A Layered Method Based on Depth of Focus for Rapid Generation of Computer-Generated Holograms
Abstract
:1. Introduction
2. The Layered Method Based on the Depth of Focus
2.1. Method
2.2. Verification
2.3. Use on Three-Dimensional Objects
- If the triangle lies between two neighboring planes, project the triangle along the direction of propagation of the light wave onto the closest plane, such as triangle ABC in Figure 5.
- If the triangle passes through one or more planes, use the plane that passes through it to cut the triangle, and then the polygon obtained by the cutting is projected along the direction of the optical axis onto the nearest neighboring plane, as shown in triangle DEF in Figure 5.
3. Performance
4. Texture Mapping
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, Z.; Ren, Q.; Chen, T.; Dai, Z.; Shu, F.; Fang, B.; Hong, Z.; Shen, C.; Mei, S. Vision transformer empowered physics-driven deep learning for omnidirectional three-dimensional holography. Opt. Express 2024, 32, 14394–14404. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Bang, K.; Wetzstein, G.; Lee, B.; Gao, L. Toward the next-generation VR/AR optics: A review of holographic near-eye displays from a human-centric perspective. Optica 2020, 7, 1563–1578. [Google Scholar] [CrossRef]
- Gopakumar, M.; Kim, J.; Choi, S.; Peng, Y.; Wetzstein, G. Unfiltered holography: Optimizing high diffraction orders without optical filtering for compact holographic displays. Opt. Lett. 2021, 46, 5822–5825. [Google Scholar] [CrossRef] [PubMed]
- Shigematsu, O.; Naruse, M.; Horisaki, R. Computer-generated holography with ordinary display. Opt. Lett. 2024, 49, 1876–1879. [Google Scholar] [CrossRef] [PubMed]
- Pi, D.; Liu, J.; Wang, Y. Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display. Light Sci. Appl. 2022, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, L.; Stoykova, E.; Ferraro, P.; Memmolo, P.; Blanche, P.-A. Digital Holography and 3D Imaging 2020: Introduction to the feature issue. Appl. Opt. 2021, 60, DH1–DH2. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Liu, K.; He, Z.; Cao, L. Progress of the Computer-Generated Holography Based on Deep Learning. Appl. Sci. 2022, 12, 8568. [Google Scholar] [CrossRef]
- Xiong, J.; Yin, K.; Li, K.; Wu, S.-T. Holographic optical elements for augmented reality: Principles, present status, and future perspectives. Adv. Photonics Res. 2021, 2, 2000049. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, J.; Cho, J.; Yoo, D.; Lee, B. Deep neural network for multi-depth hologram generation and its training strategy. Opt. Express 2020, 28, 27137–27154. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, X.; Luo, W.; Wang, H.; Sun, Y. Efficient Computer-Generated Holography Based on Mixed Linear Convolutional Neural Networks. Appl. Sci. 2022, 12, 4177. [Google Scholar] [CrossRef]
- Blanche, P.-A. Holography, and the future of 3D display. Light Adv. Manuf. 2021, 2, 446–459. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Jia, J.; Li, X.; Han, J.; Hu, B.; Wang, Y. Tunable nonuniform sampling method for fast calculation and intensity modulation in 3D dynamic holographic display. Opt. Lett. 2013, 38, 2676–2679. [Google Scholar] [CrossRef] [PubMed]
- Pi, D.; Liu, J.; Han, Y.; Khalid, A.U.R.; Yu, S. Simple and effective calculation method for computer-generated hologram based on non-uniform sampling using look-up-table. Opt. Express 2019, 27, 37337–37348. [Google Scholar] [CrossRef] [PubMed]
- Lucente, M.E. Interactive computation of holograms using a look-up table. J. Electron. Imaging 1993, 2, 28–34. [Google Scholar] [CrossRef]
- Shimobaba, T.; Masuda, N.; Ito, T. Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane. Opt. Lett. 2009, 34, 3133–3135. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-C.; Kim, E.-S. Effective generation of digital holograms of three-dimensional objects using a novel look-up table method. Appl. Opt. 2008, 47, D55–D62. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Wang, Y.; Liu, J.; Li, X.; Pan, Y.; Sun, Z.; Zhang, B.; Zhao, Q.; Jiang, W. Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display. Appl. Opt. 2013, 52, 1404–1412. [Google Scholar] [CrossRef] [PubMed]
- Pi, D.; Liu, J.; Kang, R.; Zhang, Z.; Han, Y. Reducing the memory usage of computer-generated hologram calculation using accurate high-compressed look-up-table method in color 3D holographic display. Opt. Express 2019, 27, 28410–28422. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Zhuang, Z.; Zou, W. Fast computer generated hologram calculation with a mini look-up table incorporated with radial symmetric interpolation. Opt. Express 2017, 25, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, N.; Shimobaba, T.; Kakue, T.; Ito, T. Acceleration of hologram generation by optimizing the arrangement of wavefront recording planes. Appl. Opt. 2017, 56, A97–A103. [Google Scholar] [CrossRef]
- Arai, D.; Shimobaba, T.; Murano, K.; Endo, Y.; Hirayama, R.; Hiyama, D.; Kakue, T.; Ito, T. Acceleration of computer-generated holograms using tilted wavefront recording plane method. Opt. Express 2015, 23, 1740–1747. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fan, H.; Wang, F.; Gu, X.; Qian, X.; Poon, T.-C. Polygon-based computer-generated holography: A review of fundamentals and recent progress [Invited]. Appl. Opt. 2022, 61, B363–B374. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, Y.; Liu, J.; Li, X.; Jia, J.; Zhang, Z. Analytical brightness compensation algorithm for traditional polygon-based method in computer-generated holography. Appl. Opt. 2013, 52, 4391–4399. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Shiomi, H.; Ito, T.; Kakue, T.; Shimobaba, T. Fully analytic shading model with specular reflections for polygon-based hologram. Opt. Lasers Eng. 2023, 160, 107235. [Google Scholar] [CrossRef]
- Kim, H.; Hahn, J.; Lee, B. Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography. Appl. Opt. 2008, 47, D117–D127. [Google Scholar] [CrossRef] [PubMed]
- Ahrenberg, L.; Benzie, P.; Magnor, M.; Watson, J. Computer generated holograms from three dimensional meshes using an analytic light transport model. Appl. Opt. 2008, 47, 1567–1574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-P.; Wang, F.; Poon, T.-C.; Fan, S.; Xu, W. Fast generation of full analytical polygon-based computer-generated holograms. Opt. Express 2018, 26, 19206–19224. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Shimobaba, T.; Zhang, Y.; Kakue, T.; Ito, T. Acceleration of polygon-based computer-generated holograms using look-up tables and reduction of the table size via principal component analysis. Opt. Express 2021, 29, 35442–35455. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Z.; Dong, J.-W.; Pu, Y.-Y.; Chen, B.-C.; He, H.-X.; Wang, H.-Z. High-speed full analytical holographic computations for true-life scenes. Opt. Express 2010, 18, 3345–3351. [Google Scholar] [CrossRef] [PubMed]
- Sakata, H.; Sakamoto, Y. Fast computation method for a Fresnel hologram using three-dimensional affine transformations in real space. Appl. Opt. 2009, 48, H212–H221. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zhang, B.; Zhang, Y.; Wang, F.; Qin, W.; Fu, Q.; Poon, T.-C. Fast 3D Analytical Affine Transformation for Polygon-Based Computer-Generated Holograms. Appl. Sci. 2022, 12, 6873. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, L.; Zhang, H.; Kong, D.; Jin, G. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt. Express 2015, 23, 25440–25449. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.L.; Xia, J.; Lei, W. One step hologram calculation for multi-plane objects based on nonuniform sampling (Invited Paper). Chin. Opt. Lett. 2014, 12, 060020. [Google Scholar] [CrossRef]
- Jia, J.; Si, J.; Chu, D. Fast two-step layer-based method for computer generated hologram using sub-sparse 2D fast Fourier transform. Opt. Express 2018, 26, 17487–17497. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-S.; Chu, D.P. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications. Opt. Express 2015, 23, 18143–18155. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Wei, C.; Ma, H.; Pi, D.; Li, H.; Liu, X.; Wang, Y.; Liu, J. Convolutional symmetric compressed look-up-table method for 360° dynamic color 3D holographic display. Opt. Express 2023, 31, 28716–28733. [Google Scholar] [CrossRef]
- Wang, F.; Blinder, D.; Ito, T.; Shimobaba, T. Wavefront recording plane-like method for polygon-based holograms. Opt. Express 2023, 31, 1224–1233. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, Q.; Chen, J.; Chen, J.; Qiu, B.; Qiu, B.; Wang, Y.; Wang, Y.; Liu, J.; Liu, J. DCPNet: A dual-channel parallel deep neural network for high quality computer-generated holography. Opt. Express. 2023, 31, 35908–35921. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Im, D.; Paek, J.; Hahn, J.; Kim, H. Semi-analytic texturing algorithm for polygon computer-generated holograms. Opt. Express 2014, 22, 31180–31191. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tu, H.-Y.; Yeh, W.-C.; Gui, J.; Cheng, C.-J. Holographic three-dimensional display and hologram calculation based on liquid crystal on silicon device [Invited]. Appl. Opt. 2014, 53, G222–G231. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, Y.; Liu, J.; Li, X.; Jia, J. Fast polygon-based method for calculating computer-generated holograms in three-dimensional display. Appl. Opt. 2013, 52, A290–A299. [Google Scholar] [CrossRef] [PubMed]
- Peter, S.; Marschner, S.R. Fundamentals of Computer Graphics; AK Peters: Natick, MA, USA, 2005. [Google Scholar]
- Huang, Y.; Liao, E.; Chen, R.; Wu, S.-T. Liquid-Crystal-on-Silicon for Augmented Reality Displays. Appl. Sci. 2018, 8, 2366. [Google Scholar] [CrossRef]
- Yin, K.; Hsiang, E.-L.; Zou, J.; Li, Y.; Yang, Z.; Yang, Q.; Lai, P.-C.; Lin, C.-L.; Wu, S.-T. Advanced liquid crystal devices for augmented reality and virtual reality displays: Principles and applications. Light Sci. Appl. 2022, 11, 161. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Fu, Q.; Zhang, Y.; Zhang, B.; Wang, P.; Poon, T.-C.; Gu, X. Rendering of 3D scenes in analytical polygon-based computer holography with texture mapping. J. Opt. Soc. Am. A 2024, 41, A32–A39. [Google Scholar] [CrossRef] [PubMed]
ID | Diffraction of 100 mm | Diffraction of 400 mm | Diffraction of 700 mm |
---|---|---|---|
1 | 32.61 | 30.96 | 28.88 |
2 | 31.92 | 31.31 | 28.68 |
3 | 30.50 | 29.84 | 28.18 |
4 | 29.79 | 29.57 | 27.46 |
5 | 30.98 | 30.56 | 28.71 |
6 | 35.67 | 33.46 | 30.11 |
7 | 35.27 | 32.23 | 29.22 |
8 | 32.28 | 31.27 | 29.59 |
9 | 30.16 | 29.31 | 27.28 |
10 | 33.19 | 32.13 | 30.77 |
11 | 34.88 | 33.61 | 30.93 |
12 | 33.00 | 32.87 | 31.19 |
13 | 32.58 | 32.29 | 30.76 |
14 | 32.75 | 32.75 | 30.87 |
15 | 35.03 | 33.74 | 30.97 |
16 | 35.28 | 33.34 | 30.54 |
17 | 32.53 | 31.16 | 29.55 |
18 | 37.98 | 36.24 | 32.83 |
19 | 29.75 | 28.75 | 26.69 |
20 | 35.50 | 34.91 | 32.18 |
21 | 32.17 | 31.46 | 29.79 |
22 | 31.67 | 31.19 | 29.29 |
23 | 30.92 | 30.74 | 28.93 |
24 | 32.56 | 31.26 | 29.94 |
25 | 36.24 | 35.86 | 31.10 |
26 | 29.92 | 28.89 | 27.05 |
27 | 33.83 | 32.71 | 30.21 |
28 | 30.31 | 29.53 | 27.48 |
29 | 33.39 | 33.03 | 31.33 |
30 | 37.39 | 30.56 | 26.07 |
The Mean of PSNR | The Standard Deviations of PSNR |
---|---|
31.46 | 2.42 |
The Number of Triangles | The Proposed Method | The Analytical Polygon-Based Method | Acceleration Ratio |
---|---|---|---|
4704 | 10.7 s | 233.9 s | 21.9 |
9408 | 22.2 s | 483.9 s | 21.8 |
14,112 | 35.1 s | 709.4 s | 20.2 |
18,816 | 48.5 s | 947.2 s | 19.5 |
23,520 | 60.3 s | 1178.9 s | 19.6 |
28,224 | 76.3 s | 1411.7 s | 18.5 |
32,928 | 92.3 s | 1670.8 s | 18.1 |
The Number of Triangles | The Proposed Method | The Analytical Polygon-Based Method | Acceleration Ratio |
---|---|---|---|
4704 | 0.33 s | 4.83 s | 14.64 |
9408 | 0.36 s | 9.45 s | 26.25 |
14,112 | 0.41 s | 14.17 s | 34.56 |
18,816 | 0.45 s | 18.85 s | 41.89 |
23,520 | 0.49 s | 23.54 s | 48.04 |
28,224 | 0.53 s | 28.31 s | 53.42 |
32,928 | 0.57 s | 33.05 s | 57.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Gui, J.; Li, J.; Song, Q. A Layered Method Based on Depth of Focus for Rapid Generation of Computer-Generated Holograms. Appl. Sci. 2024, 14, 5109. https://doi.org/10.3390/app14125109
Ma X, Gui J, Li J, Song Q. A Layered Method Based on Depth of Focus for Rapid Generation of Computer-Generated Holograms. Applied Sciences. 2024; 14(12):5109. https://doi.org/10.3390/app14125109
Chicago/Turabian StyleMa, Xiandong, Jinbin Gui, Junchang Li, and Qinghe Song. 2024. "A Layered Method Based on Depth of Focus for Rapid Generation of Computer-Generated Holograms" Applied Sciences 14, no. 12: 5109. https://doi.org/10.3390/app14125109
APA StyleMa, X., Gui, J., Li, J., & Song, Q. (2024). A Layered Method Based on Depth of Focus for Rapid Generation of Computer-Generated Holograms. Applied Sciences, 14(12), 5109. https://doi.org/10.3390/app14125109