Secure Cooperative Routing in Wireless Sensor Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Design and Problem Formulation
- The base station has the highest energy resource.
- The malicious nodes show energy levels higher than the normal sensor nodes.
- The network possesses the initial energy of 1 J.
- This algorithm does not require any clock synchronization.
2.2. Mathematical Model for MIDS Algorithm
2.3. Detection of Sinkhole and Wormhole Attack Using MIDS Algorithm
2.4. Simulation Parameters
3. Results
Simulation Results
4. Discussion
4.1. Performance Evaluation Parameters
- The number of alive nodes.
- Packet delivery ratio.
- Latency.
- Network throughput.
- Consumed energy during the communication phase.
4.1.1. Number of Alive Nodes
4.1.2. Packet Delivery Ratio (PDR)
4.1.3. Latency
4.1.4. Throughput
4.1.5. Consumed Energy during Communication Phase
4.2. Comparative Analysis
- Network energy consumption.
- Network throughput.
- Network lifetime.
4.2.1. Network Energy Consumption
4.2.2. Throughput of the Network
4.2.3. Lifetime of the Network
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, C.; Singh, L.; Tiwari, R. Wormhole attack detection techniques in ad-hoc network: A systematic review. Open Comput. Sci. 2022, 12, 260–288. [Google Scholar] [CrossRef]
- Srinivasan, V. Detection of Black Hole Attack Using Honeypot Agent-Based Scheme with Deep Learning Technique on MANET. Ing. Syst. d’Inf. 2021, 26, 549–557. [Google Scholar] [CrossRef]
- Annie, M.; Terence, J.S. A Survey on Various Detection Techniques of Sinkhole Attacks in WSN. In Proceedings of the 2017 IEEE International Conference on Communication and Signal Processing, Chennai, India, 6–8 April 2017. [Google Scholar]
- Tahboush, M.; Agoyi, M. A hybrid wormhole attack detection in mobile ad-hoc network (MANET). IEEE Access 2021, 9, 11872–11883. [Google Scholar] [CrossRef]
- Jahangeer, A.; Bazai, S.U.; Aslam, S.; Marjan, S.; Anas, M.; Hashemi, S.H. A review on the security of IoT networks: From network layer’s perspective. IEEE Access 2023, 11, 71073–71087. [Google Scholar] [CrossRef]
- Godala, S.; Vaddella, R.P.V. A study on intrusion detection system in wireless sensor networks. Int. J. Commun. Netw. Inf. Secur. 2020, 12, 127–141. [Google Scholar] [CrossRef]
- Riad, A.M.; El-Minir, H.K.; El-Hoseny, M. Secure routing in wireless sensor networks: A state of the art. Int. J. Comput. Appl. 2013, 67, 7–12. [Google Scholar]
- Moundounga, A.R.A.; Satori, H.; Boutazart, Y.; Abderrahim, E. Malicious attack detection based on continuous Hidden Markov Models in Wireless sensor networks. Microprocess. Microsyst. 2023, 101, 104888. [Google Scholar] [CrossRef]
- Karthikeyan, B.; Malik, K.A.; Babbu, D.B.; Nithya, K.; Ibrahim, S.J.A.; Chakravarthy, N.K. Survey of Cooperative Routing Alg orithms in Wireless Sensor Networks. Ann. Rom. Soc. Cell Biol. 2021, 53, 16–20. [Google Scholar]
- Subbiah, S.; Anbananthen, K.S.M.; Thangaraj, S.; Kannan, S.; Chelliah, D. Intrusion detection technique in wireless sensor network using grid search random forest with Boruta feature selection algorithm. J. Commun. Netw. 2022, 24, 264–273. [Google Scholar] [CrossRef]
- Umarani, C.; Kannan, S. Intrusion Detection System Using Hybrid Tissue Growing Algorithm for Wireless Sensor Network. Peer-to-Peer Netw. Appl. 2019, 13, 752–761. [Google Scholar] [CrossRef]
- Raghav, R.S.; Thirugnansambandam, K.; Anguraj, D.K. Beeware Routing Scheme for Detecting Network Layer Attacks in Wireless Sensor Networks. Wirel. Pers. Commun. 2020, 112, 2439–2459. [Google Scholar] [CrossRef]
- Safa, O.; Kantarci, B.; Mouftah, H.T. On the Feasibility of Deep Learning in Sensor Network Intrusion Detection. IEEE Netw. Lett. 2019, 1, 68–71. [Google Scholar]
- Gulati, K.; Boddu, R.S.K.; Kapila, D.; Bangare, S.L.; Chandnani, N.; Saravanan, G. A review paper on wireless sensor network techniques in Internet of Things (IoT). Mater. Today Proc. 2022, 51, 161–165. [Google Scholar] [CrossRef]
- Boubiche, D.E.; Athmani, S.; Boubiche, S.; Toral-Cruz, H. Cybersecurity issues in wireless sensor networks: Current challenges and solutions. Wirel. Pers. Commun. 2021, 117, 177–213. [Google Scholar] [CrossRef]
- Rehman, A.; Rehman, S.; Raheem, S. Sinkhole Attacks in Wireless Sensor Networks: A Survey. Wirel. Pers. Commun. 2019, 106, 2291–2313. [Google Scholar] [CrossRef]
- Keerthika, M.; Shanmugapriya, D. Wireless sensor networks: Active and passive attacks-vulnerabilities and countermeasures. Glob. Transit. Proc. 2021, 2, 362–367. [Google Scholar] [CrossRef]
- Nourildean, S.W.; Hassib, M.D.; Mohammed, Y.A. Internet of things based wireless sensor network: A review. Indones. J. Electr. Eng. Comput. Sci. 2022, 27, 246–261. [Google Scholar] [CrossRef]
- Uzougbo, O.I.; Ajibade, S.S.; Taiwo, F. An overview of wireless sensor network security attacks: Mode of operation, severity and mitigation techniques. arXiv 2020, arXiv:2011.06779. [Google Scholar]
- Aparnaa, M.; Dhanush Krishna, S.; Amaran, S.; Maheswari, S.; Soundarya, R. An Enhanced Scheme of Excluding Compromised Nodes in Wireless Sensor Networks. J. Phys. 2019, 1362, 012007. [Google Scholar] [CrossRef]
- Al-Nasser, A.; Almesaeed, R.; Al-Junaid, H. A comprehensive survey on routing and security in mobile wireless sensor networks. Int. J. Electron. Telecommun. 2021, 67, 483–496. [Google Scholar] [CrossRef]
- Shanmugaraja, P.; Bhardwaj, M.; Mehbodniya, A.; Vali, S.; Reddy, P.C.S. An Efficient Clustered M-path Sinkhole Attack Detection (MSAD) Algorithm for Wireless Sensor Networks. Adhoc Sens. Wirel. Netw. 2023, 55, 1–16. [Google Scholar]
- Nwankwo, K.E.; Abdulhamid, S.I.M.; Ojeniyi, J.A.; Misra, S.; Oluranti, J.; Ahuja, R. A Panacea to soft computing approach for Sinkhole attack classification in a wireless sensor networks environment. In Proceedings of the Futuristic Trends in Network and Communication Technologies: Third International Conference, FTNCT, Taganrog, Russia, 14–16 October 2020; pp. 78–87. [Google Scholar]
- Babaeer, H.A.; Al-Ahmadi, S.A. Efficient and secure data transmission and sinkhole detection in a multi-clustering wireless sensor network based on homomorphic encryption and watermarking. IEEE Access 2020, 8, 92098–92109. [Google Scholar] [CrossRef]
- Hanif, M.; Ashraf, H.; Jalil, Z.; Jhanjhi, N.Z.; Humayun, M.; Saeed, S.; Almuhaideb, A.M. AI-based wormhole attack detection techniques in wireless sensor networks. Electronics 2022, 11, 2324. [Google Scholar] [CrossRef]
- Zhang, K. A wormhole attack detection method for tactical wireless sensor networks. PeerJ Comput. Sci. 2023, 9, e1449. [Google Scholar] [CrossRef] [PubMed]
- Jatti, A.V.; Sonti, V.K. Sinkhole Attack Detection and Prevention Using Agent Based Algorithm. J. Univ. Shanghai Sci. Technol. 2021, 23, 526–544. [Google Scholar] [CrossRef]
- Alaali, A.M.; Almesaeed, R. Mitigation of Sinkhole Attack in Dynamic Directional Routing for Mobile Wireless Sensor Networks. Int. J. Comput. Digit. Syst. 2023, 14, 10381–10394. [Google Scholar] [CrossRef]
- Ahutu, O.R.; El-Ocla, H. Centralized routing protocol for detecting wormhole attacks in wireless sensor networks. IEEE Access 2020, 8, 63270–63282. [Google Scholar] [CrossRef]
- Singh, S.; Saini, H.S. Intelligent ad-hoc-on demand multipath distance vector for wormhole attack in clustered WSN. Wirel. Pers. Commun. 2022, 122, 1305–1327. [Google Scholar] [CrossRef]
- Kaur, T.; Kumar, R. Mitigation of Blackhole Attacks and Wormhole Attacks in Wireless Sensor Networks Using AODV Protocol. In Proceedings of the 6th IEEE International Conference on Smart Energy Grid Engineering, SEGE, Oshawa, ON, Canada, 12–15 August 2018; pp. 288–292. [Google Scholar]
- Amish, P.; Vaghela, V.B. Detection and Prevention of Wormhole Attack in Wireless Sensor Network Using AOMDV Protocol. Procedia Comput. Sci. 2016, 79, 700–707. [Google Scholar] [CrossRef]
- Popli, L.D.R. Sinkhole Attack Detection In MANET Using Swarm Intelligence Techniques. Int. J. Eng. Appl. Sci. Technol. 2020, 5, 155–160. [Google Scholar]
- Kumar, S.R.; Arumugam, U. Intrusion Detection Algorithm for Mitigating Sinkhole Attack on LEACH Protocol in Wireless Sensor Networks. J. Sens. 2015, 2015, 1–12. [Google Scholar]
Parameters | Values |
---|---|
Simulation Area | 100 × 100 m2 |
Sensor Nodes | 200 |
Initial Energy (Ie) | 1 J |
Simulation Time | 306.0459 s |
Termination Threshold (ETH = 0.02) | mean (Ie) < N × ETH J |
Termination Threshold (For First Node Die) | 0.01 J |
10 pJ/bit/m2 | |
0.0013 pJ/bit/m4 | |
Length of Data | 5000 bits |
er, et | 50 nJ |
do | 87.7 m |
Anchor Nodes | 4 |
Non-anchor Nodes | 196 |
Sr # | Technique | Energy Consumption | Lifetime | Throughput |
---|---|---|---|---|
1 | MIDS (Proposed) | 43% less | 62% High | 65% High |
2 | LEACH (Reference) | Medium | Medium | Medium |
3 | MS LEACH | High | Low | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batool, R.; Bibi, N.; Alhazmi, S.; Muhammad, N. Secure Cooperative Routing in Wireless Sensor Networks. Appl. Sci. 2024, 14, 5220. https://doi.org/10.3390/app14125220
Batool R, Bibi N, Alhazmi S, Muhammad N. Secure Cooperative Routing in Wireless Sensor Networks. Applied Sciences. 2024; 14(12):5220. https://doi.org/10.3390/app14125220
Chicago/Turabian StyleBatool, Rida, Nargis Bibi, Samah Alhazmi, and Nazeer Muhammad. 2024. "Secure Cooperative Routing in Wireless Sensor Networks" Applied Sciences 14, no. 12: 5220. https://doi.org/10.3390/app14125220
APA StyleBatool, R., Bibi, N., Alhazmi, S., & Muhammad, N. (2024). Secure Cooperative Routing in Wireless Sensor Networks. Applied Sciences, 14(12), 5220. https://doi.org/10.3390/app14125220