A Defect Detection Method Based on YOLOv7 for Automated Remanufacturing
Abstract
:1. Introduction
2. YOLOv7 Architecture
3. Training and Results
3.1. Datasets
3.2. Training Environment
3.3. Training Parameters
3.4. Evaluation Metrics
3.5. Training Results
3.5.1. NEU-DET
3.5.2. NRSD
3.5.3. KSDD2
4. Case Study Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, S.; Haleem, A.; Fatma, N. Effective adoption of remanufacturing practices: A step towards circular economy. J. Remanuf. 2022, 12, 167–185. [Google Scholar] [CrossRef]
- Guide, V.D.R. Production planning and control for remanufacturing: Industry practice and research needs. J. Oper. Manag. 2000, 18, 467–483. [Google Scholar] [CrossRef]
- Zhu, Q.; Tian, Y. Developing a remanufacturing supply chain management system: A case of a successful truck engine remanufacturer in China. Prod. Plan. Control 2016, 27, 708–716. [Google Scholar] [CrossRef]
- Tolio, T.; Bernard, A.; Colledani, M.; Kara, S.; Seliger, G.; Duflou, J.; Battaia, O.; Takata, S. Design, management and control of demanufacturing and remanufacturing systems. CIRP Ann. Manuf. Technol. 2017, 66, 585–609. [Google Scholar] [CrossRef]
- Caterino, M.; Fera, M.; Macchiaroli, R.; Pham, D.T. Cloud remanufacturing: Remanufacturing enhanced through cloud technologies. J. Manuf. Syst. 2022, 64, 133–148. [Google Scholar] [CrossRef]
- Kaiser, J.-P.; Lang, S.; Wurster, M.; Lanza, G. A Concept for Autonomous Quality Control for Core Inspection in Remanufacturing. Procedia CIRP 2022, 105, 374–379. [Google Scholar] [CrossRef]
- Zheng, Y.; Mamledesai, H.; Imam, H.; Ahmad, R. A novel deep learning-based automatic damage detection and localization method for remanufacturing/repair. Comput. Aided Des. Appl. 2021, 18, 1359–1372. [Google Scholar] [CrossRef]
- Imam, H.Z.; Al-Musaibeli, H.; Zheng, Y.; Martinez, P.; Ahmad, R. Vision-based spatial damage localization method for autonomous robotic laser cladding repair processes. Robot. Comput. Integr. Manuf. 2023, 80, 102452. [Google Scholar] [CrossRef]
- Imam, H.Z.; Zheng, Y.; Martinez, P.; Ahmad, R. Vision-Based Damage Localization Method for an Autonomous Robotic Laser Cladding Process. Procedia CIRP 2021, 104, 827–832. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Wang, Z.; Dong, H.; Wang, J.; Tang, S. Using deep learning to detect defects in manufacturing: A comprehensive survey and current challenges. Materials 2020, 13, 5755. [Google Scholar] [CrossRef]
- Mordia, R.; Verma, A.K. Visual techniques for defects detection in steel products: A comparative study. Eng. Fail. Anal. 2022, 134, 106047. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, Y.; Zhao, F.; Zhang, E.; Wu, Z.; Shao, L. Surface Defect Detection Methods for Industrial Products: A Review. Appl. Sci. 2021, 11, 7657. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, E.; Espinosa, H.D. Recent Advances and Applications of Machine Learning in Experimental Solid Mechanics: A Review. Appl. Mech. Rev. 2023, 75, 061001. [Google Scholar] [CrossRef]
- Tao, X.; Zhang, D.; Ma, W.; Liu, X.; Xu, D. Automatic metallic surface defect detection and recognition with convolutional neural networks. Appl. Sci. 2018, 8, 1575. [Google Scholar] [CrossRef]
- Parvez, M.M.; Rahman, M.F.; Galib, S.M.; Liou, F. A Convolutional Neural Network (Cnn) for Defect Detection of Additively Manufactured Parts. In ASME International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2021; Volume 85550, p. V02AT02A010. [Google Scholar] [CrossRef]
- Han, F.; Liu, S.; Liu, S.; Zou, J.; Ai, Y.; Xu, C. Defect detection: Defect Classification and Localization for Additive Manufacturing using Deep Learning Method. In Proceedings of the 2020 IEEE 21st International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, China, 12–15 August 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Xu, R.; Hao, R.; Huang, B. Efficient surface defect detection using self-supervised learning strategy and segmentation network. Adv. Eng. Inform. 2022, 52, 101566. [Google Scholar] [CrossRef]
- Wu, H.; Lv, Q. Hot-Rolled Steel Strip Surface Inspection Based on Transfer Learning Model. J. Sens. 2021, 2021, 6637252. [Google Scholar] [CrossRef]
- Zheng, Y.; Mamledesai, H.; Imam, H.; Ahmad, R. Deep Learning-based Automatic Damage Recognition and Spatial Localization for Remanufacturing/Repair. In Proceedings of the CAD’20, Barelona, Spain, 6–8 July 2020; Volume 18, pp. 381–385. [Google Scholar] [CrossRef]
- Zheng, Z.; Qi, H.; Zhuang, L.; Zhang, Z. Automated rail surface crack analytics using deep data-driven models and transfer learning. Sustain. Cities Soc. 2021, 70, 102898. [Google Scholar] [CrossRef]
- Konovalenko, I.; Maruschak, P.; Brezinová, J.; Prentkovskis, O.; Brezina, J. Research of U-Net-Based CNN Architectures for Metal Surface Defect Detection. Machines 2022, 10, 327. [Google Scholar] [CrossRef]
- Litvintseva, A.; Evstafev, O.; Shavetov, S. Real-time Steel Surface Defect Recognition Based on CNN. In Proceedings of the IEEE International Conference on Automation Science and Engineering, Lyon, France, 23–27 August 2021; pp. 1118–1123. [Google Scholar] [CrossRef]
- Li, G.; Shao, R.; Wan, H.; Zhou, M.; Li, M. A Model for Surface Defect Detection of Industrial Products Based on Attention Augmentation. Comput. Intell. Neurosci. 2022, 2022, 9577096. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Dual attention deep learning network for automatic steel surface defect segmentation. Comput.-Aided Civ. Infrastruct. Eng. 2022, 37, 1468–1487. [Google Scholar] [CrossRef]
- Wang, J.; Xu, G.; Yan, F.; Wang, J.; Wang, Z. Defect Transformer: An Efficient Hybrid Transformer Architecture for Surface Defect Detection. arXiv 2022, arXiv:2207.08319. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, J.; Yang, C.; Zhou, Y. Cas-VSwin transformer: A variant swin transformer for surface-defect detection. Comput. Ind. 2022, 140, 103689. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 8. [Google Scholar] [CrossRef]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A survey on deep transfer learning. In Proceedings of the Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; Part III 27. Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 270–279. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects in context. In Proceedings of the Computer Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Part V 13. Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar] [CrossRef]
- Li, J.; Su, Z.; Geng, J.; Yin, Y. Real-time Detection of Steel Strip Surface Defects Based on Improved YOLO Detection Network. IFAC-PapersOnLine 2018, 51, 76–81. [Google Scholar] [CrossRef]
- Kou, X.; Liu, S.; Cheng, K.; Qian, Y. Development of a YOLO-V3-based model for detecting defects on steel strip surface. Measurement 2021, 182, 109454. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, K.; Wang, L. Metal surface defect detection using modified yolo. Algorithms 2021, 14, 257. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, C.; Yang, G.; Huang, Z.; Li, G. MSFT-YOLO: Improved YOLOv5 Based on Transformer for Detecting Defects of Steel Surface. Sensors 2022, 22, 3467. [Google Scholar] [CrossRef] [PubMed]
- Saiz, F.A.; Alfaro, G.; Barandiaran, I. An Inspection and Classification System for Automotive Component Remanufacturing Industry Based on Ensemble Learning. Information 2021, 12, 489. [Google Scholar] [CrossRef]
- Bai, J.; Wu, D.; Shelley, T.; Schubel, P.; Twine, D.; Russell, J.; Zeng, X.; Zhang, J. A Comprehensive Survey on Machine Learning Driven Material Defect Detection: Challenges, Solutions, and Future Prospects. arXiv 2024, arXiv:2406.07880. [Google Scholar]
- Hütten, N.; Gomes, M.A.; Hölken, F.; Andricevic, K.; Meyes, R.; Meisen, T. Deep Learning for Automated Visual Inspection in Manufacturing and Maintenance: A Survey of Open-Access Papers. Appl. Syst. Innov. 2024, 7, 11. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision. and Pattern Recognition 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the 30th IEEE Conference on Computer Vision. and Pattern Recognition 2017 (CVPR 2017), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar] [CrossRef]
- Redmon, J. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Lhrg, X. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934v1. [Google Scholar]
- Wang, C.-Y.; Liao, H.-Y.M.; Kinsley, H.; Kukieła, D.; Meckel, A. Scaled-YOLOv4: Scaling Cross Stage Partial Network. arXiv 2017, arXiv:2011.08036v2. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. You Only Learn One Representation: Unified Network for Multiple Tasks. arXiv 2021, arXiv:2105.04206. [Google Scholar]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2021, 199, 1066–1073. [Google Scholar] [CrossRef]
- Sari, E.; Belbahri, M.; Nia, V.P. How Does Batch Normalization Help Binary Training? arXiv 2019, arXiv:1909.09139. [Google Scholar]
- Severstal. Severstal: Steel Defect Detection. [Dataset]. Available online: https://www.kaggle.com/competitions/severstal-steel-defect-detection/data (accessed on 20 June 2024).
- Zhang, D.; Song, K.; Xu, J.; He, Y.; Niu, M.; Yan, Y. MCnet: Multiple Context Information Segmentation Network of No-Service Rail Surface Defects. IEEE Trans. Instrum. Meas. 2021, 70, 5004309. [Google Scholar] [CrossRef]
- Božič, J.; Tabernik, D.; Skočaj, D. Mixed supervision for surface-defect detection: From weakly to fully supervised learning. Comput. Ind. 2021, 129, 103459. [Google Scholar] [CrossRef]
- Wieler, F.A.H.M.; Hahn, T. Weakly Supervised Learning for Industrial Optical Inspection [Dataset]. Available online: https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-optical-inspection (accessed on 20 June 2024).
- Lv, X.; Duan, F.; Jiang, J.J.; Fu, X.; Gan, L. Deep metallic surface defect detection: The new benchmark and detection network. Sensors 2020, 20, 1562. [Google Scholar] [CrossRef]
- Song, K.; Yan, Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl. Surf. Sci. 2013, 285, 858–864. [Google Scholar] [CrossRef]
- Ball Screw Drive Surface Defect Dataset for Classification. Institute for Production Technology. Available online: https://publikationen.bibliothek.kit.edu/1000133819 (accessed on 20 June 2024).
- Tabernik, D.; Šela, S.; Skvarč, J.; Skočaj, D. Segmentation-based deep-learning approach for surface-defect detection. J. Intell. Manuf. 2020, 31, 759–776. [Google Scholar] [CrossRef]
- Gan, J.; Li, Q.; Wang, J.; Yu, H. A Hierarchical Extractor-Based Visual Rail Surface Inspection System. IEEE Sens. J. 2017, 17, 7935–7944. [Google Scholar] [CrossRef]
- Hu, M.; Ju, X. Two-stage insulator self-explosion defect detection method based on Mask R-CNN. In Proceedings of the 2021 IEEE 2nd International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), Shenyang, China, 17–19 November 2021; pp. 13–18. [Google Scholar] [CrossRef]
- Li, L.; Jiang, Z.; Li, Y. Surface Defect. Detection Algorithm of Aluminum Based on Improved Faster RCNN. In Proceedings of the 2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN), Xi’an, China, 25–28 November 2021; pp. 527–531. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Inoue, H. Data Augmentation by Pairing Samples for Images Classification. arXiv 2018. [Google Scholar] [CrossRef]
- Rožanec, J.M.; Zajec, P.; Theodoropoulos, S.; Koehorst, E.; Fortuna, B.; Mladenic, D. Synthetic Data Augmentation Using GAN For Improved Automated Visual Inspection. IFAC-Pap. 2023, 56, 11094–11099. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Xin, Z. Efficient Detection Model of Steel Strip Surface Defects Based on YOLO-V7. IEEE Access 2022, 10, 133936–133944. [Google Scholar] [CrossRef]
- Yang, L.; Xu, S.; Fan, J.; Li, E.; Liu, Y. A pixel-level deep segmentation network for automatic defect detection. Expert. Syst. Appl. 2023, 215, 119388. [Google Scholar] [CrossRef]
- Tao, H.; Duan, Q.; Lu, M.; Hu, Z. Learning discriminative feature representation with pixel-level supervision for forest smoke recognition. Pattern Recognit. 2023, 143, 109761. [Google Scholar] [CrossRef]
Dataset | Set Size | Raw Image Size (Pixels) | # of Classes |
---|---|---|---|
Severstal defect dataset [47] | 18,074 | 1600 × 256 | 4 |
No-service rail surface defect (NRSD) [48] | 4101 | 600 × 600 | 1 |
Kolektor surface-defect dataset 2 (KSDD2) [49] | 3335 | 230 × 630 | 1 |
DAGM 2007 [50] | 2300 | 512 × 512 | 10 |
GC10 defect dataset (GC10-DET) [51] | 2294 | 415 × 416 | 10 |
Northeastern University defect dataset (NEU-DET) [52] | 1800 | 200 × 200 | 6 |
Ball screw drive surface defect dataset (BSData) [53] | 1104 | 1130 × 460 | 1 |
Kolektor surface-defect dataset (KSDD) [54] | 399 | 500 × (1240–1270) | 1 |
Rail surface discrete defect (RSDD) [55] | 167 | various | 1 |
Property | Value |
---|---|
CPU | AMD Ryzen Threadripper 3970X 32-Core |
GPU | NVIDIA GeForce RTX 3090/24 GB |
CUDA cores/version | 10,496/11.8 |
Operating system | Windows Server 2019 |
RAM | 128 GB |
PyTorch | 1.10.1 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Learning rate | 0.001 | Batch Size | 8–32 |
Momentum | 0.937 | Image Size | Depends on dataset |
Weight decay | 0.0005 | Epochs | 100–300 |
YOLOv7 Variant | #Params | Image Size | FPSRTX 3090 | APtest/APval | AP50test |
---|---|---|---|---|---|
Tiny | 6 M | 224 | 103 | 37.0%/35.6% | 73.9% |
Base | 37 M | 224 | 78 | 37.1%/35.4% | 73.9% |
X | 70.8 M | 224 | 63 | 30.2%/30.3% | 65.8% |
W6 | 81 M | 448 | 61 | 31.7%/30.5% | 69.3% |
E6 | 110 M | 448 | 45 | 31.1%/29.8% | 67.2% |
D6 | 153 M | 448 | 40 | 33.8%/32.6% | 70.9% |
E6E | 164 M | 704 | 30 | 36.0%/31.7% | 73.3% |
Class | AP50 | mAP |
---|---|---|
Crack | 54.5% | 19.0% |
Inclusion | 81.9% | 40.8% |
Patch | 92.4% | 54.2% |
Pitted surface | 79.7% | 39.8% |
Rolled-in scale | 55.1% | 18.5% |
Scratch | 80.5% | 40.2% |
Method | Dataset | Accuracy |
---|---|---|
YOLOv7 variants | NEU-DET | 65–73% mAP_0.5 |
YOLOv7 (base) | NRSD | 88.5% mAP_0.5 |
YOLOv7 (base) | KolektorSDD2 | 65% mAP_0.5 |
ResNet50 (Faster R-CNN) [9] | Custom (fixed bends) | 88.7% mAP |
Cas-VSwin Transformer [26] | Private dataset | 82.3% AP (Box)/80.2% AP (Mask) |
Mask R-CNN [56] | Custom insulator dataset | 87.5% mAP |
Faster R-CNN [57] | Aluminum defect dataset | 78.8% mAP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satsangee, G.R.; Al-Musaibeli, H.; Ahmad, R. A Defect Detection Method Based on YOLOv7 for Automated Remanufacturing. Appl. Sci. 2024, 14, 5503. https://doi.org/10.3390/app14135503
Satsangee GR, Al-Musaibeli H, Ahmad R. A Defect Detection Method Based on YOLOv7 for Automated Remanufacturing. Applied Sciences. 2024; 14(13):5503. https://doi.org/10.3390/app14135503
Chicago/Turabian StyleSatsangee, Guru Ratan, Hamdan Al-Musaibeli, and Rafiq Ahmad. 2024. "A Defect Detection Method Based on YOLOv7 for Automated Remanufacturing" Applied Sciences 14, no. 13: 5503. https://doi.org/10.3390/app14135503
APA StyleSatsangee, G. R., Al-Musaibeli, H., & Ahmad, R. (2024). A Defect Detection Method Based on YOLOv7 for Automated Remanufacturing. Applied Sciences, 14(13), 5503. https://doi.org/10.3390/app14135503