Semi-Solid Forging Process of Aluminum Alloy Connecting Rods for the Hydrogen Internal Combustion Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Semi-Solid Forging Forming Scheme for the Aluminum Alloy Connecting Rod
2.2. Experimental Procedure of the SSFF Process for the Connecting Rod
3. Results and Discussion
3.1. Effect of FR on the 7075 Aluminum Alloy Blank
3.2. Effect of the Isothermal Process on the RF-Deformed Blank
3.3. Experimental Investigation on the Forming Process of Connecting Rod
4. Conclusions
- (1)
- The 7075 aluminum alloy with a diameter of 90 mm used in this work can be successfully deformed by the RFPD process, with an FR of up to 75%. The FR of 75% is identified as a reasonable process parameter for the SSFF process proposed;
- (2)
- In terms of the preparation of the 7075 aluminum alloy SSB, reasonable process parameters are obtained as two sets. One set is an FR of 75%, ST of 620 °C, and DT of 9 min. Another set is an FR of 75%, ST of 630 °C, and DT of 6 min. With reasonable working parameters, the 7075 aluminum alloy SSB can be prepared with the AGS of 41.48~42.57 μm and the ASF of 0.80~0.81;
- (3)
- When the connecting rod is produced with an FR of 75%, ST of 590 °C, and DT of 6 min in the SFF process, the big end of the connecting rod is not fully filled, although the rod shaft and the small end of the connecting rod can be fully formed;
- (4)
- An improved shape profile is obtained for the AACR formed by the SSFF process compared to that from the SFF process. The improvement ratios of yield strength and tensile strength by the SSFF process are 47.07% and 20.89%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Full Names |
A | the area of the solid grain (μm2) |
AGD | average grain dimension of the solid grains (μm) |
ASF | average shape factor of solid grains |
N | number of solid grains |
P | perimeter of the solid grain (μm) |
HICE | hydrogen internal combustion engine |
SSFM | semi-solid forming of metal |
IHT | isothermal heat treatment |
SIMA | strain-induced melt activation |
ECAP | equal-channel angular pressing |
RUE | repetitive upsetting extrusion |
AACR | aluminum alloy connecting rod |
DT | duration time (min) |
FR | forging ratio |
RFPD | radial forging plastic deformation |
RF | radial forging |
ST | sustaining temperature (°C) |
IHT | isothermal heat treatment |
SSB | semi-solid blank |
RAP | recrystallization and partial remelting |
SFF | solid forging forming |
SSIT | semi-solid isothermal treatment |
RFSIMA | Strain-induced melt activation |
References
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. Green hydrogen: A pathway to a sustainable energy future. Int. J. Hydrog. Energy 2024, 50, 310–333. [Google Scholar] [CrossRef]
- Gordon, J.A.; Balta-Ozkan, N.; Nabavi, S.A. Hopes and fears for a sustainable energy future: Enter the hydrogen acceptance matrix. Int. J. Hydrog. Energy 2024, 60, 1170–1191. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, L.; Feng, D.; Liu, X.; Zhao, S. Research Progress on the Manufacturing of Screw-Shaped Parts in Screw Compressors. Appl. Sci. 2024, 14, 1945. [Google Scholar] [CrossRef]
- Zhou, H.; Dai, J.; Chen, X.; Hu, B.; Wei, H.; Cai, H.H. Understanding innovation of new energy industry: Observing development trend and evolution of hydrogen fuel cell based on patent mining. Int. J. Hydrog. Energy 2024, 52, 548–560. [Google Scholar] [CrossRef]
- Boretti, A. A high-efficiency internal combustion engine using oxygen and hydrogen. Int. J. Hydrog. Energy 2024, 50, 847–856. [Google Scholar] [CrossRef]
- Güler, İ.; Kılıçaslan, A.; Küçük, T.; Corsini, D. Transient and altitude performance analysis of hydrogen fuelled internal combustion engines with different charging concepts. Int. J. Hydrog. Energy 2024, 49, 1112–1122. [Google Scholar] [CrossRef]
- Azeem, N.; Beatrice, C.; Vassallo, A.; Pesce, F.; Gessaroli, D.; Biet, C.; Guido, C. Experimental study of cycle-by-cycle variations in a spark ignition internal combustion engine fueled with hydrogen. Int. J. Hydrog. Energy 2024, 60, 1224–1238. [Google Scholar] [CrossRef]
- El-Adawy, M.; Nemitallah, M.A.; Abdelhafez, A. Towards sustainable hydrogen and ammonia internal combustion engines: Challenges and opportunities. Fuel 2024, 364, 131090. [Google Scholar] [CrossRef]
- Qin, Z.; Liu, F.; Zhang, H.; Wang, X.; Yin, C.; Weng, W.; Han, Z. Study of hydrogen injection strategy on fuel mixing characteristics of a free-piston engine. Case Stud. Therm. Eng. 2024, 56, 104279. [Google Scholar] [CrossRef]
- Yao, Z.; Li, W. Microstructure and thermal analysis of APS nano PYSZ coated aluminum alloy piston. J. Alloys Compd. 2020, 812, 152162. [Google Scholar] [CrossRef]
- Li, X.; Guo, Y.; Xiong, W.; Jia, X.; Peng, X. Fracture mechanism and fault evolution of piston rod in hydrogen reciprocating compressor. Int. J. Hydrog. Energy 2024, 50, 942–958. [Google Scholar] [CrossRef]
- Algayyim, S.J.M.; Saleh, K.; Wandel, A.P.; Fattah, I.M.R.; Yusaf, T.; Alrazen, H.A. Influence of natural gas and hydrogen properties on internal combustion engine performance, combustion, and emissions: A review. Fuel 2024, 362, 130844. [Google Scholar] [CrossRef]
- Di Angelo, L.; Mancini, E.; Di Stefano, P. Numerical methodology for design and optimization of a connecting rod for very high speed engines. Int. J. Interact. Des. Manuf. 2022, 16, 109–134. [Google Scholar] [CrossRef]
- Sathish, T.; Kumar, S.D.; Karthick, S. Modelling and analysis of different connecting rod material through finite element route. Mater. Today Proc. 2020, 21, 971–975. [Google Scholar] [CrossRef]
- Saheb, S.H. Design and analysis of connecting rod with different materials for high fatigue life. AIP Conf. Proc. 2020, 2283, 020027. [Google Scholar]
- Samat, S.; Omar, M.; Mohamed, I. Microstructural evolution and mechanical properties of thixoformed Al-Si-Cu alloy connecting rods. Mater. Today Proc. 2022, 66, 2705–2709. [Google Scholar] [CrossRef]
- Schöbel, M.; Fernández, R.; Koos, R.; Bernardi, J. Elasto-plastic deformation in Al-Cu cast alloys for engine components. J. Alloys Compd. 2019, 775, 617–627. [Google Scholar] [CrossRef]
- Niu, P.; Fu, H.; Zhang, H.; Guo, Y.; Stelmakh, O. Study on Oil Supply Characteristics of Connecting Rod Small End Bearing with Splash Lubrication by Smooth Particle Hydrodynamics Method. J. Tribol. 2024, 146, 044102. [Google Scholar] [CrossRef]
- Apfelbacher, L.; Davids, A.; Hitzler, L. Development of a Lightweight Connection Rod for Motorbikes Fabricated with Hybrid Manufacturing. In Collaborative Research Advancing Engineering Solutions for Real-World Challenges: The 2023 Postgraduate Seminar in Esslingen; Springer: Cham, Switzerland, 2024; pp. 57–68. [Google Scholar]
- Jayant, J.; Sahu, J. Design and Development of Connecting Rod with Aluminum Alloy Replacing Iron Based Alloy Material for Reciprocating Piston Engine. Int. J. Technol. Res. Manag. ISSN 2015, 2, 2348–9006. [Google Scholar]
- Hawryluk, M.; Dudkiewicz, Ł.; Polak, S.; Barełkowski, A.; Miżejewski, A.; Szymańska, T. Improvement of the Technology of Precision Forging of Connecting Rod-Type Forgings in a Multiple System, in the Aspect of the Possibilities of Process Robotization by Means of Numerical Modeling. Materials 2024, 17, 1087. [Google Scholar] [CrossRef]
- Winiarski, G.; Dziubińska, A. Analysis of a New Process of Forging a 2017A Aluminum Alloy Connecting Rod. J. Manuf. Sci. Eng. 2021, 143, 081006. [Google Scholar] [CrossRef]
- Dziubinska, A. The New Technology of Die Forging of Automotive Connecting Rods from EN AB-71100 Aluminium Alloy Cast Preforms. Materials 2023, 16, 2856. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Trivedi, A.K.; Gupta, M.; Dixit, M. Metal matrix composites for sustainable products: A review on current development. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2024. [Google Scholar] [CrossRef]
- Sulamet-Ariobimo, R.; Santoso, J.; Fadhlan, M.; Yasin, T.; Sukarnoto, T.; Mujalis, Y.; Oktaviano, Y. The effects of austenitizing process to mechanical properties of thin wall ductile iron connecting rod. AIP Conf. Proc. 2020, 2262, 060006. [Google Scholar]
- Wang, Y.; Zhao, S.; Zhang, C. Microstructures and mechanical properties of semi-solid squeeze casting ZL104 connecting rod. T. Nonferr. Metal. Soc. 2018, 28, 235–243. [Google Scholar] [CrossRef]
- Jiang, Y.; Le, Q.; Zhu, Y.; Liao, Q.; Wang, T.; Bao, L.; Wang, P. Review on forming process of magnesium alloy characteristic forgings. J. Alloys Compd. 2024, 970, 172666. [Google Scholar] [CrossRef]
- Spencer, D.B.; Mehrabian, R.; Flemings, M.C. Rheological behavior of Sn15 pct Pb in the crystallization range. Metall. Mater. Trans. B 1972, 3, 1925–1932. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, H.; Cui, Y.X.; Zhou, Y.H. Effect of Solution Treatment on the Microstructure and Properties of Thixotropic Back-Extruded Copper Alloy Bushings. J. Mater. Eng. Perform. 2023, 32, 773–781. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, S.; Zhang, H.; Han, F.; Wang, G.; Chen, Q.; Zhao, Z. Controlling liquid segregation of semi-solid AZ80 magnesium alloy by back pressure thixoextruding. J. Mater. Process. Tech. 2018, 259, 88–95. [Google Scholar] [CrossRef]
- Salleh, M.S.; Omar, M.Z.; Alhawari, K.S.; Mohammed, M.N.; Ali, M.A.M.; Mohamad, E. Microstructural evolution and mechanical properties of thixoformed A319 alloys containing variable amounts of magnesium. T. Nonferr. Metal. Soc. 2016, 26, 2029–2042. [Google Scholar] [CrossRef]
- Xie, L.; Li, Y.; Zhou, R.; Li, Z.; Wang, Q.; Zhang, L.; Ji, Q.; Xu, B. Effect of Pouring Temperature on Microstructure Characteristics and Properties of Semi-Solid Near-Eutectic Al–Si Alloy. Met. Mater. Int. 2024, 30, 1479–1491. [Google Scholar] [CrossRef]
- Cao, M.; Zhang, Q.; Zhang, Y. Effects of plastic energy on thixotropic microstructure of C5191 alloys during SIMA process. J. Alloys Compd. 2017, 721, 220–228. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, Y. Constitutive behavior of semi-solid Al80Mg5Li5Zn5Cu5 light-weight high entropy alloy. J. Mater. Res. Technol. 2024, 29, 5713–5720. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, J.; Wang, Y.; Liu, Y.; Zhang, Y.; Dong, J.; Cui, J. Unraveling solid–liquid phase transition and microstructural coarsening of semi-solid Al0.8Co0.5Cr1.5CuFeNi HEA with dual globules for thixoforming application. Mater. Design 2024, 237, 112605. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, C.; Jia, J.; Zhang, X.; Dai, H.; Yang, Y. Constitutive behavior of a SIMA processed magnesium alloy by employing repetitive upsetting-extrusion (RUE). J. Alloys Compd. 2018, 748, 694–705. [Google Scholar] [CrossRef]
- Jiang, H.; Dong, P.; Zhang, P.; Wang, Y.; An, L.; Li, H.; Zhao, S. Metal flowing and microstructure characteristics of the micro inner gear ring fabricated by rheological extrusion. Int. J. Adv. Manuf. Technol. 2024, 131, 1587–1600. [Google Scholar] [CrossRef]
- Ma, X.; Abd Razak, N.; Ahmad, A. Semisolid metal processing parameters and metallurgical properties: An overview. AIP Conf. Proc. 2024, 2998, 060004. [Google Scholar]
- Jiang, H.; Dong, P.; Zhang, P.; Wang, Y.; Li, F.; Zhu, C.; Meng, D.-A.; Fan, S.; Zhao, S. Deformation behavior and microstructure characterization of the radially forged 2A50 aluminum alloy at high-temperature solid and semi-solid states. J. Alloys Compd. 2024, 989, 174392. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Zhou, R.; Xie, L.; Wang, Q.; Zhang, L.; Ji, Q.; Xu, B. Microstructure and properties of semi-solid 7075 aluminum alloy processed with an enclosed cooling slope channel. Crystals 2023, 13, 1102. [Google Scholar] [CrossRef]
- Gu, G.; Li, R.; Xiang, L.; Xiao, G.; Lu, Y. Effects of Heating Rates on Microstructural Evolution of Hot Extruded 7075 Aluminum Alloy in the Semi-Solid State and Thixotropic Deformation Behavior. Materials 2023, 16, 6145. [Google Scholar] [CrossRef]
- Jiang, J.; Tong, Z.; Huang, M.; Wang, Y.; Zhao, W. Effect of recrystallization annealing on microstructure and properties of cold-deformed CoCrCu1.2FeNi high entropy alloy. J. Alloys Compd. 2024, 973, 172943. [Google Scholar] [CrossRef]
- Chang, M.; Liu, B.; Wang, Y.; Li, S.; Zhao, S. Effect of cross-sectional reduction ratio on microstructure evolution of semi-solid 7075 aluminum alloy prepared by RFSIMA process. J. Alloys Compd. 2024, 989, 174355. [Google Scholar] [CrossRef]
- Xiao, G.; Jiang, J.; Liu, Y.; Wang, Y.; Guo, B. Recrystallization and microstructure evolution of hot extruded 7075 aluminum alloy during semi-solid isothermal treatment. Mater. Charact. 2019, 156, 109874. [Google Scholar] [CrossRef]
- Xiao, G.-F.; Jiang, J.-F.; Ying, W.; Liu, Y.-Z.; Zhang, Y.; Guo, B.-Y.; Zhen, H.; Xian, X.-R. Microstructure and mechanical properties of 7075 aluminum alloy parts formed by semi-solid thixoextrusion. T. Nonferr. Metal. Soc. 2023, 33, 3235–3249. [Google Scholar] [CrossRef]
- Fu, J.L.; Jiang, H.J.; Wang, K.K. Influence of Processing Parameters on Microstructural Evolution and Tensile Properties for 7075 Al Alloy Prepared by an ECAPBased SIMA Process. Acta. Metall. Sin. 2018, 31, 337–350. [Google Scholar] [CrossRef]
- Binesh, B.; Aghaie-Khafri, M. RUE-based semi-solid processing: Microstructure evolution and effective parameters. Mater. Design 2016, 95, 268–286. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, Y.-S.; Chan, S.W.N.; Sung, D. Microstructure and mechanical properties of 7075 aluminum alloy during complex thixoextrusion. T. Nonferr. Metal. Soc. 2020, 30, 3173–3182. [Google Scholar] [CrossRef]
- Meshkabadi, R.; Faraji, G.; Javdani, A.; Fata, A.; Pouyafar, V. Microstructure and homogeneity of semi-solid 7075 aluminum tubes processed by parallel tubular channel angular pressing. Met. Mater. Int. 2017, 23, 1019–1028. [Google Scholar] [CrossRef]
- Mohammadi, H.; Ketabchi, M.; Kalaki, A. Microstructure Evolution of Semi-Solid 7075 Aluminum Alloy During Reheating Process. J. Mater. Eng. Perform. 2011, 20, 1256–1263. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Guo, Y.; Zhao, S.-D.; Fan, X.-G. Direct preparation of semi-solid billets by the semi-solid isothermal heat treatment for commercial cold-rolled ZL104 aluminum alloy. Int. J. Min. Met. Mater. 2021, 28, 1164–1173. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Guo, Y.; Liu, K.; Zheng, S. Deformation Characteristics and Constitutive Equations for the Semi-Solid Isothermal Compression of Cold Radial Forged 6063 Aluminium Alloy. Materials 2021, 14, 194. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Ma, L.; Zhu, Y.; Jia, W.; Han, T.; Yuan, Y.; Qin, G. Deformation mechanism of ZK60 magnesium bars during radial forging: Mathematical modeling and experimental investigation. Mater. Charact. 2021, 179, 111321. [Google Scholar] [CrossRef]
- Hu, X.; Han, X.; Chai, F.; Zhuang, W.; Zheng, F.; Yin, F.; Xie, L.; Hua, L. Efficiently manufacturing large-scale isotropic Al7075 alloy sheets with submicron grain by multidirectional rotary forging. Mater. Design 2024, 238, 112713. [Google Scholar] [CrossRef]
- Zou, J.; Ma, L.; Jia, W.; Le, Q.; Qin, G.; Yuan, Y. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging. J. Mater. Sci. Technol. 2021, 83, 228–238. [Google Scholar] [CrossRef]
- Zou, J.; Ma, L.; Zhu, Y.; Qin, L.; Yuan, Y. Gradient microstructure and superior strength–ductility synergy of AZ61 magnesium alloy bars processed by radial forging with different deformation temperatures. J. Mater. Sci. Technol. 2024, 170, 65–77. [Google Scholar] [CrossRef]
- Gautam, S.K.; Singh, B.K. Investigation on the effects of isothermal holding temperature and time on the coarsening mechanism and rheological properties of ADC12 Al semi-solid slurry. Mater. Chem. Phys. 2024, 314, 128813. [Google Scholar] [CrossRef]
Element | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
wt.% | 0.08 | 0.19 | 1.47 | 0.02 | 2.25 | 0.21 | 5.22 | 0.04 | Bal. |
Group No. | Items | Forging Ratio | Sustaining Temperature (°C) | Duration Time (min) |
---|---|---|---|---|
I | IHT process | 30.56%, 42.91%, 52.54% and 75% | 630 | 9 |
II | Reasonable FR | 610 | 3, 6, 9 | |
III | Reasonable FR | 620 | 3, 6, 9 | |
IV | Reasonable FR | 630 | 3, 6, 9 | |
SSFF and SFF process | Forming material | Die temperature (°C) | Forging Speed (mm/s) | |
V | Semi-solid billet prepared by IHT process with reasonable process parameters | 250 | 10 | |
VI | Billet prepared by isothermal treatment with the 590 °C and 10 min | 250 | 10 |
Forging Ratio | Sustaining Temperature (°C) | Duration Time (min) | Figure | AGS (μm) | ASF |
---|---|---|---|---|---|
42.91% | 620 | 9 | Figure 8b | 42.46 | 0.78 |
52.54% | 620 | 9 | Figure 8c | 41.92 | 0.80 |
75% | 620 | 9 | Figure 8d/Figure 9f | 42.57 | 0.81 |
75% | 610 | 9 | Figure 9c | 15.26 | 0.62 |
75% | 620 | 6 | Figure 9e | 26.56 | 0.67 |
75% | 630 | 3 | Figure 9g | 25.54 | 0.72 |
75% | 630 | 6 | Figure 9h | 41.48 | 0.8 |
75% | 630 | 9 | Figure 9i | 56.12 | 0.76 |
Experimental Result | AGS (μm) | SF |
---|---|---|
Semi-solid 7075 aluminum alloy billet | 41.48~42.57 | 0.80~0.81 |
Connecting rod produced by SSFF process | 42.46~43.59 | 0.68~0.72 |
Mechanical Property | The Connecting Rod Formed by the SFF Process | The Connecting Rod Formed by the SSFF Process | Improvement Ratio |
---|---|---|---|
Yield strength (MPa) | 229.95 | 338.18 | 47.07% |
Tensile strength (MPa) | 347.75 | 420.40 | 20.89% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Jiang, H.; Zhang, M.; Zhang, C.; Zhao, S.; Ding, D.; Guo, Y. Semi-Solid Forging Process of Aluminum Alloy Connecting Rods for the Hydrogen Internal Combustion Engine. Appl. Sci. 2024, 14, 5219. https://doi.org/10.3390/app14125219
Wang Y, Jiang H, Zhang M, Zhang C, Zhao S, Ding D, Guo Y. Semi-Solid Forging Process of Aluminum Alloy Connecting Rods for the Hydrogen Internal Combustion Engine. Applied Sciences. 2024; 14(12):5219. https://doi.org/10.3390/app14125219
Chicago/Turabian StyleWang, Yongfei, Hong Jiang, Mengjiao Zhang, Chaoqun Zhang, Shengdun Zhao, Ding Ding, and Yi Guo. 2024. "Semi-Solid Forging Process of Aluminum Alloy Connecting Rods for the Hydrogen Internal Combustion Engine" Applied Sciences 14, no. 12: 5219. https://doi.org/10.3390/app14125219
APA StyleWang, Y., Jiang, H., Zhang, M., Zhang, C., Zhao, S., Ding, D., & Guo, Y. (2024). Semi-Solid Forging Process of Aluminum Alloy Connecting Rods for the Hydrogen Internal Combustion Engine. Applied Sciences, 14(12), 5219. https://doi.org/10.3390/app14125219