemrić, T.; Jeromel, A. The Profile of Organic Acids and Polyphenols in Apple Wines Fermented with Different Yeast Strains. J. Food Sci. Technol. 2019, 56, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Cline, J.A.; Beneff, A.; Edwards, A.M. Cold Hardiness of Select Apple Cider Cultivars in Canada. Can. J. Plant Sci. 2022, 102, 394–404. [Google Scholar] [CrossRef]
- Boe, A. New Apple Varieties for the Prairie States. Farm. Res. 1992, 49, 22–23. [Google Scholar]
- Iland, P. Chemical Analysis of Grapes and Wine: Techniques and Concepts; Patrick Iland Wine Promotions: Athelstone, Australia, 2004; ISBN 978-0-9581605-1-3. [Google Scholar]
- Wang, Z.; Svyantek, A.; Hatterman-Valenti, H. Chemical and Chromatic Effects of Commercial Wine Yeast Strains (Saccharomyces spp.) on ‘Dolgo’ Crabapple Rosé Cider. Curr. Res. Environ. Appl. Mycol. J. Fungal Biol. 2023, 13, 79–91. [Google Scholar] [CrossRef]
- Grupo de Color. Departamento de Química. Universidad de La Rioja. Available online: https://www.unirioja.es/color/descargas.shtml (accessed on 17 July 2023).
- Noble, A.C.; Arnold, R.A.; Buechsenstein, J.; Leach, E.J.; Schmidt, J.O.; Stern, P.M. Modification of a Standardized System of Wine Aroma Terminology. Am. J. Enol. Vitic. 1987, 38, 143–146. [Google Scholar] [CrossRef]
- Williams, A.A. The Development of a Vocabulary and Profile Assessment Method for Evaluating the Flavour Contribution of Cider and Perry Aroma Constituents. J. Sci. Food Agric. 1975, 26, 567–582. [Google Scholar] [CrossRef]
- Phetxumphou, K.; Cox, A.N.; Lahne, J. Development and Characterization of a Check-All-That-Apply (CATA) Lexicon for Virginia Hard (Alcoholic) Ciders. J. Am. Soc. Brew. Chem. 2020, 78, 299–307. [Google Scholar] [CrossRef]
- HardCiderReviews.Com|Discover New Hard Cider Brands. Available online: https://hardciderreviews.com/ (accessed on 29 August 2023).
- McGrath, M. Test Driving a Cider Lexicon; American Cider Association: Portland, OR, USA, 2019; Available online: https://ciderassociation.org/test-driving-a-cider-lexicon/ (accessed on 15 May 2024).
- Cultivar Performance Database|WSU Cider|Washington State University Extension. Available online: https://cider.wsu.edu/ciderweb/ (accessed on 15 May 2024).
- Wickham, H. Programming with Ggplot2. In ggplot2: Elegant Graphics for Data Analysis; Wickham, H., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 241–253. ISBN 978-3-319-24277-4. [Google Scholar]
- Ye, M.; Yue, T.; Yuan, Y. Evolution of Polyphenols and Organic Acids during the Fermentation of Apple Cider. J. Sci. Food Agric. 2014, 94, 2951–2957. [Google Scholar] [CrossRef] [PubMed]
- Boulton, R.B.; Singleton, V.L.; Bisson, L.F.; Kunkee, R.E. Juice and Wine Acidity. In Principles and Practices of Winemaking; Boulton, R.B., Singleton, V.L., Bisson, L.F., Kunkee, R.E., Eds.; Springer: Boston, MA, USA, 1999; pp. 521–538. ISBN 978-1-4757-6255-6. [Google Scholar]
- Misery, B.; Legendre, P.; Rue, O.; Bouchart, V.; Guichard, H.; Laplace, J.M.; Cretenet, M. Diversity and Dynamics of Bacterial and Fungal Communities in Cider for Distillation. Int. J. Food Microbiol. 2021, 339, 108987. [Google Scholar] [CrossRef] [PubMed]
- Littleson, B.; Chang, E.; Neill, C.; Phetxumphou, K.; Sandbrook, A.; Stewart, A.; Lahne, J. Sensory and Chemical Properties of Virginia Hard Cider: Effects of Apple Cultivar Selection and Fermentation Strategy. J. Am. Soc. Brew. Chem. 2023, 81, 141–154. [Google Scholar] [CrossRef]
- Varela, C.; Pizarro, F.; Agosin, E. Biomass Content Governs Fermentation Rate in Nitrogen-Deficient Wine Musts. Appl. Environ. Microbiol. 2004, 70, 3392–3400. [Google Scholar] [CrossRef] [PubMed]
- Huertas, R.; Yebra, A.; Pérez, M.M.; Melgosa, M.; Negueruela, A.I. Color Variability for a Wine Sample Poured into a Standard Glass Wine Sampler. Color Res. Appl. 2003, 28, 473–479. [Google Scholar] [CrossRef]
- Choi, L.H.; Nielsen, S.S. The Effects of Thermal and Nonthermal Processing Methods on Apple Cider Quality and Consumer Acceptability. J. Food Qual. 2005, 28, 13–29. [Google Scholar] [CrossRef]
- Le Deun, E.; Van der Werf, R.; Le Bail, G.; Le Quéré, J.-M.; Guyot, S. HPLC-DAD-MS Profiling of Polyphenols Responsible for the Yellow-Orange Color in Apple Juices of Different French Cider Apple Varieties. J. Agric. Food Chem. 2015, 63, 7675–7684. [Google Scholar] [CrossRef] [PubMed]
- Bortolini, D.G.; Benvenutti, L.; Demiate, I.M.; Nogueira, A.; Alberti, A.; Zielinski, A.A.F. A New Approach to the Use of Apple Pomace in Cider Making for the Recovery of Phenolic Compounds. LWT 2020, 126, 109316. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Guyot, S.; Herrero, C.; Berrueta, L.A.; Drilleau, J.-F.; Gallo, B.; Vicente, F. Chemometric Classification of Basque and French Ciders Based on Their Total Polyphenol Contents and CIELab Parameters. Food Chem. 2005, 91, 91–98. [Google Scholar] [CrossRef]
- Lea, A.G.H. Flavor, Color, and Stability in Fruit Products: The Effect of Polyphenols. In Plant Polyphenols: Synthesis, Properties, Significance; Hemingway, R.W., Laks, P.E., Eds.; Springer: Boston, MA, USA, 1992; pp. 827–847. ISBN 978-1-4615-3476-1. [Google Scholar]
- Malec, M.; Le Quéré, J.-M.; Sotin, H.; Kolodziejczyk, K.; Bauduin, R.; Guyot, S. Polyphenol Profiling of a Red-Fleshed Apple Cultivar and Evaluation of the Color Extractability and Stability in the Juice. J. Agric. Food Chem. 2014, 62, 6944–6954. [Google Scholar] [CrossRef] [PubMed]
- Picinelli, A.; Suárez, B.; Moreno, J.; Rodríguez, R.; Caso-García, L.M.; Mangas, J.J. Chemical Characterization of Asturian Cider. J. Agric. Food Chem. 2000, 48, 3997–4002. [Google Scholar] [CrossRef] [PubMed]
- Rosend, J.; Kaleda, A.; Kuldjärv, R.; Arju, G.; Nisamedtinov, I. The Effect of Apple Juice Concentration on Cider Fermentation and Properties of the Final Product. Foods 2020, 9, 1401. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Wojtyna, N.; Dougherty, L.; Xu, K.; Peck, G. Classifying Cider Apple Germplasm Using Genetic Markers for Fruit Acidity. J. Am. Soc. Hortic. Sci. 2021, 146, 267–275. [Google Scholar] [CrossRef]
- Symoneaux, R.; Poupard, P.; Bauduin, R.; Guyot, S.; Le Quéré, J.-M. The Color of Cider: Cider Color Preference and Cider Consumption. In Proceedings of the 11th Pangorn Sensory Science Symposim, Gothenburg, Sweden, 23–27 August 2015; p. hal-0273869. [Google Scholar]
- Sugrue, M.; Dando, R. Cross-Modal Influence of Colour from Product and Packaging Alters Perceived Flavour of Cider. J. Inst. Brew. 2018, 124, 254–260. [Google Scholar] [CrossRef]
- Echeverrigaray, S.; Scariot, F.J.; Menegotto, M.; Delamare, A.P.L. Anthocyanin Adsorption by Saccharomyces cerevisiae during Wine Fermentation Is Associated to the Loss of Yeast Cell Wall/Membrane Integrity. Int. J. Food Microbiol. 2020, 314, 108383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, P.; Zhang, P.; Wang, T.; Wang, L.; Sun, J.; Gu, S.; Yuan, J.-F.; Zhao, L. Effects of Different Non-Saccharomyces Strains in Simultaneous and Sequential Co-Fermentations with Saccharomyces cerevisiae on the Quality Characteristics of Kiwi Wine. 2024. Available online: https://ssrn.com/abstract=4765574 (accessed on 15 May 2024).
- Xu, J.; Guo, L.; Wang, T.; Ma, M.; Wang, B.; Wei, X.; Fan, M. Effect of Inorganic and Organic Nitrogen Supplementation on Volatile Components and Aroma Profile of Cider. Food Res. Int. 2022, 161, 111765. [Google Scholar] [CrossRef] [PubMed]
- Kerr, E.D.; McDiarmid, D.C.; Fraser, J.A.; Schulz, B.L. Cell Wall and Whole Cell Proteomes Define Flocculation and Fermentation Behavior of Yeast. Fermentation 2018, 4, 80. [Google Scholar] [CrossRef]
- Chen, D.; Liu, S.-Q. Chemical and Volatile Composition of Lychee Wines Fermented with Four Commercial Saccharomyces cerevisiae Yeast Strains. Int. J. Food Sci. Technol. 2014, 49, 521–530. [Google Scholar] [CrossRef]
- Leguerinel, I.; Mafart, P.; Cleret, J.J.; Bourgeois, C. Yeast Strain and Kinetic Aspects of the Formation of Flavour Components in Cider. J. Inst. Brew. 1989, 95, 405–409. [Google Scholar] [CrossRef]
- Pando Bedriñana, R.; Picinelli Lobo, A.; Rodríguez Madrera, R.; Suárez Valles, B. Characteristics of Ice Juices and Ciders Made by Cryo-Extraction with Different Cider Apple Varieties and Yeast Strains. Food Chem. 2020, 310, 125831. [Google Scholar] [CrossRef] [PubMed]
- Nešpor, J.; Karabín, M.; Štulíková, K.; Dostálek, P. An HS-SPME-GC-MS Method for Profiling Volatile Compounds as Related to Technology Used in Cider Production. Molecules 2019, 24, 2117. [Google Scholar] [CrossRef] [PubMed]
- Villière, A.; Arvisenet, G.; Lethuaut, L.; Prost, C.; Sérot, T. Selection of a Representative Extraction Method for the Analysis of Odourant Volatile Composition of French Cider by GC–MS–O and GC×GC–TOF-MS. Food Chem. 2012, 131, 1561–1568. [Google Scholar] [CrossRef]
- Picinelli Lobo, A.; Pando Bedriñana, R.; Rodríguez Madrera, R.; Suárez Valles, B. Aromatic, Olfactometric and Consumer Description of Sweet Ciders Obtained by Cryo-Extraction. Food Chem. 2021, 338, 127829. [Google Scholar] [CrossRef] [PubMed]
- Kalb, T.; Wiederholt, K.; Elhard, C.; Good, J. The Best Apples for North Dakota. Available online: https://www.ag.ndsu.edu:8000/agriculture/extension/extension-topics/gardening-and-horticulture/fruits/best-apples-north-dakota (accessed on 19 July 2023).
- Askew, R.; Chaput, L.; Smith, R. Tree Fruit Culture and Varieties in North Dakota; NDSU Extension H327. 2005. Available online: https://library.ndsu.edu/ir/bitstream/handle/10365/9383/H327_2005.pdf?sequence=1&isAllowed=y#:~:text=Many%20different%20kinds%20of%20fruit,successfully%20grown%20in%20North%20Dakota (accessed on 15 May 2024).
- Martin, M.; Padilla-Zakour, O.I.; Gerling, C. Tannin Additions to Improve the Quality of Hard Cider Made from Dessert Apples. New York State Hort. Soc. 2017, 25, 25–28. [Google Scholar]
- Merwin, I.A.; Valois, S.; Padilla-Zakour, O.I. Cider Apples and Cider-Making Techniques in Europe and North America. Hortic. Rev. 2007, 34, 365–415. [Google Scholar]
- Binati, R.L.; Lemos Junior, W.J.F.; Luzzini, G.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Contribution of Non-Saccharomyces Yeasts to Wine Volatile and Sensory Diversity: A Study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris Strains Isolated in Italy. Int. J. Food Microbiol. 2020, 318, 108470. [Google Scholar] [CrossRef] [PubMed]
- Vilela, A. Lachancea Thermotolerans, the Non-Saccharomyces Yeast That Reduces the Volatile Acidity of Wines. Fermentation 2018, 4, 56. [Google Scholar] [CrossRef]
- Boscaino, F.; Ionata, E.; La Cara, F.; Guerriero, S.; Marcolongo, L.; Sorrentino, A. Impact of Saccharomyces cerevisiae and Metschnikowia fructicola Autochthonous Mixed Starter on Aglianico Wine Volatile Compounds. J. Food Sci. Technol. 2019, 56, 4982–4991. [Google Scholar] [CrossRef] [PubMed]
- Tocci, N.; Egger, M.; Hoellrigl, P.; Sanoll, C.; Beisert, B.; Brezina, S.; Fritsch, S.; Schnell, S.; Rauhut, D.; Conterno, L. Torulaspora Delbrueckii Strain Behaviour within Different Refermentation Strategies for Sparkling Cider Production. Appl. Sci. 2023, 13, 4015. [Google Scholar] [CrossRef]
- Vicente, J.; Ruiz, J.; Belda, I.; Benito-Vázquez, I.; Marquina, D.; Calderón, F.; Santos, A.; Benito, S. The Genus Metschnikowia in Enology. Microorganisms 2020, 8, 1038. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; García, L.A.; Díaz, M. Malolactic Bioconversion Using a Oenococcus Oeni Strain for Cider Production: Effect of Yeast Extract Supplementation. J. Ind. Microbiol. Biotechnol. 2003, 30, 699–704. [Google Scholar] [CrossRef] [PubMed]
Glucose (g L−1) | Fructose (g L−1) | Sucrose (g L−1) | Fermentable Sugars (g L−1) | Sorbitol (g L−1) | SSC (°Brix) |
---|---|---|---|---|---|
3.9 ± 1.60 | 58.4 ± 5.9 | 36.0 ± 3.4 | 98.2 ± 4.8 | 4.6 ± 1.1 | 10.1 ± 0.2 |
pH | Total Acidity (g L−1) 1 | Malic Acid (g L−1) |
---|---|---|
3.74 ± 0.07 | 2.7 ± 0.1 | 3.35 ± 0.91 |
PAN (mg of N L−1) | Ammonia (mg L−1) | Total Phenolics (AU) | Single Fruit Mass (g) |
---|---|---|---|
19.50 ± 2.19 | 1.40 ± 0.29 | 14.53 ± 1.00 | 121.50 ± 6.38 |
Yeast | Glucose (g L−1) | Fructose (g L−1) | Residual Sugar (g L−1) |
---|---|---|---|
71B | 0.08 ± 0.01 ns 1 | 2.91 ± 1.16 ns | 2.98 ± 1.15 ns |
EC1118 | 0.08 ± 0.01 | 2.62 ± 0.97 | 2.70 ± 0.97 |
Maurivin B | 0.05 ± 0.03 | 0.82 ± 0.45 | 0.88 ± 0.43 |
WLP775 | 1.08 ± 0.96 | 8.34 ± 3.97 | 9.41 ± 4.82 |
WY4766 | 0.09 ± 0.02 | 0.37 ± 0.37 | 0.45 ± 0.36 |
Mean (Min–Max) | 0.27 (0.00–2.80) | 3.01 (0.00–15.90) | 3.29 (0.07–18.70) |
F | 1.351 | 2.8169 | 2.5347 |
p | 0.3315 | 0.09924 | 0.1224 |
Yeast | pH | Total Acidity (g L−1) 1 | Malic Acid (g L−1) | Lactic Acid (g L−1) | Acetic Acid (g L−1) |
---|---|---|---|---|---|
71B | 4.01 ± 0.03 ns 2 | 3.2 ± 0.2 ns | 5.04 ± 0.16 ns | 0.10 ± 0.02 ns | 0.17 ± 0.09 b |
EC1118 | 4.06 ± 0.12 | 2.9 ± 0.2 | 3.64 ± 1.02 | 0.69 ± 0.49 | 0.56 ± 0.04 a |
Maurivin B | 4.05 ± 0.05 | 3.3 ± 0.1 | 4.70 ± 0.16 | 0.25 ± 0.11 | 0.08 ± 0.04 b |
WLP775 | 3.96 ± 0.06 | 3.1 ± 0.6 | 4.78 ± 0.53 | 0.50 ± 0.30 | 0.07 ± 0.04 b |
WY4766 | 4.00 ± 0.04 | 3.6 ± 0.2 | 4.80 ± 0.16 | 0.28 ± 0.09 | 0.08 ± 0.02 b |
Mean (Min–Max) | 4.02 (3.84–4.30) | 3.2 (2.0–3.9) | 4.59 (1.60–5.75) | 0.37 (0.07–1.68) | 0.19 (0.00–0.63) |
F | 0.7414 | 0.7513 | 1.0646 | 0.7731 | 19.074 |
p | 0.5898 | 0.5793 | 0.4231 | 0.567 | 0.0003748 |
Yeast | Ethanol (% v/v) | Glycerol (g L−1) | Sorbitol (g L−1) | Total Phenolics (AU) |
---|---|---|---|---|
71B | 5.27 ± 0.16 ns 1 | 5.34 ± 0.15 a | 3.46 ± 1.24 b | 13.67 ± 0.62 ns |
EC1118 | 5.09 ± 0.16 | 4.99 ± 0.14 ab | 4.25 ± 0.92 ab | 14.18 ± 1.67 |
Maurivin B | 5.33 ± 0.13 | 4.68 ± 0.01 ab | 5.47 ± 1.24 ab | 16.74 ± 1.40 |
WLP775 | 5.08 ± 0.25 | 4.14 ± 0.34 b | 5.74 ± 1.10 ab | 13.20 ± 1.17 |
WY4766 | 5.35 ± 0.73 | 4.14 ± 0.08 b | 7.05 ± 0.61 a | 15.29 ± 0.25 |
Mean (Min–Max) | 5.22 (4.63–5.58) | 4.66 (3.53–5.63) | 5.19 (2.50–7.75) | 14.62 (10.85–18.83) |
F | 0.9810 | 8.4019 | 5.2652 | 1.5347 |
p | 0.4693 | 0.003078 | 0.01519 | 0.2650 |
Yeast | Lightness (L*) | Red (a*) | Yellow (b*) | Chroma (C*) | Hue (h°) |
---|---|---|---|---|---|
71B | 93.7 ± 1.7 ns 1 | −2.2 ± 0.8 ns | 32.3 ± 0.9 ns | 32.4 ± 0.9 ns | 93.9 ± 1.3 ns |
EC1118 | 94.6 ± 1.8 | −2.8 ± 1.7 | 33.7 ± 4.5 | 34.0 ± 4.3 | 95.7 ± 4.0 |
Maurivin B | 93.3 ± 2.1 | −2.5 ± 1.2 | 36.8 ± 4.2 | 36.9 ± 4.0 | 94.4 ± 2.4 |
WLP775 | 91.5 ± 2.7 | −1.5 ± 0.6 | 36.4 ± 4.1 | 36.4 ± 4.1 | 92.5 ± 1.1 |
WY4766 | 91.2 ± 2.2 | −1.7 ± 0.8 | 38.4 ± 0.4 | 38.4 ± 0.4 | 92.6 ± 1.2 |
Mean (Min–Max) | 92.9 (86.5–98.2) | −2.2 (−5.8–0.2) | 35.5 (24.8–41.9) | 35.6 (25.4–41.9) | 93.8 (89.7–103.2) |
F ratio | 0.4708 | 0.2550 | 0.5646 | 0.5836 | 0.3355 |
p | 0.7564 | 0.9001 | 0.6956 | 0.6835 | 0.8480 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Svyantek, A.; Bogenrief, S.; Kadium, V.R.; Hatterman-Valenti, H. The Influence of Yeast Strain on the Chemical, Chromatic, and Sensory Characteristics of ‘Wodarz’ Apple Cider. Appl. Sci. 2024, 14, 4851. https://doi.org/10.3390/app14114851
Wang Z, Svyantek A, Bogenrief S, Kadium VR, Hatterman-Valenti H. The Influence of Yeast Strain on the Chemical, Chromatic, and Sensory Characteristics of ‘Wodarz’ Apple Cider. Applied Sciences. 2024; 14(11):4851. https://doi.org/10.3390/app14114851
Chicago/Turabian StyleWang, Zhuoyu, Andrej Svyantek, Sarah Bogenrief, Venkateswara Rao Kadium, and Harlene Hatterman-Valenti. 2024. "The Influence of Yeast Strain on the Chemical, Chromatic, and Sensory Characteristics of ‘Wodarz’ Apple Cider" Applied Sciences 14, no. 11: 4851. https://doi.org/10.3390/app14114851
APA StyleWang, Z., Svyantek, A., Bogenrief, S., Kadium, V. R., & Hatterman-Valenti, H. (2024). The Influence of Yeast Strain on the Chemical, Chromatic, and Sensory Characteristics of ‘Wodarz’ Apple Cider. Applied Sciences, 14(11), 4851. https://doi.org/10.3390/app14114851