Research on Low-Carbon-Emission Scheduling of Workshop under Uncertainty
Abstract
:1. Introduction
- A multi-objective low-carbon-emission scheduling model for workshops under uncertainty is established, which optimizes green indexes such as carbon emissions and economic indexes such as the robustness index and time-based index, using the processing time and order delivery time as uncertainty. By optimizing the workshop model, the manufacturing process can achieve low-carbon, economic, and efficiency goals.
- An improved NSGA-III-ST algorithm is proposed. The algorithm is a hybrid of the NSGA-III and the state transition algorithm. The test also validates the feasibility and validity.
2. Low-Carbon-Emission Scheduling Optimization Modeling
2.1. Description and Handling of Uncertainty
- (a)
- Fuzzy processing time
- (b)
- Fuzzy delivery time
2.2. Problem Description
- The production task starts at 0 time, and the processing route of the workpiece has been determined.
- The machine can only process one workpiece at a time, and there are no interruptions.
- The machine is operational at the outset. It begins with the first workpiece and does not stop until all workpieces have been completed.
- The time it takes to replace a machine tooling fixture and the time it takes to handle a workpiece between different machines is neglected.
- The processing time of each process is not determined.
- Each workpiece can only be manufactured on one machine at a time.
- There are no constraint level constraints between different workpieces and processes.
2.3. Parameter Description
2.4. Objective Function
3. Methods
3.1. Crossover and Mutation
3.2. Encoding and Decoding
3.3. State Transition Operator
3.4. Neighborhoods and Sampling
3.5. Select and Update
3.6. Alternate Rotation
3.7. Improvement of Clustering Operator
3.8. Performance Test of the Algorithm
- (a)
- HV
- (b)
- IGD
- (c)
3.9. Analysis of Test Results
- (a)
- HV
- (b)
- IGD
- (c)
4. Results
4.1. Related Data on Workshop Scheduling Model
4.2. Solving of Model Based on NSGA-III-ST
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xin, X.; Jiang, Q.; Li, S.; Gong, S.; Chen, K. Energy-efficient scheduling for a permutation flow shop with variable transportation time using an improved discrete whale swarm optimization. J. Clean. Prod. 2021, 293, 126121. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, C.; Shao, X.; Ren, Y. MILP models for energy-aware flexible job shop scheduling problem. J. Clean. Prod. 2019, 210, 710–723. [Google Scholar] [CrossRef]
- Riaz, A.A.; Hussain, G.; Iqbal, A.; Esat, V.; Alkahtani, M.; Khan, A.M.; Ullah, N.; Xiao, M.; Khan, S. Energy consumption, carbon emissions, product cost, and process time in incremental sheet forming process: A holistic review from sustainability perspective. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2022, 236, 1683–1705. [Google Scholar] [CrossRef]
- Zhang, C.; Gu, P.; Jiang, P. Low-carbon scheduling and estimating for a flexible job shop based on carbon footprint and carbon efficiency of multi-job processing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 229, 328–342. [Google Scholar] [CrossRef]
- Li, N.; Wang, X.; Bai, Y. An Improved Genetic Algorithm for Low Carbon Dynamic Scheduling in a Discrete Manufacturing Workshop; IOP Publishing: Bristol, UK, 2021; p. 012111. [Google Scholar]
- Chen, W.; Hao, Y.F. Genetic algorithm-based design and simulation of manufacturing flow shop scheduling. Int. J. Simul. Model. 2018, 17, 702–711. [Google Scholar] [CrossRef]
- Han, Y.; Chen, X.; Xu, M.; An, Y.; Gu, F.; Ball, A.D. A multi-objective flexible job-shop cell scheduling problem with sequenc × 10−dependent family setup times and intercellular transportation by improved NSGA-II. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2022, 236, 540–556. [Google Scholar] [CrossRef]
- Sang, Y.; Tan, J.; Liu, W. Research on Many-Objective Flexible Job Shop Intelligent Scheduling Problem Based on Improved NSGA-III. IEEE Access 2020, 8, 157676–157690. [Google Scholar] [CrossRef]
- Chaari, T.; Chaabane, S.; Loukil, T.; Trentesaux, D. A genetic algorithm for robust hybrid flow shop scheduling. Int. J. Comput. Integr. Manuf. 2011, 24, 821–833. [Google Scholar] [CrossRef]
- Allaoui, H.; Lamouri, S.; Lebbar, M. A robustness framework for a stochastic hybrid flow shop to minimize the makespan. In Proceedings of the 2006 International Conference on Service Systems and Service Management, Troyes, France, 25–27 October 2006; pp. 1097–1102. [Google Scholar]
- Shen, X.; Han, Y.; Fu, J. Robustness measures and robust scheduling for multi-objective stochastic flexible job shop scheduling problems. Soft Comput. 2017, 21, 6531–6554. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, X.; Liu, X.; Zhang, L.; Wei, S.; Zhang, W. An effective two-stage algorithm based on convolutional neural network for the bi-objective flexible job shop scheduling problem with machine breakdown. Expert Syst. Appl. 2022, 203, 117460. [Google Scholar] [CrossRef]
- Ding, J.-Y.; Song, S.; Wu, C. Carbon-efficient scheduling of flow shops by multi-objective optimization. Eur. J. Oper. Res. 2016, 248, 758–771. [Google Scholar] [CrossRef]
- Pan, Z.; Lei, D. Research on property-based distributed low carbon parallel machines scheduling algorithm. Acta Autom. Sin. 2020, 46, 2427–2438. [Google Scholar]
- Dong, J.; Ye, C. Green scheduling of distributed two-stage reentrant hybrid flow shop considering distributed energy resources and energy storage system. Comput. Ind. Eng. 2022, 169, 108146. [Google Scholar] [CrossRef]
- Tong, H.; Zhu, J. A customer-oriented method to support multi-task green scheduling with diverse tim × 10−of-use prices in Cloud Manufacturing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237, 911–924. [Google Scholar] [CrossRef]
- Gen, M.; Xinchang, H.; Lin, L.; Youngsu, Y. Advances in hybrid EDA for manufacturing scheduling with uncertainty: Part-II. In Proceedings of the Twelfth International Conference on Management Science and Engineering Management, Melbourne, Australia, 1–4 August 2018; pp. 955–968. [Google Scholar]
- Zheng, Y.; Li, Y.; Lei, D. Multi-objective swarm-based neighborhood search for fuzzy flexible job shop scheduling. Int. J. Adv. Manuf. Technol. 2012, 60, 1063–1069. [Google Scholar] [CrossRef]
- Chang, X.; Jia, X.; Fu, S.; Hu, H.; Liu, K. Digital twin and deep reinforcement learning enabled real-time scheduling for complex product flexible shop-floor. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237, 1254–1268. [Google Scholar] [CrossRef]
- Piroozfard, H.; Wong, K.Y.; Tiwari, M.K. Reduction of carbon emission and total late work criterion in job shop scheduling by applying a multi-objective imperialist competitive algorithm. Int. J. Comput. Intell. Syst. 2018, 11, 805–829. [Google Scholar] [CrossRef]
- Lin, W.; Tian, G.; Li, Z.; Zhang, Y.; Zhang, C. Flow shop scheduling with low carbon emission and variable machining parameters. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 1561–1572. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, T. Bi-Population Based Discrete Bat Algorithm for the Low-Carbon Job Shop Scheduling Problem. IEEE Access 2019, 7, 14513–14522. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, X.; Wu, J.; Li, Y. An Improved NSGA-III Algorithm Using Genetic K-Means Clustering Algorithm. IEEE Access 2019, 7, 185239–185249. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Z. Model construction of planning and scheduling system based on digital twin. Int. J. Adv. Manuf. Technol. 2020, 109, 2189–2203. [Google Scholar] [CrossRef]
- Petrovic, S.; Song, X. A new approach to two-machine flow shop problem with uncertain processing times. Optim. Eng. 2006, 7, 329–342. [Google Scholar] [CrossRef]
- Xu, W.; Ji, Z.; Wang, Y. A flower pollination algorithm for flexible job shop scheduling with fuzzy processing time. Mod. Phys. Lett. B Condens. Matter Phys. Stat. Phys. Appl. Phys. 2018, 32, 1840113. [Google Scholar] [CrossRef]
- Adibi, M.; Shahrabi, J. A clustering-based modified variable neighborhood search algorithm for a dynamic job shop scheduling problem. Int. J. Adv. Manuf. Technol. 2014, 70, 1955–1961. [Google Scholar] [CrossRef]
- Ziaee, M. A heuristic algorithm for solving flexible job shop scheduling problem. Int. J. Adv. Manuf. Technol. 2014, 71, 519–528. [Google Scholar] [CrossRef]
- Khettabi, I.; Benyoucef, L.; Boutiche, M.A. Sustainable reconfigurable manufacturing system design using adapted multi-objective evolutionary-based approaches. Int. J. Adv. Manuf. Technol. 2021, 115, 3741–3759. [Google Scholar] [CrossRef]
- Chao, Z.; Li, X.; Jian, L.; Yi, Z.; Kui, H. Flexible Job-Shop Scheduling Problem Based on Improved Wolf Pack Algorithm. J. Syst. Simul. 2023, 35, 534–543. [Google Scholar]
- Xiao, Z.; Chun, Y.; Wei, G. A new transformation into state transition algorithm for finding the global minimum. In Proceedings of the 2011 2nd International Conference on Intelligent Control and Information Processing, Harbin, China, 25–28 July 2011; pp. 674–678. [Google Scholar]
- Zhou, X.; Yang, C.; Gui, W. Initial version of state transition algorithm. In Proceedings of the 2011 Second International Conference on Digital Manufacturing and Automation, Zhangjiajie, China, 5–7 August 2011; pp. 644–647. [Google Scholar]
- Gu, Q.; Wang, R.; Xie, H.; Li, X.; Jiang, S.; Xiong, N. Modified non-dominated sorting genetic algorithm III with fine final level selection. Appl. Intell. 2021, 51, 4236–4269. [Google Scholar] [CrossRef]
- Bogoya, J.M.; Vargas, A.; Schütze, O. The averaged Hausdorff distances in multi-objective optimization: A review. Mathematics 2019, 7, 894. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, C.; Fan, X.; Qian, Q.; Jin, S. Cellular differential evolutionary algorithm with double−stage external population-leading and its application. Eng. Comput. 2022, 38, 2101–2120. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Cortés, N.C. Solving multiobjective optimization problems using an artificial immune system. Genet. Program. Evolvable Mach. 2005, 6, 163–190. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Song, X.; Yang, J. Novel multiobjective particle swarm optimization based on ranking and cyclic distance strategy. Int. J. Intell. Syst. 2022, 37, 7379–7418. [Google Scholar] [CrossRef]
Parameters | Parameter Meaning |
---|---|
n | Total number of processed workpieces |
m | Total number of processed machines |
l | Total number of processing processes |
i | Workpiece subscript |
k | Machine subscript |
j | Operation subscript |
jth process of the workpiece i | |
Maximum fuzzy completion time | |
Carbon emission factor of electricity | |
Carbon emission factor of coolant | |
, the value is 1; otherwise, the value is 0 | |
at the time t, the value is 1; otherwise, the value is 0 |
Workpiece | Process | Machine | ||
---|---|---|---|---|
1 | (2, 4, 6) | (4, 5, 8) | (8, 9, 10) | |
2 | (4, 6, 8) | (3, 7, 10) | (1, 3, 5) | |
3 | (4, 5, 8) | (1, 4, 7) | (5, 6, 7) | |
1 | (2, 3, 5) | (6, 8, 10) | (7, 8, 10) | |
2 | (3, 6, 10) | (4, 5, 7) | (2, 5, 8) | |
1 | (3, 5, 8) | (2, 4, 5) | (7, 9, 11) | |
2 | (6, 8, 9) | (4, 8, 10) | (1, 2, 4) | |
3 | (2, 3, 4) | (5, 7, 8) | (8, 10, 13) |
1. 2. 3. end for |
1. 2. repeat 3. 4. 5. end if 6. 7. 8. 9. 10. until terminal condition 11. |
Function | Algorithm | Average | St.dev |
---|---|---|---|
ZDT1 | MOEA/D | 7.1146 × 10−1 | 6.57 × 10−3 |
NSGA-II | 7.1913 × 10−1 | 2.34 × 10−4 | |
NSGA-III | 7.2000 × 10−1 | 9.33 × 10−5 | |
NSGA-III-ST | 7.2028 × 10−1 | 2.94 × 10−5 | |
ZDT2 | MOEA/D | 4.1891 × 10−1 | 3.06 × 10−2 |
NSGA-II | 4.4379 × 10−1 | 1.89 × 10−4 | |
NSGA-III | 4.4460 × 10−1 | 1.40 × 10−4 | |
NSGA-III-ST | 4.4501 × 10−1 | 2.77 × 10−5 | |
ZDT3 | MOEA/D | 5.9748 × 10−1 | 3.96 × 10−2 |
NSGA-II | 5.8232 × 10−1 | 2.44 × 10−2 | |
NSGA-III | 5.8212 × 10−1 | 2.02 × 10−4 | |
NSGA-III-ST | 5.8924 × 10−1 | 2.45 × 10−4 | |
ZDT4 | MOEA/D | 6.9605 × 10−1 | 1.21 × 10−2 |
NSGA-II | 7.1726 × 10−1 | 1.70 × 10−3 | |
NSGA-III | 7.1307 × 10−1 | 8.60 × 10−3 | |
NSGA-III-ST | 7.1975 × 10−1 | 4.28 × 10−4 | |
DTLZ1 | MOEA/D | 8.3994 × 10−1 | 1.53 × 10−3 |
NSGA-II | 8.2031 × 10−1 | 5.55 × 10−3 | |
NSGA-III | 8.3962 × 10−1 | 1.65 × 10−3 | |
NSGA-III-ST | 8.3884 × 10−1 | 9.24 × 10−3 | |
DTLZ2 | MOEA/D | 5.5947 × 10−1 | 2.65 × 10−5 |
NSGA-II | 5.3180 × 10−1 | 4.47 × 10−3 | |
NSGA-III | 5.5946 × 10−1 | 4.55 × 10−5 | |
NSGA-III-ST | 5.5824 × 10−1 | 1.23 × 10−3 | |
DTLZ4 | MOEA/D | 4.0454 × 10−1 | 1.35 × 10−1 |
NSGA-II | 5.0529 × 10−1 | 1.13 × 10−1 | |
NSGA-III | 4.6308 × 10−1 | 1.28 × 10−1 | |
NSGA-III-ST | 5.5790 × 10−1 | 1.48 × 10−3 |
Function | Algorithm | Average | St.dev |
---|---|---|---|
ZDT1 | MOEA/D | 1.0569 × 10−2 | 8.96 × 10−3 |
NSGA-II | 4.7751 × 10−3 | 1.83 × 10−4 | |
NSGA-III | 3.9120 × 10−3 | 1.20 × 10−5 | |
NSGA-III-ST | 3.8896 × 10−3 | 3.89 × 10−6 | |
ZDT2 | MOEA/D | 1.9229 × 10−2 | 3.01 × 10−2 |
NSGA-II | 4.9055 × 10−3 | 1.96 × 10−4 | |
NSGA-III | 3.8716 × 10−3 | 4.50 × 10−5 | |
NSGA-III-ST | 3.8098 × 10−3 | 2.69 × 10−6 | |
ZDT3 | MOEA/D | 2.6567 × 10−2 | 1.30 × 10−2 |
NSGA-II | 7.3206 × 10−3 | 7.39 × 10−3 | |
NSGA-III | 6.1249 × 10−3 | 2.05 × 10−4 | |
NSGA-III-ST | 6.0997 × 10−3 | 1.82 × 10−4 | |
ZDT4 | MOEA/D | 2.0121 × 10−2 | 1.08 × 10−2 |
NSGA-II | 5.3536 × 10−3 | 8.16 × 10−4 | |
NSGA-III | 9.5565 × 10−3 | 1.29 × 10−2 | |
NSGA-III-ST | 4.0198 × 10−3 | 1.67 × 10−4 | |
DTLZ1 | MOEA/D | 2.0741 × 10−2 | 2.17 × 10−4 |
NSGA-II | 2.7259 × 10−2 | 1.51 × 10−3 | |
NSGA-III | 2.0780 × 10−2 | 2.20 × 10−4 | |
NSGA-III-ST | 2.1333 × 10−2 | 3.36 × 10−3 | |
DTLZ2 | MOEA/D | 5.4467 × 10−2 | 1.33 × 10−6 |
NSGA-II | 6.9125 × 10−2 | 2.38 × 10−3 | |
NSGA-III | 5.4480 × 10−2 | 7.48 × 10−6 | |
NSGA-III-ST | 5.4668 × 10−2 | 6.80 × 10−4 | |
DTLZ4 | MOEA/D | 3.8997 × 10−1 | 2.78 × 10−1 |
NSGA-II | 1.2666 × 10−1 | 2.23 × 10−1 | |
NSGA-III | 2.6281 × 10−1 | 2.69 × 10−1 | |
NSGA-III-ST | 5.5056 × 10−2 | 1.14 × 10−3 |
Function | Algorithm | Average | St.dev |
---|---|---|---|
ZDT1 | MOEA/D | 1.0569 × 10−2 | 8.96 × 10−3 |
NSGA-II | 4.7751 × 10−3 | 1.83 × 10−4 | |
NSGA-III | 3.9120 × 10−3 | 1.20 × 10−5 | |
NSGA-III-ST | 3.8896 × 10−3 | 3.89 × 10−6 | |
ZDT2 | MOEA/D | 1.9229 × 10−2 | 3.01 × 10−2 |
NSGA-II | 4.9055 × 10−3 | 1.96 × 10−4 | |
NSGA-III | 3.8716 × 10−3 | 4.50 × 10−5 | |
NSGA-III-ST | 3.8098 × 10−3 | 2.69 × 10−6 | |
ZDT3 | MOEA/D | 2.6567 × 10−2 | 1.30 × 10−2 |
NSGA-II | 7.3206 × 10−3 | 7.39 × 10−3 | |
NSGA-III | 6.1249 × 10−3 | 2.05 × 10−4 | |
NSGA-III-ST | 6.0997 × 10−3 | 1.82 × 10−4 | |
ZDT4 | MOEA/D | 2.0127 × 10−2 | 1.08 × 10−2 |
NSGA-II | 5.3536 × 10−3 | 8.16 × 10−4 | |
NSGA-III | 9.5565 × 10−3 | 1.29 × 10−2 | |
NSGA-III-ST | 4.0198 × 10−3 | 1.67 × 10−4 | |
DTLZ1 | MOEA/D | 2.0725 × 10−2 | 1.56 × 10−4 |
NSGA-II | 2.7259 × 10−2 | 1.51 × 10−3 | |
NSGA-III | 2.0780 × 10−2 | 2.20 × 10−4 | |
NSGA-III-ST | 2.1333 × 10−2 | 3.36 × 10−3 | |
DTLZ2 | MOEA/D | 5.4467 × 10−2 | 1.34 × 10−6 |
NSGA-II | 6.9125 × 10−2 | 2.38 × 10−3 | |
NSGA-III | 5.4480 × 10−2 | 7.48 × 10−6 | |
NSGA-III-ST | 5.4668 × 10−2 | 6.80 × 10−4 | |
DTLZ4 | MOEA/D | 3.2778 × 10−1 | 2.70 × 10−1 |
NSGA-II | 1.2666 × 10−1 | 2.23 × 10−1 | |
NSGA-III | 2.6281 × 10−1 | 2.69 × 10−1 | |
NSGA-III-ST | 5.5056 × 10−2 | 1.14 × 10−3 |
Machine | Processing Power (kW) | Idle Power (kW) | Coolant Usage (L) | Coolant Circulation Cycle (104 s) |
---|---|---|---|---|
11.5 | 2.45 | 600 | 120 | |
12.5 | 1.82 | 600 | 120 | |
11.5 | 1.50 | 400 | 90 | |
12 | 1.58 | 400 | 90 | |
10 | 1.41 | 400 | 90 | |
6.5 | 0.45 | 350 | 86 | |
7.5 | 0.71 | 350 | 86 | |
10 | 1.80 | 350 | 86 |
Workpiece | Process | Machine | |||
---|---|---|---|---|---|
1 | (85, 90, 92) | (88, 95, 98) | (0, 0, 0) | (79, 82, 85) | |
2 | (0, 0, 0) | (35, 40, 45) | (32, 35, 38) | (0, 0, 0) | |
3 | (0, 0, 0) | (12, 15, 20) | (0, 0, 0) | (14, 16, 17) | |
1 | (0, 0, 0) | (0, 0, 0) | (83, 85, 86) | (80, 81, 83) | |
2 | (50, 51, 53) | (45, 49, 51) | (0, 0, 0) | (0, 0, 0) | |
3 | (29, 31, 33) | (0, 0, 0) | (0, 0, 0) | (32, 35, 36) | |
4 | (0, 0, 0) | (0, 0, 0) | (19, 20, 22) | (0, 0, 0) | |
5 | (18, 19, 21) | (17, 19, 22) | (0, 0, 0) | (18, 22, 24) | |
6 | (0, 0, 0) | (10, 11, 12) | (0, 0, 0) | (8, 9, 11) | |
1 | (81, 83, 85) | (0, 0, 0) | (79, 81, 83) | (0, 0, 0) | |
2 | (49, 51, 53) | (47, 49, 52) | (51, 53, 55) | (46, 48, 50) | |
3 | (0, 0, 0) | (32, 34, 36) | (0, 0, 0) | (33, 35, 36) | |
4 | (0, 0, 0) | (0, 0, 0) | (10, 11, 12) | (0, 0, 0) | |
1 | (75, 76, 78) | (72, 73, 74) | (0, 0, 0) | (0, 0, 0) | |
2 | (0, 0, 0) | (38, 40, 42) | (38, 39, 42) | (36, 38, 39) | |
3 | (10, 12, 13) | (0, 0, 0) | (9, 10, 12) | (9, 10, 11) | |
1 | (0, 0, 0) | (52, 55, 56) | (0, 0, 0) | (51, 53, 55) | |
2 | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) | |
1 | (81, 82, 83) | (0, 0, 0) | (79, 81, 82) | (0, 0, 0) | |
2 | (45, 46, 48) | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) | |
3 | (10, 11, 12) | (0, 0, 0) | (9, 12, 13) | (8, 10, 12) | |
1 | (0, 0, 0) | (71, 72, 73) | (70, 73, 76) | (0, 0, 0) | |
2 | (42, 44, 45) | (0, 0, 0) | (0, 0, 0) | (40, 42, 43) | |
3 | (0, 0, 0) | (23, 25, 26) | (22, 23, 24) | (0, 0, 0) | |
4 | (0, 0, 0)- | (0, 0, 0) | (8, 9, 11) | (0, 0, 0) | |
1 | (81, 83, 85) | (79, 81, 83) | (0, 0, 0) | (0, 0, 0) | |
2 | (45, 46, 48) | (43, 45, 46) | (0, 0, 0) | (44, 45, 47) | |
3 | (21, 22, 24) | (0, 0, 0) | (19, 21, 22) | (0, 0, 0) | |
Workpiece | Process | Machine | |||
1 | (0, 0, 0) | (92, 95, 98) | (84, 91, 96) | (0, 0, 0) | |
2 | (30, 33, 35) | (28, 30, 32) | (0, 0, 0) | (30, 31, 33) | |
3 | (0, 0, 0) | (0, 0, 0) | (12, 13, 15) | (0, 0, 0) | |
1 | (85, 88, 90) | (89, 92, 95) | (0, 0, 0) | (79, 82, 85) | |
2 | (46, 48, 50) | (42, 45, 48) | (0, 0, 0) | (0, 0, 0) | |
3 | (0, 0, 0) | (30, 33, 35) | (31, 33, 35) | (0, 0, 0) | |
4 | (21, 22, 25) | (0, 0, 0) | (20, 25, 27) | (0, 0, 0) | |
5 | (0, 0, 0) | (19, 20, 22) | (20, 21, 22) | (0, 0, 0) | |
6 | (8, 10, 12) | (7, 8, 9) | (0, 0, 0) | (0, 0, 0) | |
1 | (0, 0, 0) | (0, 0, 0) | (82, 83, 85) | (0, 0, 0) | |
2 | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) | |
3 | (0, 0, 0) | (30, 35, 36) | (0, 0, 0) | (35, 36, 38) | |
4 | (9, 10, 12) | (8, 10, 12) | (0, 0, 0) | (9, 12, 13) | |
1 | (0, 0, 0) | (70, 74, 78) | (71, 73, 75) | (0, 0, 0) | |
2 | (0, 0, 0) | (0, 0, 0) | (40, 41, 43) | (0, 0, 0) | |
3 | (0, 0, 0) | (8, 10, 12) | (0, 0, 0) | (11, 12, 13) | |
1 | (49, 52, 54) | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) | |
2 | (0, 0, 0) | (0, 0, 0) | (21, 22, 24) | (19, 21, 23) | |
1 | (83, 85, 86) | (91, 93, 94) | (0, 0, 0) | (0, 0, 0) | |
2 | (44, 45, 46) | (48, 50, 51) | (52, 53, 55) | (0, 0, 0) | |
3 | (9, 11, 12) | (0, 0, 0) | (0, 0, 0) | (10, 12, 13) | |
1 | (69, 71, 72) | (73, 75, 78) | (0, 0, 0) | (0, 0, 0) | |
2 | (0, 0, 0) | (39, 41, 42) | (43, 44, 46) | (38, 40, 42) | |
3 | (0, 0, 0) | (19, 20, 22) | (0, 0, 0) | (25, 26, 27) | |
4 | (8, 10, 12) | (0, 0, 0) | (10, 11, 12) | (0, 0, 0) | |
1 | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) | (82, 83, 85) | |
2 | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) | |
3 | (20, 21, 23) | (0, 0, 0) | (18, 19, 21) | (0, 0, 0) |
Workpiece | Delivery Time |
---|---|
(170, 180, 200, 210) | |
(210, 215, 231, 245) | |
(180, 198, 210, 220) | |
(150, 160, 175, 180) | |
(100, 125, 130, 145) | |
(160, 170, 180, 200) | |
(180, 190, 205, 210) | |
(150, 164, 182, 206) |
Name | Number | Rated Power (kW) | Total Power (kW) |
---|---|---|---|
Management Kanban | 8 | 0.1 | 0.8 |
Energy-saving fluorescent lamp of T8 type | 20 | 0.03 | 0.6 |
Axial flow fans | 5 | 1.1 | 5.5 |
Type | Parameter | NSGA-III | NSGA-III-ST | ||||
---|---|---|---|---|---|---|---|
TBI | TBI | ||||||
Value | Best | 0.08 | 136.13 | 197.32 | 0.03 | 133.51 | 195.71 |
Average | 0.90 | 142.71 | 216.48 | 1.78 | 135.81 | 206.32 | |
Optimal | TBI minimization | 0.08 | 145.43 | 236.35 | 0.03 | 143.39 | 231.31 |
SCE minimization | 2.52 | 136.13 | 219.83 | 0.30 | 133.51 | 228.76 | |
∆δ minimization | 2.36 | 143.08 | 197.32 | 1.99 | 136.69 | 195.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.; Wang, B.; Zhang, G.; Fan, X.; Jiang, S.; Cao, M.; Wang, Y. Research on Low-Carbon-Emission Scheduling of Workshop under Uncertainty. Appl. Sci. 2024, 14, 4976. https://doi.org/10.3390/app14124976
Jin S, Wang B, Zhang G, Fan X, Jiang S, Cao M, Wang Y. Research on Low-Carbon-Emission Scheduling of Workshop under Uncertainty. Applied Sciences. 2024; 14(12):4976. https://doi.org/10.3390/app14124976
Chicago/Turabian StyleJin, Shousong, Boyu Wang, Guo Zhang, Xinyu Fan, Suqi Jiang, Mengyi Cao, and Yaliang Wang. 2024. "Research on Low-Carbon-Emission Scheduling of Workshop under Uncertainty" Applied Sciences 14, no. 12: 4976. https://doi.org/10.3390/app14124976
APA StyleJin, S., Wang, B., Zhang, G., Fan, X., Jiang, S., Cao, M., & Wang, Y. (2024). Research on Low-Carbon-Emission Scheduling of Workshop under Uncertainty. Applied Sciences, 14(12), 4976. https://doi.org/10.3390/app14124976