Activated Carbon from Coconut Shells as a Modifier of Urea–Formaldehyde Resin in Particleboard Production
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reh, R.; Kristak, L.; Kral, P.; Pipiska, T.; Jopek, M. Perspectives on Using Alder, Larch, and Birch Wood Species to Maintain the Increasing Particleboard Production Flow. Polymers 2024, 16, 1532. [Google Scholar] [CrossRef]
- Hua, L.S.; Chen, L.W.; Geng, B.J.; Kristak, L.; Antov, P.; Pędzik, M.; Rogoziński, T.; Taghiyari, H.R.; Lubis, M.A.R.; Fatriasari, W. Particleboard from Agricultural Biomass and Recycled Wood Waste: A Review. J. Mater. Res. Technol. 2022, 20, 4630–4658. [Google Scholar]
- Antov, P.; Savov, V.; Krišťák, Ľ.; Réh, R.; Mantanis, G.I. Eco-Friendly, High-Density Fiberboards Bonded with Urea-Formaldehyde and Ammonium Lignosulfonate. Polymers 2021, 13, 220. [Google Scholar] [CrossRef]
- Bekhta, P.; Sedliačik, J.; Noshchenko, G.; Kačík, F.; Bekhta, N. Characteristics of Beech Bark and Its Effect on Properties of UF Adhesive and on Bonding Strength and Formaldehyde Emission of Plywood Panels. Eur. J. Wood Wood Prod. 2021, 79, 423–433. [Google Scholar] [CrossRef]
- Kawalerczyk, J.; Walkiewicz, J.; Woźniak, M.; Dziurka, D.; Mirski, R. The Effect of Urea-Formaldehyde Adhesive Modification with Propylamine on the Properties of Manufactured Plywood. J. Adhes. 2023, 99, 1427–1440. [Google Scholar] [CrossRef]
- Younesi-Kordkheili, H.; Kazemi-Najafi, S.; Eshkiki, R.B.; Pizzi, A. Improving Urea Formaldehyde Resin Properties by Glyoxalated Soda Bagasse Lignin. Eur. J. Wood Prod. 2015, 73, 77–85. [Google Scholar] [CrossRef]
- Selakjani, P.P.; Dorieh, A.; Pizzi, A.; Shahavi, M.H.; Hasankhah, A.; Shekarsaraee, S.; Ashouri, M.; Movahed, S.G.; Abatari, M.N. Reducing Free Formaldehyde Emission, Improvement of Thickness Swelling and Increasing Storage Stability of Novel Medium Density Fiberboard by Urea-Formaldehyde Adhesive Modified by Phenol Derivatives. Int. J. Adhes. Adhes. 2021, 111, 102962. [Google Scholar] [CrossRef]
- Dorieh, A.; Selakjani, P.P.; Shahavi, M.H.; Pizzi, A.; Movahed, S.G.; Pour, M.F.; Aghaei, R. Recent Developments in the Performance of Micro/Nanoparticle-Modified Urea-Formaldehyde Resins Used as Wood-Based Composite Binders: A Review. Int. J. Adhes. Adhes. 2022, 114, 103106. [Google Scholar] [CrossRef]
- Kumar, R.N.; Pizzi, A. Environmental Aspects of Adhesives–Emission of Formaldehyde. In Adhesives for Wood and Lignocellulosic Materials; Wiley-Scrivener Publishing: Hoboken, NJ, USA, 2019; pp. 293–312. [Google Scholar]
- Demir, A. Determination of the Effect of Valonia Tannin When Used as a Filler on the Formaldehyde Emission and Adhesion Properties of Plywood with Artificial Neural Network Analysis. Int. J. Adhes. Adhes. 2023, 123, 103346. [Google Scholar] [CrossRef]
- Mazaheri, M.; Moghimi, H.; Taheri, R.A. Urea Impregnated Multiwalled Carbon Nanotubes; a Formaldehyde Scavenger for Urea Formaldehyde Adhesives and Medium Density Fiberboards Bonded with Them. J. Appl. Polym. Sci. 2022, 139, 51445. [Google Scholar]
- Kumar, A.; Gupta, A.; Sharma, K.V. Thermal and Mechanical Properties of Urea-Formaldehyde (UF) Resin Combined with Multiwalled Carbon Nanotubes (MWCNT) as Nanofiller and Fiberboards Prepared by UF-MWCNT. Holzforschung 2015, 69, 199–205. [Google Scholar] [CrossRef]
- Łukawski, D.; Hochmańska-Kaniewska, P.; Bałęczny, W.; Martin, A.; Janiszewska-Latterini, D.; Lekawa-Raus, A. Phenol-Formaldehyde Resin Enriched with Graphene Nanoplatelets as an Electroconductive Adhesive for Wood Composites. Int. J. Adhes. Adhes. 2024, 132, 103678. [Google Scholar] [CrossRef]
- Saito, K.; Hirabayashi, Y.; Yamanaka, S. Reduction of Formaldehyde Emission from Urea-Formaldehyde Resin with a Small Quantity of Graphene Oxide. RSC Adv. 2021, 11, 32830–32836. [Google Scholar] [CrossRef] [PubMed]
- Jazayeri, R.; Najafi, S.K.; Younesi, H. Modified Graphene as Potential Additive for Urea Formaldehyde (UF) Resin in Medium Density Fiberboard (MDF) Manufacturing. Int. J. Adhes. Adhes. 2023, 126, 103448. [Google Scholar] [CrossRef]
- Baker, F.S.; Miller, C.E.; Repik, A.J.; Tolles, E.D. Activated Carbon. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2000; ISBN 978-0-471-23896-6. [Google Scholar]
- Danish, M.; Ahmad, T. A Review on Utilization of Wood Biomass as a Sustainable Precursor for Activated Carbon Production and Application. Renew. Sustain. Energy Rev. 2018, 87, 1–21. [Google Scholar] [CrossRef]
- Kang, Y.-J.; Jo, H.-K.; Jang, M.-H.; Ma, X.; Jeon, Y.; Oh, K.; Park, J.-I. A Brief Review of Formaldehyde Removal through Activated Carbon Adsorption. Appl. Sci. 2022, 12, 5025. [Google Scholar] [CrossRef]
- Aussawasathien, D.; Jariyakun, K.; Pomrawan, T.; Hrimchum, K.; Yeetsorn, R.; Prissanaroon-Ouajai, W. Preparation and Properties of Low Density Polyethylene-Activated Carbon Composite Foams. AIP Conf. Proc. 2017, 1914, 60003. [Google Scholar] [CrossRef]
- Nisar, M.; Thue, P.S.; Maghous, M.B.; Geshev, J.; Lima, E.C.; Einloft, S. Metal Activated Carbon as an Efficient Filler for High-density Polyethylene Nanocomposites. Polym. Compos. 2020, 41, 3184–3193. [Google Scholar] [CrossRef]
- Salleh, Z.; Islam, M.M.; Yusop, M.Y.M.; Idrus, M.M.M. Mechanical Properties of Activated Carbon (AC) Coconut Shell Reinforced Polypropylene Composites Encapsulated with Epoxy Resin. APCBEE Procedia 2014, 9, 92–96. [Google Scholar] [CrossRef]
- Gong, J.; Tian, N.; Liu, J.; Yao, K.; Jiang, Z.; Chen, X.; Wen, X.; Mijowska, E.; Tao, T. Synergistic Effect of Activated Carbon and Ni2O3 in Promoting the Thermal Stability and Flame Retardancy of Polypropylene. Polym. Degrad. Stab. 2014, 99, 18–26. [Google Scholar] [CrossRef]
- Chandra, T.O.; Sentanu, D.A.; Gornes, W.; Sentanuhady, J.; Setiawan, A.; Santos, G.N.; Muflikhun, M.A. Tensile Properties of Epoxy Resin Filled with Activated Carbon Derived from Coconut Shell. Mater. Today Proc. 2022, 66, 2967–2971. [Google Scholar] [CrossRef]
- Wu, J.; Chung, D.D.L. Calorimetric Study of the Effect of Carbon Fillers on the Curing of Epoxy. Carbon 2004, 42, 3039–3042. [Google Scholar] [CrossRef]
- Angin, N.; Ertas, M.; Caylak, S.; Fidan, M.S. Thermal and Electrical Behaviors of Activated Carbon-Filled PLA/PP Hybrid Biocomposites. Sustain. Mater. Technol. 2023, 37, e00655. [Google Scholar] [CrossRef]
- Hu, Z.; Srinivasan, M.P. Preparation of High-Surface-Area Activated Carbons from Coconut Shell. Microporous Mesoporous Mater. 1999, 27, 11–18. [Google Scholar] [CrossRef]
- Iqbaldin, M.M.; Khudzir, I.; Azlan, M.M.; Zaidi, A.; Surani, B.; Zubri, Z. Properties of coconut shell activated carbon. J. Trop. For. Sci. 2013, 25, 497–503. [Google Scholar]
- Salleh, Z.; Yusop, M.Y.M.; Rosdi, M.S. Mechanical Properties of Activated Carbon (AC) Coir Fibers Reinforced with Epoxy Resin. J. Mech. Eng. Sci. 2013, 5, 631–638. [Google Scholar] [CrossRef]
- Ergun, M.E.; Özlüsoylu, İ.; İstek, A.; Can, A. Analysis and Impact of Activated Carbon Incorporation into Urea-Formaldehyde Adhesive on the Properties of Particleboard. Coatings 2023, 13, 1476. [Google Scholar] [CrossRef]
- Zamani, R.; Kazemi Najafi, S.; Younesi, H. Utilization of Activated Carbon as an Additive for Urea-Formaldehyde Resin in Medium Density Fiberboard (MDF) Manufacturing. J. Adhes. Sci. Technol. 2022, 36, 2285–2296. [Google Scholar] [CrossRef]
- Yeganeh, M.M.; Kaghazchi, T.; Soleimani, M. Effect of Raw Materials on Properties of Activated Carbons. Chem. Eng. Technol. 2006, 29, 1247–1251. [Google Scholar] [CrossRef]
- Neolaka, Y.A.B.; Riwu, A.A.P.; Aigbe, U.O.; Ukhurebor, K.E.; Onyancha, R.B.; Darmokoesoemo, H.; Kusuma, H.S. Potential of Activated Carbon from Various Sources as a Low-Cost Adsorbent to Remove Heavy Metals and Synthetic Dyes. Results Chem. 2023, 5, 100711. [Google Scholar] [CrossRef]
- Dukarska, D.; Kawalerczyk, J.; Kmieciak, J. Modified Pine Needles as a Formaldehyde Scavenger for Urea-Formaldehyde Resin in Plywood Production. Eur. J. Wood Wood Prod. 2023, 82, 147–158. [Google Scholar] [CrossRef]
- PN-C-89352-3; Kleje-Kleje do Drewna-Metody Badan—Oznaczanie Czasu Zelowania. Polish Committee for Standardization: Warsaw, Poland, 1996.
- EN 323; Wood-Based Panels-Determination of Density. European Committee for Standardization: Brussels, Belgium, 2001.
- EN 319; Particleboards and Fibreboards—Determination of Tensile Strength Perpendicular to the Plane of the Board. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 310; Wood-Based Panels-Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization: Brussels, Belgium, 1999.
- EN 317; Particleboards and Fibreboards–Determination of Swelling in Thickness after Immersion in Water. European Committee for Standardization: Brussels, Belgium, 1998.
- EN 120; Wood-Based Panels-Determination of Formaldehyde Release-Extraction Method (Called Perforator Method). CEN, European Committee for Standardization: Brusseles, Belgium, 2011.
- Opoku, B.K.; Isaac, A.; Micheal, A.A.; Bentum, J.K.; Muyoma, W.P. Characterization of Chemically Activated Carbons Produced from Coconut and Palm Kernel Shells Using SEM and FTIR Analyses. Am. J. Appl. Chem. 2021, 9, 90–96. [Google Scholar] [CrossRef]
- Sujiono, E.H.; Zabrian, D.; Zharvan, V.; Humairah, N.A. Fabrication and Characterization of Coconut Shell Activated Carbon Using Variation Chemical Activation for Wastewater Treatment Application. Results Chem. 2022, 4, 100291. [Google Scholar] [CrossRef]
- Wang, Z.; Nie, E.; Li, J.; Yang, M.; Zhao, Y.; Luo, X.; Zheng, Z. Equilibrium and Kinetics of Adsorption of Phosphate onto Iron-Doped Activated Carbon. Environ. Sci. Pollut. Res. 2012, 19, 2908–2917. [Google Scholar] [CrossRef] [PubMed]
- Unugul, T.; Nigiz, F.U. Preparation and Characterization an Active Carbon Adsorbent from Waste Mandarin Peel and Determination of Adsorption Behavior on Removal of Synthetic Dye Solutions. Water Air Soil Pollut 2020, 231, 538. [Google Scholar] [CrossRef]
- Allwar, A. Characteristics of Pore Structures and Surface Chemistry of Activated Carbons by Physisorption, Ftir And Boehm Methods. IOSR J. Appl. Chem. 2012, 2, 09–15. [Google Scholar] [CrossRef]
- Saka, C. BET, TG–DTG, FT-IR, SEM, Iodine Number Analysis and Preparation of Activated Carbon from Acorn Shell by Chemical Activation with ZnCl2. J. Anal. Appl. Pyrolysis 2012, 95, 21–24. [Google Scholar] [CrossRef]
- Lu, C.; Pan, L.; Zhu, B. Study the Static Adsorption/Desorption of Formaldehyde on Activated Carbons. In Proceedings of the 2015 International Forum on Energy, Environment Science and Materials, Shenzhen, China, 25–26 September 2015; Atlantis Press: Amsterdam, The Netherlands, 2015; pp. 943–947. [Google Scholar]
- Aljundi, I.H.; Al-Dawery, S.K. Equilibrium and Thermodynamic Study of Cobalt Adsorption on Activated Carbon Derived from Date Seeds. Desalin. Water Treat. 2014, 52, 4830–4836. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Tsai, W.-T. Optimization of Physical Activation Process by CO2 for Activated Carbon Preparation from Honduras Mahogany Pod Husk. Materials 2023, 16, 6558. [Google Scholar] [CrossRef]
- Gadhave, R.V.; Mahanwar, P.A.; Gadekar, P.T. Factor Affecting Gel Time/Process-Ability of Urea Formaldehyde Resin Based Wood Adhesives. Open J. Polym. Chem. 2017, 7, 33–42. [Google Scholar] [CrossRef]
- Kawalerczyk, J.; Antov, P.; Dziurka, D.; Mirski, R.; Lee, S.H. The Effect of Pressing Parameters and Hardener Content on the Properties of Plywood Bonded with Propylamine-UF Adhesive. Wood Mater. Sci. Eng. 2024, 19, 710–717. [Google Scholar] [CrossRef]
- Yim, Y.-J.; Kim, B.-J. Preparation and Characterization of Activated Carbon/Polymer Composites: A Review. Polymers 2023, 15, 3472. [Google Scholar] [CrossRef] [PubMed]
- Alston, S.; Arnold, C.; Swan, M.; Stone, C. A Source-sink Model for Water Diffusion in an Activated Carbon Fiber/Phenolic Composite. Polym. Compos. 2021, 42, 3550–3561. [Google Scholar] [CrossRef]
- Yang, L.; Quan, H.; Ji, J.; Zhang, H.; Sun, F. Research on the Preparation of Wood Adhesive Active Fillers from Tannin-/Bentonite-Modified Corn Cob. Forests 2024, 15, 604. [Google Scholar] [CrossRef]
- Maraghi, M.M.R.; Tabei, A.; Madanipoor, M. Effect of Board Density, Resin Percentage and Pressing Temprature on Particleboard Properties Made from Mixing of Poplar Wood Slab, Citrus Branches and Twigs of Beech. Wood Res. 2018, 63, 669–682. [Google Scholar]
- Kowaluk, G.; Szymanowski, K.; Kozlowski, P.; Kukula, W.; Sala, C.; Robles, E.; Czarniak, P. Functional Assessment of Particleboards Made of Apple and Plum Orchard Pruning. Waste Biomass Valorization 2020, 11, 2877–2886. [Google Scholar] [CrossRef]
- Lewis, J.; Alshami, A.; Talukder, M.; Owoade, A.; Baker, K.; Onaizi, S. Agglomeration Tendency and Activated Carbon Concentration Effects on Activated Carbon-Polysulfone Mixed Matrix Membrane Performance: A Design of Experiment Formulation Study. J. Appl. Polym. Sci. 2022, 139, e52875. [Google Scholar] [CrossRef]
- Zare, Y. Study of Nanoparticles Aggregation/Agglomeration in Polymer Particulate Nanocomposites by Mechanical Properties. Compos. Part A Appl. Sci. Manuf. 2016, 84, 158–164. [Google Scholar] [CrossRef]
- Samal, S. Effect of Shape and Size of Filler Particle on the Aggregation and Sedimentation Behavior of the Polymer Composite. Powder Technol. 2020, 366, 43–51. [Google Scholar] [CrossRef]
- Medved, S.; Antonović, A.; Jambreković, V. Impact of Resin Content on Swelling Pressure of Three Layer Perticleboard Bonded with Urea-Formaldehyde Adhesive. Drv. Ind. 2011, 62, 37–42. [Google Scholar] [CrossRef]
- Beech, J.C. The Thickness Swelling of Wood Particleboard. Holzforschung 1975, 29, 11–18. [Google Scholar] [CrossRef]
- Mirski, R.; Derkowski, A.; Kawalerczyk, J.; Dziurka, D.; Walkiewicz, J. The Possibility of Using Pine Bark Particles in the Chipboard Manufacturing Process. Materials 2022, 15, 5731. [Google Scholar] [CrossRef]
- Dutkiewicz, J. Hydrolytic Degradation of Cured Urea–Formaldehyde Resin. J. Appl. Polym. Sci. 1983, 28, 3313–3320. [Google Scholar] [CrossRef]
- Nuryawan, A.; Rahmawaty; Tambun, K.D.S.; Risnasari, I.; Masruchin, N. Hydrolysis of Particleboard Bonded with Urea-Formaldehyde Resin for Recycling. Heliyon 2020, 6, e03936. [Google Scholar] [CrossRef]
- Darmawan, S.; Sofyan, K.; Pari, G.; Sugiyanto, K. Effect of activated charcoal addition on formaldehyde emission of medium density fiberboard. Indones. J. For. Res. 2010, 7, 100–111. [Google Scholar] [CrossRef]
- Kristak, L.; Antov, P.; Bekhta, P.; Lubis, M.A.R.; Iswanto, A.H.; Reh, R.; Sedliacik, J.; Savov, V.; Taghiyari, H.R.; Papadopoulos, A.N. Recent Progress in Ultra-Low Formaldehyde Emitting Adhesive Systems and Formaldehyde Scavengers in Wood-Based Panels: A Review. Wood Mater. Sci. Eng. 2022, 18, 763–782. [Google Scholar] [CrossRef]
Weight (%) | ||||
---|---|---|---|---|
C | O | Na | Mg | K |
97.6 | 2.0 | 0.1 | 0.1 | 0.2 |
Activated Carbon Content (%) | Gel Time (s) | Viscosity (mPa·s) | pH |
---|---|---|---|
0.00 | 92 ± 4 b | 282.7 ± 3.5 a | 6.21 ± 0.04 a |
0.25 | 95 ± 4 b | 285.0 ± 2.6 a | 6.20 ± 0.01 a |
0.50 | 94 ± 7 b | 302.3 ± 3.5 b | 6.21 ± 0.03 a |
0.75 | 99 ± 5 b | 305.0 ± 2.6 bc | 6.20 ± 0.03 a |
1.00 | 94 ± 5 b | 314.0 ± 6.2 c | 6.20 ± 0.02 a |
1.50 | 79 ± 2 a | 314.3 ± 4.0 c | 6.21 ± 0.03 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawalerczyk, J.; Dukarska, D.; Antov, P.; Stuper-Szablewska, K.; Dziurka, D.; Mirski, R. Activated Carbon from Coconut Shells as a Modifier of Urea–Formaldehyde Resin in Particleboard Production. Appl. Sci. 2024, 14, 5627. https://doi.org/10.3390/app14135627
Kawalerczyk J, Dukarska D, Antov P, Stuper-Szablewska K, Dziurka D, Mirski R. Activated Carbon from Coconut Shells as a Modifier of Urea–Formaldehyde Resin in Particleboard Production. Applied Sciences. 2024; 14(13):5627. https://doi.org/10.3390/app14135627
Chicago/Turabian StyleKawalerczyk, Jakub, Dorota Dukarska, Petar Antov, Kinga Stuper-Szablewska, Dorota Dziurka, and Radosław Mirski. 2024. "Activated Carbon from Coconut Shells as a Modifier of Urea–Formaldehyde Resin in Particleboard Production" Applied Sciences 14, no. 13: 5627. https://doi.org/10.3390/app14135627
APA StyleKawalerczyk, J., Dukarska, D., Antov, P., Stuper-Szablewska, K., Dziurka, D., & Mirski, R. (2024). Activated Carbon from Coconut Shells as a Modifier of Urea–Formaldehyde Resin in Particleboard Production. Applied Sciences, 14(13), 5627. https://doi.org/10.3390/app14135627