Haze-Aware Attention Network for Single-Image Dehazing
Abstract
:1. Introduction
- We developed an efficient attention mechanism known as the HAAM, which is inspired by the atmospheric scattering model that smartly incorporates physical principles into high-dimensional features.
- We crafted a multiscale frequency enhancement module that tunes high-frequency features, thus effectively bringing back the finer details of hazy images.
- Our HAA-Net set new benchmarks in performance across several public datasets. Notably, it reached the PSNR/SSIM of 41.23 dB/0.996 on the RESIDE-Indoor dataset, thus showcasing its exceptional dehazing performance.
2. Related Work
2.1. Prior-Based Image Dehazing
2.2. Deep Learning-Based Image Dehazing
2.3. Attention-Based Image Dehazing
2.4. Frequency-Based Image Dehazing
3. Method
3.1. Image Dehazing
3.2. Haze-Aware Attention Module
3.3. Multiscale Frequency Enhancement Module
4. Experiments
4.1. Implementation Details
4.2. Datasets and Metrics
4.3. Comparison with State-of-the-Art Methods
4.4. Ablation Study
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. Aod-net: All-in-one dehazing network. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4770–4778. [Google Scholar]
- Qin, X.; Wang, Z.; Bai, Y.; Xie, X.; Jia, H. FFA-Net: Feature fusion attention network for single image dehazing. Proc. AAAI Conf. Artif. Intell. 2020, 34, 11908–11915. [Google Scholar] [CrossRef]
- Wu, H.; Qu, Y.; Lin, S.; Zhou, J.; Qiao, R.; Zhang, Z.; Xie, Y.; Ma, L. Contrastive learning for compact single image dehazing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10551–10560. [Google Scholar]
- Ye, T.; Jiang, M.; Zhang, Y.; Chen, L.; Chen, E.; Chen, P.; Lu, Z. Perceiving and Modeling Density is All You Need for Image Dehazing. arXiv 2021, arXiv:2111.09733. [Google Scholar]
- Sakaridis, C.; Dai, D.; Hecker, S.; Van Gool, L. Model adaptation with synthetic and real data for semantic dense foggy scene understanding. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 687–704. [Google Scholar]
- Sakaridis, C.; Dai, D.; Van Gool, L. Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vis. 2018, 126, 973–992. [Google Scholar] [CrossRef]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. End-to-end united video dehazing and detection. Proc. AAAI Conf. Artif. Intell. 2018, 32, 7016–7023. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Sakaridis, C.; Dai, D.; Van Gool, L. Domain adaptive faster r-cnn for object detection in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3339–3348. [Google Scholar]
- Zhang, X.; Wang, T.; Wang, J.; Tang, G.; Zhao, L. Pyramid channel-based feature attention network for image dehazing. Comput. Vis. Image Underst. 2020, 197, 103003. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, T.; Luo, W.; Huang, P. Multi-level fusion and attention-guided CNN for image dehazing. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 4162–4173. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Wang, T.; Jiang, R. Hierarchical Feature Fusion With Mixed Convolution Attention for Single Image Dehazing. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 510–522. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- Song, Y.; He, Z.; Qian, H.; Du, X. Vision transformers for single image dehazing. IEEE Trans. Image Process. 2023, 32, 1927–1941. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Y.; Shi, Z.; Chen, J. Griddehazenet: Attention-based multi-scale network for image dehazing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7314–7323. [Google Scholar]
- McCartney, E.J. Optics of the Atmosphere: Scattering by Molecules and Particles; IEEE: New York, NY, USA, 1976. [Google Scholar]
- Narasimhan, S.G.; Nayar, S.K. Chromatic framework for vision in bad weather. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition—CVPR 2000 (Cat. No. PR00662), Hilton Head, SC, USA, 15 June 2000; Volume 1, pp. 598–605. [Google Scholar]
- Narasimhan, S.G.; Nayar, S.K. Vision and the atmosphere. Int. J. Comput. Vis. 2002, 48, 233–254. [Google Scholar] [CrossRef]
- Zou, W.; Jiang, M.; Zhang, Y.; Chen, L.; Lu, Z.; Wu, Y. Sdwnet: A straight dilated network with wavelet transformation for image deblurring. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 1895–1904. [Google Scholar]
- Mao, X.; Liu, Y.; Shen, W.; Li, Q.; Wang, Y. Deep residual fourier transformation for single image deblurring. arXiv 2021, arXiv:2111.11745. [Google Scholar]
- Zhu, Q.; Mai, J.; Shao, L. Single image dehazing using color attenuation prior. In Proceedings of the BMVC, Nottingham, UK, 1–5 September 2014. [Google Scholar]
- Berman, D.; Treibitz, T.; Avidan, S. Non-local image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1674–1682. [Google Scholar]
- Tan, R.T. Visibility in bad weather from a single image. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Ren, W.; Ma, L.; Zhang, J.; Pan, J.; Cao, X.; Liu, W.; Yang, M.H. Gated fusion network for single image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3253–3261. [Google Scholar]
- Qu, Y.; Chen, Y.; Huang, J.; Xie, Y. Enhanced pix2pix dehazing network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8160–8168. [Google Scholar]
- Dong, H.; Pan, J.; Xiang, L.; Hu, Z.; Zhang, X.; Wang, F.; Yang, M.H. Multi-scale boosted dehazing network with dense feature fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2157–2167. [Google Scholar]
- Liu, Y.; Yan, Z.; Tan, J.; Li, Y. Multi-Purpose Oriented Single Nighttime Image Haze Removal Based on Unified Variational Retinex Model. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 1643–1657. [Google Scholar] [CrossRef]
- Cui, Y.; Tao, Y.; Bing, Z.; Ren, W.; Gao, X.; Cao, X.; Huang, K.; Knoll, A. Selective frequency network for image restoration. In Proceedings of the Eleventh International Conference on Learning Representations, Virtual Event, 25–29 April 2022. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 10012–10022. [Google Scholar]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H. Restormer: Efficient transformer for high-resolution image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5728–5739. [Google Scholar]
- Tsai, F.J.; Peng, Y.T.; Lin, Y.Y.; Tsai, C.C.; Lin, C.W. Stripformer: Strip transformer for fast image deblurring. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 146–162. [Google Scholar]
- Zhu, L.; Wang, X.; Ke, Z.; Zhang, W.; Lau, R.W. Biformer: Vision transformer with bi-level routing attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 10323–10333. [Google Scholar]
- Liu, Y.; Yan, Z.; Chen, S.; Ye, T.; Ren, W.; Chen, E. Nighthazeformer: Single nighttime haze removal using prior query transformer. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 29 October–3 November 2023; pp. 4119–4128. [Google Scholar]
- Lin, C.; Rong, X.; Yu, X. Msaff-net: Multiscale attention feature fusion networks for single image dehazing and beyond. IEEE Trans. Multimed. 2022, 25, 3089–3100. [Google Scholar] [CrossRef]
- Chen, Z.; He, Z.; Lu, Z.M. DEA-Net: Single image dehazing based on detail-enhanced convolution and content-guided attention. IEEE Trans. Image Process. 2024, 33, 1002–1015. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Li, K.; Zhong, B.; Fu, Y. Residual non-local attention networks for image restoration. arXiv 2019, arXiv:1903.10082. [Google Scholar]
- Mou, C.; Zhang, J.; Fan, X.; Liu, H.; Wang, R. COLA-Net: Collaborative attention network for image restoration. IEEE Trans. Multimed. 2021, 24, 1366–1377. [Google Scholar] [CrossRef]
- Selesnick, I.W.; Baraniuk, R.G.; Kingsbury, N.C. The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 2005, 22, 123–151. [Google Scholar] [CrossRef]
- Yoo, J.; Lee, S.h.; Kwak, N. Image restoration by estimating frequency distribution of local patches. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6684–6692. [Google Scholar]
- Yang, H.H.; Fu, Y. Wavelet u-net and the chromatic adaptation transform for single image dehazing. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 2736–2740. [Google Scholar]
- Chen, W.T.; Fang, H.Y.; Hsieh, C.L.; Tsai, C.C.; Chen, I.; Ding, J.J.; Kuo, S.Y. All snow removed: Single image desnowing algorithm using hierarchical dual-tree complex wavelet representation and contradict channel loss. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 4196–4205. [Google Scholar]
- Yang, H.H.; Yang, C.H.H.; Tsai, Y.C.J. Y-net: Multi-scale feature aggregation network with wavelet structure similarity loss function for single image dehazing. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 2628–2632. [Google Scholar]
- Yu, H.; Zheng, N.; Zhou, M.; Huang, J.; Xiao, Z.; Zhao, F. Frequency and spatial dual guidance for image dehazing. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 181–198. [Google Scholar]
- Liu, X.; Zhang, H.; Cheung, Y.m.; You, X.; Tang, Y.Y. Efficient single image dehazing and denoising: An efficient multi-scale correlated wavelet approach. Comput. Vis. Image Underst. 2017, 162, 23–33. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, Y.; Qian, H.; Du, X. Rethinking performance gains in image dehazing networks. arXiv 2022, arXiv:2209.11448. [Google Scholar]
- Li, X.; Wang, W.; Hu, X.; Yang, J. Selective kernel networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 510–519. [Google Scholar]
- Li, B.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking Single-Image Dehazing and Beyond. IEEE Trans. Image Process. 2019, 28, 492–505. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Huang, G.Q.; Dai, Q.; Zhang, T. Mining SOTs and dispatching rules from RFID-enabled real-time shopfloor production data. J. Intell. Manuf. 2014, 25, 825–843. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, L.; Pei, S.; Fu, H.; Qin, J.; Zhang, Q.; Wan, L.; Feng, W. From Synthetic to Real: Image Dehazing Collaborating with Unlabeled Real Data. arXiv 2021, arXiv:2108.02934. [Google Scholar]
- Ancuti, C.O.; Ancuti, C.; Timofte, R. NH-HAZE: An Image Dehazing Benchmark with Non-Homogeneous Hazy and Haze-Free Images. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 1798–1805. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; Sbert, M.; Timofte, R. Dense-haze: A benchmark for image dehazing with dense-haze and haze-free images. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1014–1018. [Google Scholar]
- Hong, M.; Xie, Y.; Li, C.; Qu, Y. Distilling Image Dehazing with Heterogeneous Task Imitation. In Proceedings of the CVPR, Seattle, WA, USA, 13–19 June 2020; pp. 3459–3471. [Google Scholar]
- Guo, C.L.; Yan, Q.; Anwar, S.; Cong, R.; Ren, W.; Li, C. Image dehazing transformer with transmission-aware 3d position embedding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5812–5820. [Google Scholar]
- Song, X.; Zhou, D.; Li, W.; Dai, Y.; Shen, Z.; Zhang, L.; Li, H. TUSR-Net: Triple Unfolding Single Image Dehazing with Self-Regularization and Dual Feature to Pixel Attention. IEEE Trans. Image Process. 2023, 32, 1231–1244. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Ren, W.; Knoll, A. Omni-Kernel Network for Image Restoration. Proc. AAAI Conf. Artif. Intell. 2024, 38, 1426–1434. [Google Scholar] [CrossRef]
- Yin, H.; Yang, P. Multi-Stage Progressive Single Image Dehazing Network with Feature Physics Model. IEEE Trans. Instrum. Meas. 2024, 73, 5013612. [Google Scholar] [CrossRef]
Method | RESIDE-Indoor [46] | RESIDE-Outdoor [46] | Haze4k [48] | NH-Haze [49] | Dense-Haze [50] | # Param | # MACs | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR (dB) | SSIM | PSNR (dB) | SSIM | PSNR (dB) | SSIM | PSNR (dB) | SSIM | PSNR (dB) | SSIM | |||
(ICCV’17) AOD-Net [1] | 19.82 | 0.818 | 20.29 | 0.876 | 17.15 | 0.830 | 15.40 | 0.569 | - | - | 0.002 M | - |
(ICCV’19) GridDehazeNet [14] | 32.16 | 0.984 | 30.86 | 0.982 | - | - | 13.80 | 0.537 | - | - | 0.96 M | - |
(AAAI’20) FFA-Net [2] | 36.39 | 0.989 | 33.57 | 0.984 | 26.96 | 0.950 | 19.87 | 0.692 | - | - | 4.68 M | 144.17 G |
(CVPR’20) MSBDN [25] | 33.79 | 0.984 | - | 22.99 | 0.850 | 19.23 | 0.706 | - | - | 31.35 M | 20.79 G | |
(CVPR’20) KDDN [51] | 34.72 | 0.985 | - | - | - | - | 17.39 | 0.590 | - | - | 5.99 M | - |
(CVPR’21) AECR-Net [3] | 37.17 | 0.990 | - | - | - | - | 19.88 | 0.717 | 15.80 | 0.466 | 2.61 M | 13.05 G |
(CVPR’22) Dehamer [52] | 36.63 | 0.988 | 35.18 | 0.986 | - | - | 20.66 | 0.684 | 16.62 | 0.560 | 132.45 M | 29.57 G |
(ECCV’22) PMNet [4] | 38.41 | 0.990 | - | - | 33.49 | 0.980 | - | - | - | - | 18.90 M | - |
(TIP’23) DehazeFormer-L [13] | 40.05 | 0.996 | - | - | 32.19 | 0.980 | - | - | - | - | 25.44 M | 69.93 G |
(TIP’23) TUSR-Net [53] | 38.67 | 0.991 | - | - | - | - | - | - | 18.62 | 0.560 | 5.62 M | - |
(AAAI’24) OKNet-S [54] | 37.59 | 0.994 | 35.45 | 0.992 | - | - | 20.29 | 0.800 | 16.85 | 0.620 | 2.40 M | 8.93 G |
(IEEE Trans. Instrum’24) MSPD-Net [55] | 39.88 | 0.994 | - | - | 32.97 | 0.987 | - | - | - | - | - | - |
HAA-Net (Ours) | 41.21 | 0.996 | 35.67 | 0.992 | 33.93 | 0.990 | 21.32 | 0.792 | 18.74 | 0.620 | 18.70 M | 122.48 G |
Model | PSNR (dB) | SSIM | # Param | # MACs |
---|---|---|---|---|
Base (U-Net) | 25.46 | 0.91 | 0.85 M | 13.35 G |
Base + HAAM | 31.76 | 0.97 | 8.6 M | 122.29 G |
Base + MFEM | 32.32 | 0.98 | 18.2 M | 61.90 G |
Base + MFEM + HAAM | 33.46 | 0.99 | 18.6 M | 122.44 G |
Base + MFEM + HAAM + SKFusion (Full) | 33.93 | 0.99 | 18.7 M | 122.48 G |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, L.; Liu, Y.; Li, W.; Chen, L.; Chen, E. Haze-Aware Attention Network for Single-Image Dehazing. Appl. Sci. 2024, 14, 5391. https://doi.org/10.3390/app14135391
Tong L, Liu Y, Li W, Chen L, Chen E. Haze-Aware Attention Network for Single-Image Dehazing. Applied Sciences. 2024; 14(13):5391. https://doi.org/10.3390/app14135391
Chicago/Turabian StyleTong, Lihan, Yun Liu, Weijia Li, Liyuan Chen, and Erkang Chen. 2024. "Haze-Aware Attention Network for Single-Image Dehazing" Applied Sciences 14, no. 13: 5391. https://doi.org/10.3390/app14135391
APA StyleTong, L., Liu, Y., Li, W., Chen, L., & Chen, E. (2024). Haze-Aware Attention Network for Single-Image Dehazing. Applied Sciences, 14(13), 5391. https://doi.org/10.3390/app14135391