Experimental Study on the Factors Affecting Pedestrian Exit Selection on the Basis of the Mixed Reality Evacuation LVC Simulation System
Abstract
:1. Introduction
1.1. Research Background
1.2. Literature Review
2. Methods and Experiments
2.1. MR Environment Set-Up
2.2. Experiments
3. Results
3.1. Data Preprocessing
3.2. The Effect of Evacuation Distance on Exit Selection
3.3. The Effect of Evacuation Numbers on Exit Selection
3.4. The Coupling Effect of Evacuated Number and Distance on Exit Selection
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Bureau of Statistics of China. 2021. Available online: http://www.stats.gov.cn/sj/ndsj/2021/indexch.htm (accessed on 27 June 2024).
- Helbing, D.; Farkas, I.; Vicsek, T. Simulating dynamical features of escape panic. Nature 2000, 407, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Helbing, D.; Molnar, P. Self-organization phenomena in pedestrian crowds. arXiv 1998, arXiv:cond-mat/9806152. [Google Scholar]
- Farkas, I.; Helbing, D.; Vicsek, T. Mexican waves in an excitable medium. Nature 2002, 419, 131–132. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, L.; Fang, T.; Li, J. Evacuation from a classroom considering the occupant density around exits. Phys. A Stat. Mech. Its Appl. 2009, 388, 1921–1928. [Google Scholar] [CrossRef]
- Gu, Z.; Liu, Z.; Shiwakoti, N.; Yang, M. Video-based analysis of school students’ emergency evacuation behavior in earthquakes. Int. J. Disaster Risk Reduct. 2016, 18, 1–11. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, M.; Liu, J.; Zhao, G. Modification of evacuation time computational model for stadium crowd risk analysis. Process Saf. Environ. Prot. 2007, 85, 541–548. [Google Scholar] [CrossRef]
- Liao, J.; Zhou, L. A kinetic modeling of crowd evacuation with several groups in complex venues. Math. Models Methods Appl. Sci. 2022, 32, 1785–1805. [Google Scholar] [CrossRef]
- Shen, T.-S. ESM: A building evacuation simulation model. Build. Environ. 2005, 40, 671–680. [Google Scholar] [CrossRef]
- Lo, S.M.; Fang, Z.; Chen, D. Use of a modified network model for analyzing evacuation patterns in high-rise buildings. J. Archit. Eng. 2001, 7, 21–29. [Google Scholar] [CrossRef]
- Kim, D.; O’Connell, K.; Ott, W.; Quaini, A. A kinetic theory approach for 2D crowd dynamics with emotional contagion. Math. Models Methods Appl. Sci. 2021, 31, 1137–1162. [Google Scholar] [CrossRef]
- Agnelli, J.P.; Colasuonno, F.; Knopoff, D. A kinetic theory approach to the dynamics of crowd evacuation from bounded domains. Math. Models Methods Appl. Sci. 2015, 25, 109–129. [Google Scholar] [CrossRef]
- Lakoba, T.I.; Kaup, D.J. Modifications of the Helbing-Molnar-Farkas-Vicsek social force model for pedestrian evolution. Simulation 2005, 81, 339–352. [Google Scholar] [CrossRef]
- Han, Y.; Liu, H. Modified social force model based on information transmission toward crowd evacuation simulation. Phys. A Stat. Mech. Its Appl. 2017, 469, 499–509. [Google Scholar] [CrossRef]
- Blue, V.J.; Adler, J.L. Cellular automata microsimulation of bidirectional pedestrian flows. Transp. Res. Rec. 1999, 1678, 135–141. [Google Scholar] [CrossRef]
- Fukui, M.; Ishibashi, Y. Self-organized phase transitions in cellular automaton models for pedestrians. J. Phys. Soc. Jpn. 1999, 68, 2861–2863. [Google Scholar] [CrossRef]
- Klüpfel, H.; Meyer-König, T.; Wahle, J.; Schreckenberg, M. (Eds.) Microscopic simulation of evacuation processes on passenger ships. In Theory and Practical Issues on Cellular Automata: Proceedings of the Fourth International Conference on Cellular Automata for Research and Industry, Karlsruhe, Germany, 4–6 October 2000; Springer: London, UK, 2001. [Google Scholar]
- Cai, Z.; Zhou, R.; Cui, Y.; Wang, Y.; Jiang, J. Influencing factors for exit selection in subway station evacuation. Tunn. Undergr. Space Technol. 2022, 125, 104498. [Google Scholar] [CrossRef]
- Zhou, R.; Cui, Y.; Wang, Y.; Jiang, J. A modified social force model with different categories of pedestrians for subway station evacuation. Tunn. Undergr. Space Technol. 2021, 110, 103837. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, Q.; Li, K.; Li, Q.-R.; Zhang, J.-L. Emergency evacuation from multi-exits rooms in the presence of obstacles. Phys. Scr. 2021, 96, 115208. [Google Scholar] [CrossRef]
- Hou, L.; Liu, J.-G.; Pan, X.; Wang, B.-H. A social force evacuation model with the leadership effect. Phys. A Stat. Mech. Its Appl. 2014, 400, 93–99. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, J.-H.; Zhang, X.-S.; Zhang, J.-L.; Wang, Q.-Z.; Zhang, Q. Pedestrians’ behavior in emergency evacuation: Modeling and simulation. Chin. Phys. B 2016, 25, 118901. [Google Scholar] [CrossRef]
- Song, W.-G.; Yu, Y.-F.; Wang, B.-H.; Fan, W.-C. Evacuation behaviors at exit in CA model with force essentials: A comparison with social force model. Phys. A Stat. Mech. Its Appl. 2006, 371, 658–666. [Google Scholar] [CrossRef]
- Guo, N.; Jiang, R.; Hu, M.-B.; Ding, J.-X. Constant evacuation time gap: Experimental study and modeling. Chin. Phys. B 2017, 26, 120506. [Google Scholar] [CrossRef]
- Zhao, D.; Li, J.; Zhu, Y.; Zou, L. The application of a two-dimensional cellular automata random model to the performance-based design of building exit. Build. Environ. 2008, 43, 518–522. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, Z. Reserve capacity and exit choosing in pedestrian evacuation dynamics. J. Phys. A Math. Theor. 2010, 43, 105001. [Google Scholar] [CrossRef]
- Qin, D.-H.; Duan, Y.-F.; Cheng, D.; Su, M.-Z.; Shao, Y.-B. An extended cellular automata model with modified floor field for evacuation. Chin. Phys. B 2020, 29, 098901. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Sun, Z. A dynamic estimation method for aircraft emergency evacuation based on cellular automata. Adv. Mech. Eng. 2019, 11, 1687814019825702. [Google Scholar] [CrossRef]
- Ma, Y.-P.; Zhang, H. Simulation study on cooperation behaviors and crowd dynamics in pedestrian evacuation. Chin. Phys. B 2020, 29, 038901. [Google Scholar] [CrossRef]
- Niu, Y.; Chen, Y.; Yuan, B.; Xiao, J. Dynamic evolution model of pedestrian cooperation behavior based on coordination game. Expert Syst. Appl. 2021, 167, 114173. [Google Scholar] [CrossRef]
- Hassanpour, S.; Rassafi, A.A. Agent-based simulation for pedestrian evacuation behaviour using the affordance concept. KSCE J. Civ. Eng. 2021, 25, 1433–1445. [Google Scholar] [CrossRef]
- Zou, B.; Lu, C.; Mao, S.; Li, Y. Effect of pedestrian judgement on evacuation efficiency considering hesitation. Phys. A Stat. Mech. Its Appl. 2020, 547, 122943. [Google Scholar] [CrossRef]
- Chen, L.; Tang, T.-Q.; Huang, H.-J.; Wu, J.-J.; Song, Z. Modeling pedestrian flow accounting for collision avoidance during evacuation. Simul. Model. Pract. Theory 2018, 82, 1–11. [Google Scholar] [CrossRef]
- Rokhsaritalemi, S.; Sadeghi-Niaraki, A.; Choi, S.-M. A review on mixed reality: Current trends, challenges and prospects. Appl. Sci. 2020, 10, 636. [Google Scholar] [CrossRef]
- Cai, L.; Yang, R.; Tao, Z. (Eds.) A new method of evaluating signage system using mixed reality and eye tracking. In Proceedings of the 4th ACM SIGSPATIAL International Workshop on Safety and Resilience, Seattle, WA, USA, 6 November 2018. [Google Scholar]
- Chen, M.; Yang, R.; Tao, Z.; Zhang, P. Mixed reality LVC simulation: A new approach to study pedestrian behaviour. Build. Environ. 2022, 207, 108404. [Google Scholar] [CrossRef]
LA:LB | Average Value | Standard Deviation |
---|---|---|
1.6:1.0 | 0.25 | 0.452 |
1.4:1.0 | 0.25 | 0.452 |
1.2:1.0 | 0.33 | 0.492 |
1.0:1.0 | 0.50 | 0.522 |
1.0:1.6 | 0.92 | 0.289 |
1.0:1.4 | 0.92 | 0.289 |
1.0:1.2 | 0.75 | 0.452 |
Total | 0.56 | 0.499 |
Number of People at Exit A: Number of People at Exit B | Average Value | Standard Deviation |
---|---|---|
1:9 | 1.00 | 0.000 |
2:8 | 1.00 | 0.000 |
3:7 | 0.92 | 0.289 |
4:6 | 0.83 | 0.389 |
5:5 | 0.33 | 0.492 |
6:4 | 0.00 | 0.000 |
7:3 | 0.00 | 0.000 |
8:2 | 0.00 | 0.000 |
9:1 | 0.00 | 0.000 |
Total | 0.45 | 0.500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Z.; Li, Y.; Huang, X.; Wang, Y.; Chen, M.; Yang, R. Experimental Study on the Factors Affecting Pedestrian Exit Selection on the Basis of the Mixed Reality Evacuation LVC Simulation System. Appl. Sci. 2024, 14, 5741. https://doi.org/10.3390/app14135741
Tao Z, Li Y, Huang X, Wang Y, Chen M, Yang R. Experimental Study on the Factors Affecting Pedestrian Exit Selection on the Basis of the Mixed Reality Evacuation LVC Simulation System. Applied Sciences. 2024; 14(13):5741. https://doi.org/10.3390/app14135741
Chicago/Turabian StyleTao, Zhenxiang, Ying Li, Xubo Huang, Yisen Wang, Minze Chen, and Rui Yang. 2024. "Experimental Study on the Factors Affecting Pedestrian Exit Selection on the Basis of the Mixed Reality Evacuation LVC Simulation System" Applied Sciences 14, no. 13: 5741. https://doi.org/10.3390/app14135741
APA StyleTao, Z., Li, Y., Huang, X., Wang, Y., Chen, M., & Yang, R. (2024). Experimental Study on the Factors Affecting Pedestrian Exit Selection on the Basis of the Mixed Reality Evacuation LVC Simulation System. Applied Sciences, 14(13), 5741. https://doi.org/10.3390/app14135741