Swimming Performance Interpreted through Explainable Artificial Intelligence (XAI)—Practical Tests and Training Variables Modelling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Linder, R.; Mohamed, E.I.; De Lorenzo, A.; Pöppl, S.J. The capabilities of artificial neural networks in body composition research. Acta Diabetol. 2003, 40, S9–S14. [Google Scholar] [CrossRef] [PubMed]
- Chainok, P.; de Jesus, K.; Coelho, L.; Ayala, H.V.H.; de Castro Ribeiro, M.G.; Fernandes, R.J.; Vilas-Boas, J.P. Modeling and predicting the backstroke to breaststroke turns performance in age-group swimmers. Sports Biomech. 2023, 22, 1700–1721. [Google Scholar] [CrossRef]
- Yang, H.L. Application of Multilayer Neural Network in Sports Psychology. Sci. Program. 2022, 2022, 3692428. [Google Scholar] [CrossRef]
- Petrakova, A.; Affenzeller, M.; Merkurjeva, G. Heterogeneous versus homogeneous machine learning ensembles. Inf. Technol. Manag. Sci. 2015, 18, 135–140. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Beck, M.W.; Winkler, D.A.; Huang, B.; Sibanda, W.; Goyal, H.; AME Big-Data Clinical Trial Collaborative Group. Opening the black box of neural networks: Methods for interpreting neural network models in clinical applications. Ann. Transl. Med. 2018, 6, 216. [Google Scholar] [CrossRef] [PubMed]
- Perl, J. Artificial neural networks in sports: New concepts and approaches. Int. J. Perform. Anal. Sport 2001, 1, 106–121. [Google Scholar] [CrossRef]
- Edelmann-Nusser, J.; Hohmann, A.; Henneberg, B. Modeling and prediction of competitive performance in swimming upon neural networks. Eur. J. Sport Sci. 2002, 2, 1–10. [Google Scholar] [CrossRef]
- Xu, B. Optical image enhancement based on convolutional neural networks for key point detection in swimming posture analysis. Opt. Quantum Electron. 2024, 56, 260. [Google Scholar] [CrossRef]
- Hamid, A.H.A.; Othman, Z.; Suhaimi, S. Swimming Style Recognition for Video Sequences Using Deep Learning. In Proceedings of the 2023 International Conference on Electrical Engineering and Informatics (ICEEI), Bandung, Indonesia, 10–11 October 2023; pp. 1–6. [Google Scholar]
- Silva, A.J.; Costa, A.M.; Oliveira, P.M.; Reis, V.M.; Saavedra, J.; Perl, J.; Rouboa, A.; Marinho, D.A. The use of neural network technology to model swimming performance. J. Sport Sci. Med. 2007, 6, 117–125. [Google Scholar]
- Maszczyk, A.; Roczniok, R.; Waskiewicz, Z.; Czuba, M.; Mikolajec, K.; Zajac, A.; Stanula, A. Application of Regression and Neural Models to Predict Competitive Swimming Performance. Percept. Motor Skill 2012, 114, 610–626. [Google Scholar] [CrossRef]
- Carrard, J.; Kloucek, P.; Gojanovic, B. Modelling Training Adaptation in Swimming Using Artificial Neural Network Geometric Optimisation. Sports 2020, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.E.; Silva, A.J.; Marinho, D.A.; Marques, M.C.; Batalha, N.; Barbosa, T.M. Modelling the relationship between biomechanics and performance of young sprinting swimmers. Eur. J. Sport Sci. 2016, 16, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Demarie, S.; Chirico, E.; Galvani, C. Prediction and Analysis of Tokyo Olympic Games Swimming Results: Impact of the COVID-19 Pandemic on Swimmers’ Performance. Int. J. Environ. Res. Public Health 2022, 19, 2110. [Google Scholar] [CrossRef] [PubMed]
- Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L.K.; Müller, K.-R. (Eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Springer: Cham, Switzerland, 2019; Volume 11700. [Google Scholar]
- Markus, A.F.; Kors, J.A.; Rijnbeek, P.R. The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies. J. Biomed. Inform. 2021, 113, 103655. [Google Scholar] [CrossRef] [PubMed]
- Moustakidis, S.; Plakias, S.; Kokkotis, C.; Tsatalas, T.; Tsaopoulos, D. Predicting Football Team Performance with Explainable AI: Leveraging SHAP to Identify Key Team-Level Performance Metrics. Future Internet 2023, 15, 174. [Google Scholar] [CrossRef]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2021, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Leite, I.; Goethel, M.; Fonseca, P.; Vilas-Boas, J.P.; Avila-Carvalho, L.; Mochizuki, L.; Conceicao, F. A Hierarchy of Variables That Influence the Force–Velocity Profile of Acrobatic Gymnasts: A Tool Based on Artificial Intelligence. Appl. Sci. 2024, 14, 3191. [Google Scholar] [CrossRef]
- Eisbach, S.; Mai, O.; Hertel, G. Combining theoretical modelling and machine learning approaches: The case of teamwork effects on individual effort expenditure. New Ideas Psychol. 2024, 73, 101077. [Google Scholar] [CrossRef]
- Garnica-Caparrós, M.; Memmert, D. Understanding gender differences in professional European football through machine learning interpretability and match actions data. Sci. Rep. 2021, 11, 10805. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Bragada, J.A.; Reis, V.M.; Marinho, D.A.; Carvalho, C.; Silva, A.J. Energetics and biomechanics as determining factors of swimming performance: Updating the state of the art. J. Sci. Med. Sport 2010, 13, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.E.; Barbosa, T.M.; Gomeñuka, N.A.; Marinho, D.A. Effects of anthropometrics, thrust, and drag on stroke kinematics and 100 m performance of young swimmers using path-analysis modeling. Scand. J. Med. Sci. Sports 2024, 34, e14578. [Google Scholar] [CrossRef] [PubMed]
- Post, A.K.; Koning, R.H.; Visscher, C.; Elferink-Gemser, M.T. The importance of reflection and evaluation processes in daily training sessions for progression toward elite level swimming performance. Psychol. Sport Exerc. 2022, 61, 102219. [Google Scholar] [CrossRef]
- Carvalho, D.D.; Monteiro, A.S.; Fonseca, P.; Silva, A.J.; Vilas-Boas, J.P.; Pyne, D.B.; Fernandes, R.J. Swimming sprint performance depends on upper/lower limbs strength and swimmers level. J. Sport Sci. 2023, 41, 747–757. [Google Scholar] [CrossRef] [PubMed]
- West, D.J.; Owen, N.J.; Cunningham, D.J.; Cook, C.J.; Kilduff, L.P. Strength and Power Predictors of Swimming Starts in International Sprint Swimmers. J. Strength Cond. Res. 2011, 25, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Navarro, J.J.; López-Belmonte, Ó.; Gay, A.; Cuenca-Fernández, F.; Arellano, R. A new model of performance classification to standardize the research results in swimming. Eur. J. Sport Sci. 2023, 23, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Linthorne, N.P. Analysis of standing vertical jumps using a force platform. Am. J. Phys. 2001, 69, 1198–1204. [Google Scholar] [CrossRef]
- Carvalho, D.D.; Soares, S.; Zacca, R.; Sousa, J.; Marinho, D.A.; Silva, A.J.; Vilas-Boas, J.P.; Fernandes, R.J. Anaerobic Threshold Biophysical Characterisation of the Four Swimming Techniques. Int. J. Sports Med. 2020, 41, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Rago, V.; Brito, J.; Figueiredo, P.; Carvalho, T.; Fernandes, T.; Fonseca, P.; Rebelo, A. Countermovement Jump Analysis Using Different Portable Devices: Implications for Field Testing. Sports 2018, 6, 91. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Di Prampero, P.E.; Pendergast, D.; Wilson, D.; Rennie, D. Energetics of swimming in man. J. Appl. Physiol. 1974, 37, 1–5. [Google Scholar] [CrossRef]
- Figueiredo, P.; Pendergast, D.R.; Vilas-Boas, J.P.; Fernandes, R.J. Interplay of Biomechanical, Energetic, Coordinative, and Muscular Factors in a 200 m Front Crawl Swim. Biomed. Res. Int. 2013, 2013, 897232. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.; Barbosa, T.; Bragada, J.; Ramirez-Campillo, R.; Marinho, D. Interaction of Kinematic, Kinetic, and Energetic Predictors of Young Swimmers’ Speed. Int. J. Sports Physiol. Perform. 2023, 18, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.D.; Soares, S.; Zacca, R.; Marinho, D.A.; Silva, A.J.; Pyne, D.B.; Vilas-Boas, J.P.; Fernandes, R.J. In-Water and On-Land Swimmers’ Symmetry and Force Production. Int. J. Environ. Res. Public Health 2019, 16, 5018. [Google Scholar] [CrossRef] [PubMed]
- Maszczyk, A.; Golas, A.; Pietraszewski, P.; Roczniok, R.; Zajac, A.; Stanula, A. Application of Neural and Regression Models in Sports Results Prediction. Procedia-Soc. Behav. 2014, 117, 482–487. [Google Scholar] [CrossRef]
- Seifert, L.; Chollet, D.; Rouard, A. Swimming constraints and arm coordination. Hum. Movement Sci. 2007, 26, 68–86. [Google Scholar] [CrossRef]
- Nugent, F.J.; Comyns, T.M.; Burrows, E.; Warrington, G.D. Effects of Low-Volume, High-Intensity Training on Performance in Competitive Swimmers: A Systematic Review. J. Strength Cond. Res. 2017, 31, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Toubekis, A.G.; Douda, H.T.; Tokmakidis, S.P. Influence of different rest intervals during active or passive recovery on repeated sprint swimming performance. Eur. J. Appl. Physiol. 2005, 93, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Costill, D.L.; Thomas, R.; Robergs, R.A.; Pascoe, D.; Lambert, C.; Barr, S.; Fink, W.J. Adaptations to swimming training: Influence of training volume. Med. Sci. Sport Exer 1991, 23, 371–377. [Google Scholar] [CrossRef]
- Termin, B.; Pendergast, D.R. Training using the stroke frequency-velocity relationship to combine biomechanical and metabolic paradigms. J. Swim. Res. 2000, 14, 9–17. [Google Scholar]
- Hellard, P.; Avalos, M.; Millet, G.; Lacoste, L.; Barale, F.; Chatard, J.C. Modeling the residual effects and threshold saturation of training: A case study of Olympic swimmers. J. Strength Cond. Res. 2005, 19, 67–75. [Google Scholar] [CrossRef]
- Deschodt, V.J.; Arsac, L.M.; Rouard, A.H. Relative contribution of arms and legs in humans to propulsion in 25-m sprint front-crawl swimming. Eur. J. Appl. Physiol. Occup. 1999, 80, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Morouço, P.G.; Marinho, D.A.; Izquierdo, M.; Neiva, H.; Marques, M.C. Relative Contribution of Arms and Legs in 30 s Fully Tethered Front Crawl Swimming. Biomed. Res. Int. 2015, 2015, 563206. [Google Scholar] [CrossRef] [PubMed]
- Bartolomeu, R.F.; Costa, M.J.; Barbosa, T.M. Contribution of limbs’ actions to the four competitive swimming strokes: A nonlinear approach. J. Sport Sci. 2018, 36, 1836–1845. [Google Scholar] [CrossRef] [PubMed]
- Strzala, M.; Stanula, A.; Krezalek, P.; Sadowski, W.; Wilk, R.; Palka, T.; Sokolowski, K.; Radecki-Pawlik, A. Body composition and specific and general strength indices as predictors of 100-m front crawl performance. Acta Bioeng. Biomech. 2020, 22, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Dopsaj, M.; Zuoziene, I.J.; Milic, R.; Cherepov, E.; Erlikh, V.; Masiulis, N.; di Nino, A.; Vodicar, J. Body Composition in International Sprint Swimmers: Are There Any Relations with Performance? Int. J. Environ. Res. Public Health 2020, 17, 9464. [Google Scholar] [CrossRef] [PubMed]
- Morouço, P.; Neiva, H.; González-Badillo, J.J.; Garrido, N.; Marinho, D.A.; Marques, M.C. Associations Between Dry Land Strength and Power Measurements with Swimming Performance in Elite Athletes: A Pilot Study. J. Hum. Kinet. 2011, 29A, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Wirth, K.; Keiner, M.; Fuhrmann, S.; Nimmerichter, A.; Haff, G.G. Strength Training in Swimming. Int. J. Environ. Res. Public Health 2022, 19, 5369. [Google Scholar] [CrossRef] [PubMed]
- Lätt, E.; Jürimäe, J.; Mäestu, J.; Purge, P.; Rämson, R.; Haljaste, K.; Keskinen, K.L.; Rodriguez, F.A.; Jürimäe, T. Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers. J. Sport Sci. Med. 2010, 9, 398–404. [Google Scholar]
- Pyne, D.B.; Anderson, M.E.; Hopkins, W.G. Monitoring changes in lean mass of elite male and female swimmers. Int. J. Sports Physiol. Perform. 2006, 1, 14–26. [Google Scholar] [CrossRef]
- Lätt, E.; Jürimäe, J.; Haljaste, K.; Cicchella, A.; Purge, P.; Jürimäe, T. Physical Development and Swimming Performance During Biological Maturation in Young Female Swimmers. Coll. Antropol. 2009, 33, 117–122. [Google Scholar]
- Toussaint, H.M.; Beek, P.J. Biomechanics of Competitive Front Crawl Swimming. Sports Med. 1992, 13, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.; Figueiredo, P.; Morais, S.; Alves, F.; Toussaint, H.; Vilas-Boas, J.P.; Fernandes, R.J. Biomechanics, energetics and coordination during extreme swimming intensity: Effect of performance level. J. Sport Sci. 2017, 35, 1614–1621. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.B., Jr.; Pendergast, D.R. Relationships of stroke rate, distance per stroke, and velocity in competitive swimming. Med. Sci. Sports 1979, 11, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.B.; Skehan, P.L.; Pawelczyk, J.A.; Boomer, W.L. Velocity, Stroke Rate, and Distance Per Stroke during Elite Swimming Competition. Med. Sci. Sport Exer. 1985, 17, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Hellard, P.; Dekerle, J.; Avalos, M.; Caudal, N.; Knopp, M.; Hausswirth, C. Kinematic measures and stroke rate variability in elite female 200-m swimmers in the four swimming techniques: Athens 2004 Olympic semi-finalists and French National 2004 Championship semi-finalists. J. Sport Sci. 2008, 26, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.M.; Hopkins, W.G. Seasonal training and performance of competitive swimmers. J. Sport Sci. 2000, 18, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Pyne, D.B.; Trewin, C.B.; Hopkins, W.G. Progression and variability of competitive performance of Olympic swimmers. J. Sport Sci. 2004, 22, 613–620. [Google Scholar] [CrossRef]
- Monteiro, D.; Marinho, D.; Moutão, J.; Vitorino, A.; Antunes, R.; Cid, L. Reasons for dropout in swimmers, differences between gender and age and intentions to return to competition. J. Sports Med. Phys. Fit. 2018, 58, 180–192. [Google Scholar] [CrossRef]
Variables | Elite Male (n = 5) | Non-Elite Male (n = 11) | p-Value | Effect Size (95% CI) | Elite Female (n = 12) | Non-Elite Female (n = 19) | p-Value | Effect Size (95% CI) |
---|---|---|---|---|---|---|---|---|
Age (years) | 17.6 ± 0.6 | 16.1 ± 1.1 | 0.015 | 1.5 (0.3–2.7) | 16.2 ± 0.7 | 14.5 ± 1.9 | 0.003 | 1.0 (0.3–1.8) |
Training background (years) | 8 ± 0.7 | 6.2 ± 2.4 | 0.119 | 1.4 (0.3–2.5) | 7.5 ± 1.0 | 5.5 ± 2.3 | 0.002 | 1.1 (0.3–1.8) |
Swimming training (h⸳week−1) | 19.2 ± 1.1 | 10.9 ± 1.1 | <0.001 | 7.4 (4.5–10.3) | 18.5 ± 1.2 | 10.5 ± 1.0 | <0.001 | 7.4 (5.4–9.4) |
Dryland training (h⸳week−1) | 1.8 ± 0.4 | 0.9 ± 0.2 | <0.001 | 3.0 (1.5–4.5) | 1.8 ± 0.9 | 0.7 ± 0.2 | <0.001 | 1.9 (1.0–2.7) |
Swimming performance (WA points) | 706 ± 31 | 445 ± 108 | <0.001 | 2.8 (1.3–4.3) | 723 ± 44 | 409 ± 66 | <0.001 | 5.3 (3.8–6.9) |
Height (cm) | 176.9 ± 3.5 | 177.8 ± 4.5 | 0.717 | −0.2 (−1.3–0.9) | 167.5 ± 4.0 | 162.0 ± 5.6 | 0.006 | 1.1 (0.3–1.2) |
Body mass (kg) | 66.6 ± 5.2 | 66.2 ± 8.9 | 0.924 | 0.1 (−1.0–1.1) | 57.9 ± 4.0 | 55.4 ± 6.3 | 0.216 | 0.5 (−0.3–1.2) |
21.3 ± 1.1 | 20.9 ±3 | 0.743 | 0.2 (−0.9–1.2) | 20.7 ± 1.2 | 21.1 ± 2.1 | 0.528 | −0.2 (−1.0–0.5) | |
Hand length (cm) | 18.7 ± 0.5 | 18.7 ± 0.8 | 0.789 | 0.1 (−1.0–1.1) | 18.2 ± 0.5 | 17.2 ± 1.3 | 0.012 | 1.0 (0.2–1.8) |
Arm span (cm) | 179.5 ± 3.0 | 178.1 ± 4.5 | 0.686 | 0.2 (−0.8–1.3) | 172.1 ± 5.2 | 161.7 ± 6.9 | <0.001 | 1.7 (0.8–2.5) |
Waist/hip ratio | 0.85 ± 0.01 | 0.80 ± 0.03 | 0.001 | 1.6 (0.4–2.8) | 0.78 ± 0.03 | 0.75 ± 0.03 | 0.026 | 0.9 (0.1–1.6) |
Fat mass (%) | 7.1 ± 1.6 | 12.9 ± 2.8 | <0.001 | −2.3 (−3.6–−0.9) | 15.6 ± 3.2 | 22.8 ± 5.3 | <0.001 | −1.6 (−2.4–-0.7) |
Flight time (s) | 0.55 ± 0.04 | 0.48 ± 0.04 | 0.005 | 1.8 (0.5–3.0) | 0.48 ± 0.03 | 0.40 ± 0.04 | <0.001 | 2.2 (1.3–3.1) |
Impulse (N·s) | 177.3 ± 20.6 | 148.6 ± 22.8 | 0.032 | 1.3 (−0.1–2.4) | 133.0 ± 13.7 | 108.6 ± 16.7 | <0.001 | 1.6 (0.7–2.4) |
Stroke rate (cycle⸳min−1) | 54.4 ± 12.0 | 54.0 ± 5.6 | 0.875 | 0.1 (−1.0–1.1) | 52.9 ± 4.6 | 47.5 ± 4.2 | 0.002 | 1.2 (0.4–2.0) |
Stroke length (m⸳cycle−1) | 2.20 ± 0.14 | 2.00 ± 0.19 | 0.055 | 1.1 (0.0–2.2) | 2.04 ± 0.17 | 1.91 ± 0.15 | 0.026 | 0.9 (0.1–1.6) |
Variables | Pearson r (WA Points) | 95% CI | p-Value |
---|---|---|---|
Age (years) | 0.512 | (0.208–0.840) | <0.001 |
Training background (years) | 0.482 | (0.237–0.690) | 0.001 |
Swimming training (h⸳week−1) | 0.920 | (0.883–0.952) | <0.001 |
Dryland training (h⸳week−1) | 0.695 | (0.583–0.842) | <0.001 |
Body mass (kg) | 0.232 | (−0.032–0.458) | 0.122 |
Height (cm) | 0.429 | (0.169–0.643) | 0.003 |
−0.025 | (−0.302–0.262) | 0.871 | |
Hand length (cm) | 0.435 | (0.223–0.676) | 0.003 |
Arm span (cm) | 0.620 | (0.459–0.749) | <0.001 |
Waist/hip ratio | 0.519 | (0.294–0.740) | <0.001 |
Fat mass (%) | −0.614 | (−0.728–−0.495) | <0.001 |
Flight time (s) | 0.714 | (0.545–0.837) | <0.001 |
Impulse (N·s) | 0.625 | (0.438–0.767) | <0.001 |
Stroke rate (cycle⸳min–1) | 0.695 | (0.240–0.651) | 0.001 |
Stroke length (m⸳cycle–1) | 0.695 | (0.174–0.595) | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, D.D.; Goethel, M.F.; Silva, A.J.; Vilas-Boas, J.P.; Pyne, D.B.; Fernandes, R.J. Swimming Performance Interpreted through Explainable Artificial Intelligence (XAI)—Practical Tests and Training Variables Modelling. Appl. Sci. 2024, 14, 5218. https://doi.org/10.3390/app14125218
Carvalho DD, Goethel MF, Silva AJ, Vilas-Boas JP, Pyne DB, Fernandes RJ. Swimming Performance Interpreted through Explainable Artificial Intelligence (XAI)—Practical Tests and Training Variables Modelling. Applied Sciences. 2024; 14(12):5218. https://doi.org/10.3390/app14125218
Chicago/Turabian StyleCarvalho, Diogo Duarte, Márcio Fagundes Goethel, António J. Silva, João Paulo Vilas-Boas, David B. Pyne, and Ricardo J. Fernandes. 2024. "Swimming Performance Interpreted through Explainable Artificial Intelligence (XAI)—Practical Tests and Training Variables Modelling" Applied Sciences 14, no. 12: 5218. https://doi.org/10.3390/app14125218
APA StyleCarvalho, D. D., Goethel, M. F., Silva, A. J., Vilas-Boas, J. P., Pyne, D. B., & Fernandes, R. J. (2024). Swimming Performance Interpreted through Explainable Artificial Intelligence (XAI)—Practical Tests and Training Variables Modelling. Applied Sciences, 14(12), 5218. https://doi.org/10.3390/app14125218