Can Unmanned Aerial Vehicle Images Be Used to Estimate Forage Production Parameters in Agroforestry Systems in the Caatinga?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Characterization of the Experimental Area
2.2. Unmanned Aerial Vehicle Flight Pattern
2.3. Orthomosaics and Vegetation Indices
2.4. Forage Mass and Leaf Area Index (LAI)
2.5. Correlation Analysis
2.6. Machine Learning Models
2.7. Model Evaluation
3. Results
3.1. Correlating and Determining the Orthomosaic Treatment Approach
3.2. Analysis of Prediction Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliveira, V.R.; e Silva, P.S.L.; de Paiva, H.N.; Pontes, F.S.T.; Antonio, R.P. Growth of Arboreal Leguminous Plants and Maize Yield in Agroforestry Systemsm. Rev. Arvore 2016, 40, 679–688. [Google Scholar] [CrossRef]
- Queiroz, M.G.; da Silva, T.G.F.; de Souza, C.A.A.; da Rosa Ferraz Jardim, A.M.; do Nascimento Araújo, G.; de Souza, L.S.B.; de Moura, M.S.B. Composition of Caatinga Species under Anthropic Disturbance and Its Correlation with Rainfall Partitioning. Floresta E Ambient. 2021, 28, e20190044. [Google Scholar] [CrossRef]
- Carvalho, W.F.; Alves, A.A.; Pompeu, R.C.F.F.; Araújo, A.R.; Fernandes, F.É.P.; dos Santos Costa, C.; de Sousa Oliveira, D.; Memória, H.Q.; Guedes, L.F.; Muir, J.P.; et al. Effect of Concentrate Supplement to Ewes on Nutritive Value of Ingested Caatinga Native Forage Nutritive Value as Affected by Season. Trop. Anim. Health Prod. 2021, 53, 556. [Google Scholar] [CrossRef] [PubMed]
- de Queiroz, M.G.; da Silva, T.G.F.; Zolnier, S.; Jardim, A.M.D.R.F.; de Souza, C.A.A.; Júnior, G.D.N.A.; de Morais, J.E.F.; de Souza, L.S.B. Spatial and Temporal Dynamics of Soil Moisture for Surfaces with a Change in Land Use in the Semi-Arid Region of Brazil. Catena 2020, 188, 104457. [Google Scholar] [CrossRef]
- Pinheiro, F.M.; Nair, P.K.R. Silvopasture in the Caatinga Biome of Brazil: A Review of Its Ecology, Management, and Development Opportunities. For. Syst. 2018, 27, eR01S. [Google Scholar] [CrossRef]
- Sharma, P.; Bhardwaj, D.R.; Singh, M.K.; Nigam, R.; Pala, N.A.; Kumar, A.; Verma, K.; Kumar, D.; Thakur, P. Geospatial Technology in Agroforestry: Status, Prospects, and Constraints. Environ. Sci. Pollut. Res. 2022, 30, 116459–116487. [Google Scholar] [CrossRef] [PubMed]
- Suárez, L.R.; Suárez Salazar, J.C.; Casanoves, F.; Ngo Bieng, M.A. Cacao Agroforestry Systems Improve Soil Fertility: Comparison of Soil Properties between Forest, Cacao Agroforestry Systems, and Pasture in the Colombian Amazon. Agric. Ecosyst. Environ. 2021, 314, 107349. [Google Scholar] [CrossRef]
- Carneiro, F.M.; Angeli Furlani, C.E.; Zerbato, C.; Candida de Menezes, P.; da Silva Gírio, L.A.; Freire de Oliveira, M. Comparison between Vegetation Indices for Detecting Spatial and Temporal Variabilities in Soybean Crop Using Canopy Sensors. Precis. Agric. 2020, 21, 979–1007. [Google Scholar] [CrossRef]
- Xiao, J.; Xiong, K. A Review of Agroforestry Ecosystem Services and Its Enlightenment on the Ecosystem Improvement of Rocky Desertification Control. Sci. Total Environ. 2022, 852, 158538. [Google Scholar] [CrossRef]
- DiMaggio, A.M.; Perotto-Baldivieso, H.L.; Ortega-S, J.A.; Walther, C.; Labrador-Rodriguez, K.N.; Page, M.T.; Martinez, J.D.L.L.; Rideout-Hanzak, S.; Hedquist, B.C.; Wester, D.B. A Pilot Study to Estimate Forage Mass from Unmanned Aerial Vehicles in a Semi-Arid Rangeland. Remote Sens. 2020, 12, 2431. [Google Scholar] [CrossRef]
- Andrade, T.G.; Junior, A.S.D.A.; Souza, M.O.; Lopes, J.W.B.; Vieira, P.F.D.M.J. Soybean Yield Prediction Using Remote Sensing in Southwestern Piauí State, Brazil. Rev. Caatinga 2022, 35, 105–116. [Google Scholar] [CrossRef]
- Arenas-Corraliza, M.G.; López-Díaz, M.L.; Rolo, V.; Cáceres, Y.; Moreno, G. Phenological, Morphological and Physiological Drivers of Cereal Grain Yield in Mediterranean Agroforestry Systems. Agric. Ecosyst. Environ. 2022, 340, 108158. [Google Scholar] [CrossRef]
- Beniaich, A.; Silva, M.L.N.; Guimarães, D.V.; Avalos, F.A.P.; Terra, F.S.; Menezes, M.D.; Avanzi, J.C.; Cândido, B.M. UAV-Based Vegetation Monitoring for Assessing the Impact of Soil Loss in Olive Orchards in Brazil. Geoderma Reg. 2022, 30, e00543. [Google Scholar] [CrossRef]
- Freitas, R.G.; Pereira, F.R.S.; Dos Reis, A.A.; Magalhães, P.S.G.; Figueiredo, G.K.D.A.; do Amaral, L.R. Estimating Pasture Aboveground Biomass under an Integrated Crop-Livestock System Based on Spectral and Texture Measures Derived from UAV Images. Comput. Electron. Agric. 2022, 198, 107122. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Castro, R. Remote Monitoring of Coffee Cultivation through Computational Processing of Satellite Images. In Proceedings of the 2019 7th International Engineering, Sciences and Technology Conference (IESTEC), Panama City, Panama, 9–11 October 2019; pp. 13–18. [Google Scholar] [CrossRef]
- Giuffrida, M.V.; Klapp, I.; Huang, J.; Sangjan, W.; Mcgee, R.J.; Sankaran, S. Optimization of UAV-Based Imaging and Image Processing Orthomosaic and Point Cloud Approaches for Estimating Biomass in a Forage Crop. Remote Sens. 2022, 14, 2396. [Google Scholar] [CrossRef]
- Wengert, M.; Piepho, H.P.; Astor, T.; Graß, R.; Wijesingha, J.; Wachendorf, M. Assessing Spatial Variability of Barley Whole Crop Biomass Yield and Leaf Area Index in Silvoarable Agroforestry Systems Using UAV-Borne Remote Sensing. Remote Sens. 2021, 13, 2751. [Google Scholar] [CrossRef]
- Azadbakht, M.; Ashourloo, D.; Aghighi, H.; Homayouni, S.; Shahrabi, H.S.; Matkan, A.A.; Radiom, S. Alfalfa Yield Estimation Based on Time Series of Landsat 8 and PROBA-V Images: An Investigation of Machine Learning Techniques and Spectral-Temporal Features. Remote Sens. Appl. Soc. Environ. 2022, 25, 100657. [Google Scholar] [CrossRef]
- Cosenza, D.N.; Vogel, J.; Broadbent, E.N.; Silva, C.A. Silvicultural Experiment Assessment Using Lidar Data Collected from an Unmanned Aerial Vehicle. For. Ecol. Manag. 2022, 522, 120489. [Google Scholar] [CrossRef]
- Kaushal, R.; Islam, S.; Tewari, S.; Tomar, J.M.S.; Thapliyal, S.; Madhu, M.; Trinh, T.L.; Singh, T.; Singh, A.; Durai, J. An Allometric Model-Based Approach for Estimating Biomass in Seven Indian Bamboo Species in Western Himalayan Foothills, India. Sci. Rep. 2022, 12, 7527. [Google Scholar] [CrossRef]
- Kearney, S.P.; Porensky, L.M.; Augustine, D.J.; Gaffney, R.; Derner, J.D. Monitoring Standing Herbaceous Biomass and Thresholds in Semiarid Rangelands from Harmonized Landsat 8 and Sentinel-2 Imagery to Support within-Season Adaptive Management. Remote Sens. Environ. 2022, 271, 112907. [Google Scholar] [CrossRef]
- Swayze, N.C.; Tinkham, W.T.; Creasy, M.B.; Vogeler, J.C.; Hoffman, C.M.; Hudak, A.T. Influence of UAS Flight Altitude and Speed on Aboveground Biomass Prediction. Remote Sens. 2022, 14, 1989. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Xi, B.; Hernandez-Santana, V. Evaluation of Method to Model Stomatal Conductance and Its Use to Assess Biomass Increase in Poplar Trees. Agric. Water Manag. 2022, 259, 107228. [Google Scholar] [CrossRef]
- Bawa, A.; Samanta, S.; Himanshu, S.K.; Singh, J.; Kim, J.J.; Zhang, T.; Chang, A.; Jung, J.; DeLaune, P.; Bordovsky, J.; et al. A Support Vector Machine and Image Processing Based Approach for Counting Open Cotton Bolls and Estimating Lint Yield from UAV Imagery. Smart Agric. Technol. 2023, 3, 100140. [Google Scholar] [CrossRef]
- De Graeve, M.; Birse, N.; Hong, Y.; Elliott, C.T.; Hemeryck, L.Y.; Vanhaecke, L. Multivariate versus Machine Learning-Based Classification of Rapid Evaporative Ionisation Mass Spectrometry Spectra towards Industry Based Large-Scale Fish Speciation. Food Chem. 2023, 404, 134632. [Google Scholar] [CrossRef] [PubMed]
- Durmuş, Y.; Atasoy, A.F. Application of Multivariate Machine Learning Methods to Investigate Organic Compound Content of Different Pepper Spices. Food Biosci. 2023, 51, 102216. [Google Scholar] [CrossRef]
- Shi, H.; Yang, D.; Tang, K.; Hu, C.; Li, L.; Zhang, L.; Gong, T.; Cui, Y. Explainable Machine Learning Model for Predicting the Occurrence of Postoperative Malnutrition in Children with Congenital Heart Disease. Clin. Nutr. 2022, 41, 202–210. [Google Scholar] [CrossRef]
- Servia, H.; Pareeth, S.; Michailovsky, C.I.; de Fraiture, C.; Karimi, P. Operational Framework to Predict Field Level Crop Biomass Using Remote Sensing and Data Driven Models. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102725. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.J.L.; Sentelhas, P.C.; Leonardo, J.; Gonçalves, M.; Stape, J.L.J.L.; Sparovek, G.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements. In FAO Irrigation and Dranaige; FAO, Ed.; FAO—Food and Agriculture Organization of the United Nations: Roma, Italy, 1998; p. 56. ISBN 92-5-104219-5. [Google Scholar]
- Rossello, N.B.; Carpio, R.F.; Gasparri, A.; Garone, E. Information-Driven Path Planning for UAV With Limited Autonomy in Large-Scale Field Monitoring. IEEE Trans. Autom. Sci. Eng. 2021, 19, 2450–2460. [Google Scholar] [CrossRef]
- Arantes, B.H.T.; Arantes, L.T.; Costa, E.M.; Ventura, M.V.A. Drone Aplicado Na Agricultura Digital. Ipê Agron. J. 2019, 3, 14–18. [Google Scholar] [CrossRef]
- WebODM. WebODM Drone Mapping Software. OpenDroneMap. Available online: https://www.opendronemap.org/webodm/ (accessed on 10 January 2021).
- QGIS Development Team. QGIS Geographic Information System. Available online: https://qgis.org/ro/site (accessed on 10 January 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 10 January 2024).
- Hijmans, R. Raster: Geographic Data Analysis and Modeling. R Package Version 3.6-26. 2023. Available online: https://CRAN.R-project.org/package=raster (accessed on 10 January 2024).
- Matias, F.I.; Caraza-Harter, M.V.; Endelman, J.B. FIELDimageR: An R Package to Analyze Orthomosaic Images from Agricultural Field Trials. Plant Phenome J. 2020, 3, e20005. [Google Scholar] [CrossRef]
- Richardson, A.J.; Weigand, C.L. Distinguishing Vegetation from Soil Background Information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing Vineyard Condition with Hyperspectral Indices: Leaf and Canopy Reflectance Simulation in a Row-Structured Discontinuous Canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Escadafal, R.; Belghit, R.; Ben-Moussa, A. Indices Spectraux Pour La Télédétection de La Dégradation Des Milieux Naturels En Tunisie Aride. In Proceedings of the 6th International Symposium on Physical Measurements and Signatures in Remote Sensing, Val-d’Isère, France, 17–21 January 1994; pp. 17–21. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-Based Plant Height from Crop Surface Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.; Schellberg, J.; Bareth, G. Multi-Temporal Crop Surface Models Combined with the RGB Vegetation Index from UAV-Based Images for Forage Monitoring in Grassland. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 991–998. [Google Scholar] [CrossRef]
- Mathieu, R.; Pouget, M.; Cervelle, B.; Escadafal, R. Relationships between Satellite-Based Radiometric Indices Simulated Using Laboratory Reflectance Data and Typic Soil Color of an Arid Environment. Remote Sens. Environ. 1998, 66, 17–28. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Fang, H.; Li, W.; Wei, S.; Jiang, C. Seasonal Variation of Leaf Area Index (LAI) over Paddy Rice Fields in NE China: Intercomparison of Destructive Sampling, LAI-2200, Digital Hemispherical Photography (DHP), and AccuPAR Methods. Agric. For. Meteorol. 2014, 198, 126–141. [Google Scholar] [CrossRef]
- Schober, P.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Winter, J.C.F.; Gosling, S.D.; Potter, J. Comparing the Pearson and Spearman Correlation Coefficients across Distributions and Sample Sizes: A Tutorial Using Simulations and Empirical Data. Psychol. Methods 2016, 21, 273–290. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, W.; Wen, T. Prediction of Winter Wheat Yield and Dry Matter in North China Plain Using Machine Learning Algorithms for Optimal Water and Nitrogen Application. Agric. Water Manag. 2023, 277, 108140. [Google Scholar] [CrossRef]
- Gue, I.H.V.; Ubando, A.T.; Tseng, M.L.; Tan, R.R. Artificial Neural Networks for Sustainable Development: A Critical Review. Clean Technol. Environ. Policy 2020, 22, 1449–1465. [Google Scholar] [CrossRef]
- Hasson, U.; Nastase, S.A.; Goldstein, A. Direct Fit to Nature: An Evolutionary Perspective on Biological and Artificial Neural Networks. Neuron 2020, 105, 416–434. [Google Scholar] [CrossRef] [PubMed]
- Mousavizadegan, M.; Hosseini, M.; Sheikholeslami, M.N.; Hamidipanah, Y.; Reza Ganjali, M. Smartphone Image Analysis-Based Fluorescence Detection of Tetracycline Using Machine Learning. Food Chem. 2023, 403, 134364. [Google Scholar] [CrossRef] [PubMed]
- Alabi, T.R.; Abebe, A.T.; Chigeza, G.; Fowobaje, K.R. Estimation of Soybean Grain Yield from Multispectral High-Resolution UAV Data with Machine Learning Models in West Africa. Remote Sens. Appl. Soc. Environ. 2022, 27, 100782. [Google Scholar] [CrossRef]
- Döpke, J.; Fritsche, U.; Pierdzioch, C. Predicting Recessions with Boosted Regression Trees. Int. J. Forecast. 2017, 33, 745–759. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Rahmati, O. Prediction of the Landslide Susceptibility: Which Algorithm, Which Precision? Catena 2018, 162, 177–192. [Google Scholar] [CrossRef]
- Tajik, S.; Ayoubi, S.; Zeraatpisheh, M. Digital Mapping of Soil Organic Carbon Using Ensemble Learning Model in Mollisols of Hyrcanian Forests, Northern Iran. Geoderma Reg. 2020, 20, e00256. [Google Scholar] [CrossRef]
- Fritsch, S.; Guenther, F.; Wright, M. Neuralnet: Training of Neural Networks. R Package Version 1.44.2. 2019. Available online: https://CRAN.R-project.org/package=neuralnet (accessed on 10 January 2024).
- Karatzoglou, A.; Hornik, K.; Smola, A.; Zeileis, A. Kernlab—An S4 Package for Kernel Methods in R. J. Stat. Softw. 2004, 11, 1–20. [Google Scholar] [CrossRef]
- Kuhn, M.; Quinlan, R. Cubist: Rule-and Instance-Based Regression Modeling. R Package Version 0.4.2.1. 2023. Available online: https://CRAN.R-project.org/package=Cubist (accessed on 10 January 2024).
- Greg, R.; Developers, G. gbm: Generalized Boosted Regression Models. R Package Version 2.1.9. 2024. Available online: https://CRAN.R-project.org/package=gbm (accessed on 10 January 2024).
- Therneau, T.; Atkinson, B. rpart: Recursive Partitioning and Regression Trees. R Package Version 4.1.23. 2023. Available online: https://CRAN.R-project.org/package=rpart (accessed on 10 January 2024).
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Signorell, A. DescTools: Tools for Descriptive Statistics. R Package Version 0.99.54. 2024. Available online: https://CRAN.R-project.org/package=DescTools (accessed on 10 January 2024).
- Lourenço, P.; Godinho, S.; Sousa, A.; Gonçalves, A.C. Estimating Tree Aboveground Biomass Using Multispectral Satellite-Based Data in Mediterranean Agroforestry System Using Random Forest Algorithm. Remote Sens. Appl. Soc. Environ. 2021, 23, 100560. [Google Scholar] [CrossRef]
- Cao, Z.; Cheng, T.; Ma, X.; Tian, Y.; Zhu, Y.; Yao, X.; Chen, Q.; Liu, S.; Guo, Z.; Zhen, Q.; et al. A New Three-Band Spectral Index for Mitigating the Saturation in the Estimation of Leaf Area Index in Wheat. Int. J. Remote Sens. 2017, 38, 3865–3885. [Google Scholar] [CrossRef]
- Xu, J.; Gu, H.; Meng, Q.; Cheng, J.; Liu, Y.; Jiang, P.; Sheng, J.; Deng, J.; Bai, X. Spatial Pattern Analysis of Haloxylon Ammodendron Using UAV Imagery—A Case Study in the Gurbantunggut Desert. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101891. [Google Scholar] [CrossRef]
- Elazab, A.; Ordóñez, R.A.; Savin, R.; Slafer, G.A.; Araus, J.L. Detecting Interactive Effects of N Fertilization and Heat Stress on Maize Productivity by Remote Sensing Techniques. Eur. J. Agron. 2016, 73, 11–24. [Google Scholar] [CrossRef]
- Tang, Z.; Parajuli, A.; Chen, C.J.; Hu, Y.; Revolinski, S.; Medina, C.A.; Lin, S.; Zhang, Z.; Yu, L.X. Validation of UAV-Based Alfalfa Biomass Predictability Using Photogrammetry with Fully Automatic Plot Segmentation. Sci. Rep. 2021, 11, 3336. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, B.; Singh, V.; Neely, C.; Rajan, N.; Bagavathiannan, M. Detection of Italian Ryegrass in Wheat and Prediction of Competitive Interactions Using Remote-Sensing and Machine-Learning Techniques. Remote Sens. 2020, 12, 2977. [Google Scholar] [CrossRef]
- Alves, K.S.; Guimarães, M.; Ascari, J.P.; Queiroz, M.F.; Alfenas, R.F.; Mizubuti, E.S.G.; Del Ponte, E.M. RGB-Based Phenotyping of Foliar Disease Severity under Controlled Conditions. Trop. Plant Pathol. 2022, 47, 105–117. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Wientjes, E.; Douwstra, P.; Trouwborst, G.; van Ieperen, W.; Croce, R.; Harbinson, J. Photosynthetic Quantum Yield Dynamics: From Photosystems to Leaves. Plant Cell 2012, 24, 1921–1935. [Google Scholar] [CrossRef] [PubMed]
- Kume, A. Importance of the Green Color, Absorption Gradient, and Spectral Absorption of Chloroplasts for the Radiative Energy Balance of Leaves. J. Plant Res. 2017, 130, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Zhen, S.; van Iersel, M.W. Far-Red Light Is Needed for Efficient Photochemistry and Photosynthesis. J. Plant Physiol. 2017, 209, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Rotz, S.; Duncan, E.; Small, M.; Botschner, J.; Dara, R.; Mosby, I.; Reed, M.; Fraser, E.D.G. The Politics of Digital Agricultural Technologies: A Preliminary Review. Sociol. Ruralis 2019, 59, 203–229. [Google Scholar] [CrossRef]
- Colaço, A.F.; Trevisan, R.G.; Karp, F.H.S.; Molin, J.P. Yield Mapping Methods for Manually Harvested Crops. Comput. Electron. Agric. 2020, 177, 105693. [Google Scholar] [CrossRef]
- Choubin, B.; Zehtabian, G.; Azareh, A.; Rafiei-Sardooi, E.; Sajedi-Hosseini, F.; Kişi, Ö. Precipitation Forecasting Using Classification and Regression Trees (CART) Model: A Comparative Study of Different Approaches. Environ. Earth Sci. 2018, 77, 314. [Google Scholar] [CrossRef]
Common Name | Scientific Name |
---|---|
Mororó | Bauhinia cheilantha (Bong.) Steud. |
Marmeleiro | Croton sonderianus Müll. Arg. |
Feijão bravo | Capparis flexuosa (L.) |
Jurema branca | Mimosa sp. |
Cipó unha-de-gato | Uncaria sp. |
Catingueira | Cenostigma pyramidalis (Tul.) |
Maniçoba | Manihot glaziovii Müll. Arg. |
Juazeiro | Ziziphus joazeiro Mart. |
Angico | Anadenanthera macrocarpa (Benth.) Brenan |
Tingui | Magonia sp. |
Capim meloso | Melinis sp. |
Picão preto | Bidens pilosa L. |
Pau-piranha | Guapira sp. |
Capa bode | Melochia tomentosa L. |
Aroeira mansa | Myracrodruon urundeuva Allemão |
Mandacaru | Cereus jamacaru DC. |
Incó | Neocalyptrocalyx sp. |
Jurema preta | Mimosa tenuiflora Benth. |
Jitirana | Merremia aegyptia (L.) Urb. |
File Type | Description |
---|---|
Agrofor-Complete | Original file containing all components of the study area (soil, crops, trees) |
Soil-Removed | File with solo component removed |
Tree-Removed | File with tree component removed |
Tree + Soil-Removed | File with soil and tree components removed |
Index | Abbr. | Equation | Authors |
---|---|---|---|
Brightness Index | BI | ((R2 + G2 + B2)/3)0.5 | [39] |
Blue Green Pigment Index | BGI | B/G | [40] |
Green Leaf Index | GLI | (2 × G − R − B)/(2 × G + R + B) | [41] |
Primary Colors Hue Index | HI | (2 × G – R − B)/(G − B) | [42] |
Overall Hue Index | * HUE | cotg(2 × (B – G − R)/30.5 × (G − R)) | [42] |
Normalized Green Red Difference Index | NGRDI | (G − R)/(G + R) | [43] |
Modified Green Red Vegetation Index | MGRVI | (G2 − R2)/(G2 + R2) | [44] |
Red Green Blue Vegetation Index | RGBVI | (G2 − B × R2)/(G2 + B × R2) | [45] |
Soil Color Index | SCI | (R − G)/(R + G) | [46] |
Spectral Slope Saturation Index | SI | (R − B)/(R + B) | [42] |
Visible Atmospherically Resistant Index | VARI | (G − R)/(G + R − B) | [47] |
Variable | Treatment | Mean | Maximum | Minimum | Median | Standard Deviation |
---|---|---|---|---|---|---|
Fresh biomass (kg ha−1) | Cotton | 16,185.38 | 32,650.67 | 1068.67 | 18,324.13 | 2327.29 |
Caatinga | 14,537.66 | 33,775.73 | 988.53 | 15,451.33 | 2214.05 | |
Cowpea | 14,569.63 | 31,284.93 | 1527.87 | 15,461.83 | 1671.66 | |
Corn | 16,260.14 | 38,802.67 | 1556.27 | 13,969.97 | 3393.82 | |
Dry biomass (kg ha−1) | Cotton | 5050.21 | 12,007.62 | 193.60 | 4968.13 | 1057.59 |
Caatinga | 4675.15 | 12,568.19 | 130.21 | 5024.50 | 1065.31 | |
Cowpea | 5116.42 | 19,795.12 | 239.20 | 4065.86 | 2077.48 | |
Corn | 5241.47 | 14,414.41 | 275.34 | 4318.56 | 982.65 | |
Leaf area index (m2 m−2) | Cotton | 1.23 | 2.55 | 0.29 | 1.25 | 0.28 |
Caatinga | 1.24 | 2.25 | 0.33 | 1.26 | 0.15 | |
Cowpea | 1.32 | 2.88 | 0.31 | 1.31 | 0.26 | |
Corn | 1.27 | 3.56 | 0.35 | 1.33 | 0.38 |
Index | Response | RMSE | MAE | CCC | R2 | Model |
---|---|---|---|---|---|---|
NGRDI | Fresh biomass (kg ha−1) | 4002.04 | 3551.13 | 0.83 | 0.75 | y = 22,022 + 152,776x |
VARI | 4164.82 | 3656.81 | 0.82 | 0.73 | y = 22,610 + 98,632x | |
NGRDI | Dry biomass (kg ha−1) | 1743.56 | 1514.18 | 0.71 | 0.69 | y = 7258 + 52,400x |
VARI | 1805.94 | 1623.18 | 0.70 | 0.66 | y = 7446 + 33,669x | |
NGRDI | Leaf area index (m2 m−2) | 0.31 | 0.26 | 0.76 | 0.68 | y = 1.678 + 9.232x |
VARI | 0.31 | 0.26 | 0.77 | 0.71 | y = 1.727 + 6.133x |
Response | Model | RMSE | MAE | CCC | R2 |
---|---|---|---|---|---|
Fresh biomass (kg ha−1) | RN | 4898.54 | 3911.63 | 0.81 | 0.73 |
SVM | 5488.14 | 4309.95 | 0.78 | 0.68 | |
CART | 3020.86 | 2339.19 | 0.94 | 0.89 | |
Cub | 5275.10 | 4046.60 | 0.80 | 0.68 | |
BRT | 3414.95 | 2599.76 | 0.91 | 0.88 | |
Dry biomass (kg ha−1) | RN | 2185.85 | 1661.84 | 0.76 | 0.66 |
SVM | 2358.47 | 1853.77 | 0.72 | 0.59 | |
CART | 1201.75 | 935.84 | 0.94 | 0.89 | |
Cub | 2353.00 | 1567.60 | 0.72 | 0.59 | |
BRT | 1787.54 | 1295.92 | 0.83 | 0.78 | |
Leaf area index (m2 m−2) | RN | 0.34 | 0.25 | 0.81 | 0.72 |
SVM | 0.42 | 0.33 | 0.70 | 0.56 | |
CART | 0.20 | 0.15 | 0.94 | 0.89 | |
Cub | 0.36 | 0.24 | 0.78 | 0.67 | |
BRT | 0.27 | 0.19 | 0.87 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, W.M.d.; Costa, C.d.J.P.; Medeiros, M.L.d.S.; Jardim, A.M.d.R.F.; Cunha, M.V.d.; Dubeux Junior, J.C.B.; Jaramillo, D.M.; Bezerra, A.C.; Souza, E.J.O.d. Can Unmanned Aerial Vehicle Images Be Used to Estimate Forage Production Parameters in Agroforestry Systems in the Caatinga? Appl. Sci. 2024, 14, 4896. https://doi.org/10.3390/app14114896
Santos WMd, Costa CdJP, Medeiros MLdS, Jardim AMdRF, Cunha MVd, Dubeux Junior JCB, Jaramillo DM, Bezerra AC, Souza EJOd. Can Unmanned Aerial Vehicle Images Be Used to Estimate Forage Production Parameters in Agroforestry Systems in the Caatinga? Applied Sciences. 2024; 14(11):4896. https://doi.org/10.3390/app14114896
Chicago/Turabian StyleSantos, Wagner Martins dos, Claudenilde de Jesus Pinheiro Costa, Maria Luana da Silva Medeiros, Alexandre Maniçoba da Rosa Ferraz Jardim, Márcio Vieira da Cunha, José Carlos Batista Dubeux Junior, David Mirabedini Jaramillo, Alan Cezar Bezerra, and Evaristo Jorge Oliveira de Souza. 2024. "Can Unmanned Aerial Vehicle Images Be Used to Estimate Forage Production Parameters in Agroforestry Systems in the Caatinga?" Applied Sciences 14, no. 11: 4896. https://doi.org/10.3390/app14114896
APA StyleSantos, W. M. d., Costa, C. d. J. P., Medeiros, M. L. d. S., Jardim, A. M. d. R. F., Cunha, M. V. d., Dubeux Junior, J. C. B., Jaramillo, D. M., Bezerra, A. C., & Souza, E. J. O. d. (2024). Can Unmanned Aerial Vehicle Images Be Used to Estimate Forage Production Parameters in Agroforestry Systems in the Caatinga? Applied Sciences, 14(11), 4896. https://doi.org/10.3390/app14114896