Factors Influencing the Effects of Triticale on Laying Hens’ Performance: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Screening Procedure
2.2. Inclusion and Exclusion Criteria
2.3. Evaluation of Bias Risk
2.4. Collection of Data
2.5. Analysis of Data
3. Results
3.1. Dataset
3.2. Assessment of Bias Risk
3.3. Impact of Triticale on Production Parameters of Laying Hens
3.4. Impact of Triticale and Laying Hens’ Strains on Performance of Laying Hens
3.5. Impact of Triticale Percentages on Performance of Laying Hens
3.6. Publication Bias
4. Discussion
4.1. Assessment of Risk of Bias
4.2. Effects of Triticale Grains, and Triticale and Laying Hens’ Strains on Layers’ Performance
4.3. Effects of Triticale Percentages on Layers’ Performance
4.4. Analysis of Heterogeneity and Publication Bias
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Munaweera, T.I.K.; Jayawardana, N.U.; Rajaratnam, R.; Dissanayake, N. Modern plant biotechnology as a strategy in addressing climate change and attaining food security. Agric. Food Secur. 2022, 11, 1–28. [Google Scholar] [CrossRef]
- Hamilton, R.M.G.; Proudfoot, F.G. Effects of dietary barley level on the performance of Leghorn hens. Can. J. Anim. Sci. 1993, 73, 625–634. [Google Scholar] [CrossRef]
- Adamu, N.; Doma, U.D.; Abubakar, M.; Muhammad, A.S.; Sani, I. Performance of laying chickens fed dietary levels of red sorghum variety (Sorghum bicolor (L.)). J. Anim. Prod. Res. 2017, 29, 35–42. [Google Scholar]
- Badea, A.; Wijekoon, C. Benefits of barley grain in animal and human diets. Cereal Grains 2021, 1, 77. [Google Scholar]
- Hassan, S.M. Nutritional, Functional and Bioactive Properties of Sorghum (Sorghum bicolor I. Moench) with its Future Outlooks: A Review. Open J. Nutr. Food Sci. 2023, 5, 1030. [Google Scholar]
- Paine, J.A.; Shipton, C.A.; Chaggar, S.; Howells, R.; Kennedy, M.J.; Vernon, G.; Wright, S.Y.; Hinchliffe, E.; Adams, J.L.; Silverstone, A.L.; et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 2005, 23, 482–487. [Google Scholar] [CrossRef]
- Van Eenennaam, A.L.; Young, A.E. Prevalence and impacts of genetically engineered feedstuffs on live-stock populations. J. Anim. Sci. 2014, 92, 4255–4278. [Google Scholar] [CrossRef]
- Lim, C.; Poaty Ditengou, J.; Ryu, K.; Ku, J.; Park, M.; Whiting, I.M.; Pirgozliev, V. Effect of maize replacement with different triticale levels on layers production performance, egg quality, yolk fatty acid profile and blood parameters. J. Anim. Feed. Sci. 2021, 30, 360–366. [Google Scholar] [CrossRef]
- Alijošius, S.; Švirmickas, G.J.; Gružauskas, R.; Daukšienė, A.; Šašytė, V.; Racevičiūtė-Stupelienė, A.; Kliševičiūtė, V. The Application of triticale in nutrition of broiler chickens. Vet. Zootech. 2016, 73, 3–8. [Google Scholar]
- Dennett, A.L.; Wilkes, M.A.; Trethowan, R.M. Characteristics of modern triticale quality: The relationship between carbohydrate properties, α-amylase activity, and falling number. Cereal Chem. 2013, 90, 594–600. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef] [PubMed]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Cuca, G.M.; Avila, G.E. Preliminary Studies on Triticale in Diets for Laying Hens. Poult. Sci. 1973, 52, 1973–1974. [Google Scholar] [CrossRef]
- Choudhary, K.S.; Netke, S.P. Incorporation of triticale in layer diets. Br. Poult. Sci. 1976, 17, 361–369. [Google Scholar] [CrossRef]
- Leeson, S.; Summers, J.D. Response of White Leghorns to diets containing ground or whole triticale. Can. J. Anim. Sci. 1987, 67, 583–585. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Sobhanirad, S.; Zarghi, H. Effect of triticale level and exogenous enzyme in the grower diet on performance, gastrointestinal tract relative weight, jejunal morphology and blood lipids of Japanese quail (Coturnix japonica). J. Agric. Sci. Technol. 2017, 19, 569–580. [Google Scholar]
- Bakhtiyary Moez, N.; Mirzaie Goudarzi, S.; Saki, A.A.; Ahmadi, A. Effect of ground or whole wheat and triticale on productive performance, egg quality, gastrointestinal tract traits and nutrient digestibility of laying Japanese quails. Iran. J. Appl. Anim. Sci. 2020, 10, 355–363. [Google Scholar]
- Fernandez, R.; Kim, S.M.; Buenrostro, J.L.; McGinnis, J. Triticale and Rye as Main Ingredients in Diets for Laying Hens. Poult. Sci. 1973, 52, 2244–2252. [Google Scholar] [CrossRef]
- McNab, J.M.; Shannon, D.W.F. The nutritive value of triticale and rye for the laying hen. Br. Poult. Sci. 1975, 16, 9–15. [Google Scholar] [CrossRef]
- Castanon, J.I.; Ortiz, V.; Perez-Lanzac, J. Effect of high inclusion levels of triticale in diets for laying hens containing 30% field beans. Anim. Feed Sci. Technol. 1990, 31, 349–353. [Google Scholar] [CrossRef]
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to perform a meta-analysis with R: A practical tutorial. Évid. Based Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Ogbuewu, I.; Mokolopi, B.; Mbajiorgu, C. Meta-analysis of growth performance indices of broiler chickens in response to turmeric (Curcuma longa L.) supplementation. Anim. Feed Sci. Technol. 2022, 283, 115155. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 88, 105906. [Google Scholar]
- Hooijmans, C.R.; Rovers, M.M.; De Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Harrer, M.; Cuijpers, P.; Furukawa, T.A.; Ebert, D.D. Doing Meta-Analysis with R: A Hands-on Guide; CRC Press: New York, NY, USA, 2021. [Google Scholar]
- Ciftci, I.; Yenice, E.; Eleroglu, H. Use of triticale alone and in combination with wheat or maize: Effects of diet type and enzyme supplementation on hen performance, egg quality, organ weights, intestinal viscosity and digestive system characteristics. Anim. Feed Sci. Technol. 2003, 105, 149–161. [Google Scholar] [CrossRef]
- Hermes, J.C.; Johnson, R.C. Effects of Feeding Various Levels of Triticale var. Bogo in the Diet of Broiler and Layer Chickens. J. Appl. Poult. Res. 2004, 13, 667–672. [Google Scholar] [CrossRef]
- Jamroz, D.; Skorupinska, J.; Orda, J.; Wiliczkiewicz, A.; Klünter, A.-M. Use of Wheat, Barley or Triticale in Feed for Laying Hens Supplemented with Carbohydrases Derived from Trichoderma longibrachiatum. J. Appl. Anim. Res. 2001, 19, 107–116. [Google Scholar] [CrossRef]
- Macleod, M.R.; Fisher, M.; O’Collins, V.; Sena, E.S.; Dirnagl, U.; Bath, P.M.; Buchan, A.; Van der Worp, H.B.; Traystman, R.; Minematsu, K.; et al. Good laboratory practice: Preventing introduction of bias at the bench. Stroke 2009, 40, e50–e52. [Google Scholar] [CrossRef]
- Pettersson, D.; Åman, P. Effects of enzyme supplementation of diets based on wheat, rye or triticale on their productive value for broiler chickens. Anim. Feed Sci. Technol. 1988, 20, 313–324. [Google Scholar] [CrossRef]
- Rundgren, M. Evaluation of triticale given to pigs, poultry and rats. Anim. Feed Sci. Technol. 1988, 19, 359–375. [Google Scholar] [CrossRef]
- Smith, R.L.; Jensen, L.S.; Hoveland, C.S.; Hanna, W.W. Use of Pearl Millet, Sorghum, and Triticale Grain in Broiler Diets. J. Prod. Agric. 1989, 2, 78–82. [Google Scholar] [CrossRef]
- Boros, D. Influence of R genome on the nutritional value of triticale for broiler chicks. Anim. Feed Sci. Technol. 1999, 76, 219–226. [Google Scholar] [CrossRef]
- Bielski, S.; Dubis, B.; Budzyński, W. Influence of nitrogen fertilisation on the technological value of semidwarf grain winter triticale varieties Alekto and Gniewko. Pol. J. Nat. Sci. 2015, 30, 325–336. [Google Scholar]
- Rahimi, S.H.; Esmaeilzadeh, L.; Karimi-Torshizi, M.A. Comparison of growth performance of six commercial broiler hybrids in Iran. Iran. J. Vet. Res. 2006, 7, 38–44. [Google Scholar]
- Hossain, M.; Suvo, K.; Islam, M. Performance and Economic Suitability of Three Fast Growing Broiler Strains Raised under Farming Condition in Bangladesh. Int. J. Agric. Res. Innov. Technol. 2013, 1, 37–43. [Google Scholar] [CrossRef]
- Silversides, F.G.; Budgell, K. The Relationships Among Measures of Egg Albumen Height, pH, and Whipping Volume. Poult. Sci. 2004, 83, 1619–1623. [Google Scholar] [CrossRef] [PubMed]
- Drucker, A.M.; Fleming, P.; Chan, A.W. Research techniques made simple: Assessing risk of bias in systematic reviews. J. Investig. Dermatol. 2016, 136, e109–e114. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.I.; Cho, S.; Jeon, E.; Park, M.; Chae, B.; Ditengou, I.C.P., Jr.; Choi, N.J. The effect of probiotics on intestinal tight junction protein expression in animal models: A meta-analysis. Appl. Sci. 2022, 12, 4680. [Google Scholar] [CrossRef]
- Shi, L.; Lin, L. The trim-and-fill method for publication bias: Practical guidelines and recommendations based on a large database of meta-analyses. Medicine 2019, 98, e15987. [Google Scholar] [CrossRef]
Author (Year) | Hens’ Strains | Hens’ Numbers | Triticale Strains | Triticale Percentages (%) | Factors of Analysis 1 |
---|---|---|---|---|---|
Castanon et al. [20] | Leghorn | 180 | Juanilo | 30; 45; 60; 75; 90 | EP, EW, EYC, FI, FCR |
Ciftci et al. [26] | Babcock B-380 | 126 | Tathcak-97 | 30; 60 | EP, EW, FI, FCR, |
Hermes and Johnson [27] | Dekalb XL | 192 | Bogo | 30 | EW, EYC |
Jamroz et al. [28] | Lohmann | 72 | Bogo | 70 | EP, EYC, FI, FCR |
Leeson and Summers [15] | Leghorn | 80 | Unknown | 70 | EP, EW, EYC, FI |
Lim et al. [8] | Hy-Line Brown | 360 | Joesong | 5; 10; 15; 20 | EP, EW, EYC, FI, FCR |
Variables 1 | Random-Effect Model 2 | Heterogeneity 3 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
95% CI | I2 (%) | τ2 | τ | Q | df | |||||
k | SMD | Lower | Upper | |||||||
EP | ||||||||||
Juanilo | 7 | 0.0802 | −0.1994 | 0.3599 | 29.2 | 0.0407 | 0.2018 | 72.88 | 4 | <0.0001 |
Joesong | 4 | 0.0322 | −0.7241 | 0.7885 | 95.0 | 0.5662 | 0.7524 | |||
Tathcak-97 | 2 | 1.1490 | 0.8210 | 1.4770 | 0.0 | 0 | 0 | |||
Bogo | 1 | 0.7258 | 0.2481 | 1.2036 | -- | -- | -- | |||
Unknown | 1 | −1.2838 | −1.7671 | −0.8005 | -- | -- | -- | |||
EW | ||||||||||
Juanilo | 7 | 4.0086 | 0.8962 | 7.1210 | 97.1 | 17.1170 | 4.1373 | 102.25 | 4 | <0.0001 |
Joesong | 4 | 0.7262 | 0.0041 | 1.4484 | 93.4 | 0.5119 | 0.7155 | |||
Tathcak-97 | 2 | −1.4569 | −1.9520 | −0.9618 | 51.9 | 0.0664 | 0.2576 | |||
Bogo | 1 | −1.6405 | −1.9684 | −1.3127 | -- | -- | -- | |||
Unknown | 1 | 0.7336 | 0.2801 | 1.1871 | -- | -- | -- | |||
FI | ||||||||||
Juanilo | 7 | 0.5537 | −0.7914 | 1.8989 | 94.3 | 3.1532 | 1.7757 | 45.71 | 4 | <0.0001 |
Joesong | 4 | 0.6019 | −0.4436 | 1.6474 | 97.1 | 1.1061 | 1.0517 | |||
Tathcak-97 | 2 | −1.3847 | −2.9017 | 0.1324 | 94.7 | 1.1349 | 1.0653 | |||
Bogo | 1 | 3.4901 | 2.7443 | 4.2359 | -- | -- | -- | |||
Unknown | 1 | 1.4525 | 0.9573 | 1.9477 | -- | -- | -- | |||
FCR | ||||||||||
Juanilo | 7 | 0.2868 | −0.2218 | 0.7954 | 73.8 | 0.3642 | 0.6035 | 86.52 | 3 | <0.0001 |
Joesong | 4 | 0.0322 | −0.8457 | 0.9102 | 96.2 | 0.7727 | 0.8790 | |||
Tathcak-97 | 2 | −2.2018 | −2.5884 | −1.8152 | 0.0 | 0 | 0 | |||
Bogo | 1 | 0.1146 | −0.3478 | 0.5770 | -- | -- | -- | |||
EYC | ||||||||||
Juanilo | 7 | −9.3294 | −12.4773 | −6.1814 | 91.0 | 16.5335 | 4.0661 | 4.74 | 2 | 0.0936 |
Joesong | 4 | −4.8350 | −7.4031 | −2.2668 | 97.9 | 6.7380 | 2.5958 | |||
Bogo | 2 | −8.0388 | −22.6128 | 6.5352 | 99.7 | 110.2256 | 10.4988 |
Variables 1 | Random-Effect Model 2 | Heterogeneity 3 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
95% CI | I2 (%) | τ2 | τ | Q | df | |||||
k | SMD | Lower | Upper | |||||||
EP | ||||||||||
Leghorn | 8 | −0.1060 | −0.5410 | 0.3291 | 78.9 | 0.2980 | 0.5459 | 23.14 | 3 | <0.0001 |
Hy-Line Brown | 4 | 0.0322 | −0.7241 | 0.7885 | 95.0 | 0.5662 | 0.7524 | |||
Babcock B-380 | 2 | 1.1490 | 0.8210 | 1.4770 | 0.0 | 0 | 0 | |||
Lohmann | 1 | 0.7258 | 0.2481 | 1.2036 | -- | -- | -- | |||
EW | ||||||||||
Leghorn | 8 | 3.5801 | 0.7868 | 6.3734 | 96.7 | 15.7773 | 3.9721 | 46.38 | 3 | <0.0001 |
Hy-Line Brown | 4 | 0.7262 | 0.0041 | 1.4484 | 93.4 | 0.5119 | 0.7155 | |||
Babcock B-380 | 2 | −1.4569 | −1.9520 | −0.9618 | 51.9 | 0.0664 | 0.2576 | |||
Dekalb XL | 1 | −1.6405 | −1.9684 | −1.3127 | -- | -- | -- | |||
FI | ||||||||||
Leghorn | 8 | 0.6657 | −0.5159 | 1.8472 | 94.5 | 2.7739 | 1.6655 | 45.18 | 3 | <0.0001 |
Hy-Line Brown | 4 | 0.6019 | −0.4436 | 1.6474 | 97.1 | 1.1061 | 1.0517 | |||
Babcock B-380 | 2 | −1.3847 | −2.9017 | 0.1324 | 94.7 | 1.1349 | 1.0653 | |||
Lohmann | 1 | 3.4901 | 2.7443 | 4.2359 | -- | -- | -- | |||
FCR | ||||||||||
Leghorn | 7 | 0.2868 | −0.2218 | 0.7954 | 73.8 | 0.3642 | 0.6035 | 86.52 | 3 | <0.0001 |
Hy-Line Brown | 4 | 0.0322 | −0.8457 | 0.9102 | 96.2 | 0.7727 | 0.8790 | |||
Babcock B-380 | 2 | −2.2018 | −2.5884 | −1.8152 | 0.0 | 0 | 0 | |||
Lohmann | 1 | 0.1146 | −0.3478 | 0.5770 | -- | -- | -- | |||
EYC | ||||||||||
Leghorn | 7 | −9.3294 | −12.4773 | −6.1814 | 91.0 | 16.5335 | 4.0661 | 334.41 | 3 | <0.0001 |
Hy-Line Brown | 4 | −4.8350 | −7.4031 | −2.2668 | 97.9 | 6.7380 | 2.5958 | |||
Dekalb XL | 1 | −15.4948 | −17.0853 | −13.9044 | -- | -- | -- | |||
Lohmann | 1 | −0.6231 | −1.0968 | −0.1495 | -- | -- | -- |
Variables 1 | Mixed-Effect Model | Heterogeneity 3 | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
95% CI | I2 (%) | τ2 | τ | R2 | QM | df | |||||
k 2 | Estimate | Lower | Upper | ||||||||
EP | |||||||||||
Joesong | 4 | −0.0353 | −0.1937 | 0.1232 | 96.39 | 0.7875 | 0.8874 | 0.00 | 0.1902 | 1 | 0.6628 |
EW | |||||||||||
Juanilo | 7 | 0.1292 | 0.0128 | 0.2457 | 97.77 | 10.2875 | 3.2074 | 39.90 | 4.7301 | 1 | 0.0296 |
Joesong | 4 | 0.0189 | −0.1377 | 0.1754 | 96.02 | 0.7684 | 0.8766 | 0.00 | 0.0558 | 1 | 0.8133 |
FI | |||||||||||
Juanilo | 7 | 0.0056 | −0.0651 | 0.0762 | 96.59 | 3.8256 | 1.9559 | 0.00 | 0.0237 | 1 | 0.8777 |
Joesong | 4 | 0.0562 | −0.1591 | 0.2715 | 97.80 | 1.4786 | 1.2160 | 0.00 | 0.2615 | 1 | 0.6091 |
FCR | |||||||||||
Juanilo | 7 | 0.0029 | −0.0241 | 0.0298 | 81.49 | 0.4706 | 0.6860 | 0.00 | 0.0441 | 1 | 0.8336 |
Joesong | 4 | 0.0758 | −0.0854 | 0.2371 | 96.49 | 0.8154 | 0.9030 | 0.00 | 0.8501 | 1 | 0.3565 |
EYC | |||||||||||
Juanilo | 7 | −0.1695 | −0.2363 | 0.1028 | 64.70 | 1.7919 | 1.3386 | 89.16 | 24.7806 | 1 | <0.0001 |
Joesong | 4 | −0.3741 | −0.5990 | −0.1493 | 94.29 | 1.4933 | 1.2220 | 77.84 | 10.6328 | 1 | 0.0011 |
Variables 1 | Mixed-Effect Model | Heterogeneity 3 | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
95% CI | I2 (%) | τ2 | τ | R2 | QM | df | |||||
k 2 | Estimate | Lower | Upper | ||||||||
EP | |||||||||||
Leghorn | 8 | −0.0081 | −0.0306 | 0.0144 | 77.40 | 0.3224 | 0.5678 | 0.00 | 0.4990 | 1 | 0.4799 |
Hy-Line Brown | 4 | −0.0353 | −0.1937 | 0.1232 | 96.39 | 0.7875 | 0.8874 | 0.00 | 0.1902 | 1 | 0.6628 |
EW | |||||||||||
Leghorn | 8 | 0.1086 | −0.0138 | 0.2310 | 98.41 | 12.1592 | 3.4870 | 22.93 | 3.0262 | 1 | 0.0819 |
Hy-Line Brown | 4 | 0.0189 | −0.1377 | 0.1754 | 96.02 | 0.7684 | 0.8766 | 0.00 | 0.0558 | 1 | 0.8133 |
FI | |||||||||||
Leghorn | 8 | 0.0088 | −0.0546 | 0.0721 | 96.47 | 3.2404 | 1.8001 | 0.00 | 0.0733 | 1 | 0.7865 |
Hy-Line Brown | 4 | 0.0562 | −0.1591 | 0.2715 | 97.80 | 1.4786 | 1.2160 | 0.00 | 0.2615 | 1 | 0.6091 |
FCR | |||||||||||
Leghorn | 7 | 0.0029 | −0.0241 | 0.0298 | 81.49 | 0.4706 | 0.6860 | 0.00 | 0.0441 | 1 | 0.8336 |
Hy-Line Brown | 4 | 0.0758 | −0.0854 | 0.2371 | 96.49 | 0.8154 | 0.9030 | 0.00 | 0.8501 | 1 | 0.3565 |
EYC | |||||||||||
Leghorn | 7 | −0.1695 | −0.2363 | −0.1028 | 64.70 | 1.7919 | 1.3386 | 89.16 | 24.7806 | 1 | <0.0001 |
Hy-Line Brown | 4 | −0.3741 | −0.5990 | −0.1493 | 94.29 | 1.4933 | 1.2220 | 77.84 | 10.6328 | 1 | 0.0011 |
Items | Bias | SE | t-Value 1 | df 1 | p-Value |
---|---|---|---|---|---|
Egg production | 0.6967 | 3.3112 | 0.21 | 13 | 0.8366 |
Egg weight | 7.7581 | 3.0787 | 2.52 | 13 | 0.0256 |
Feed intake | 2.7927 | 4.4421 | 0.63 | 13 | 0.5404 |
Feed conversion ratio | −0.4714 | 4.0891 | −0.12 | 12 | 0.9101 |
Egg yolk color | −10.1189 | 2.2244 | −4.55 | 11 | 0.0008 |
Items | df 1 | Random Effects Model | Heterogeneity 2 | |||
---|---|---|---|---|---|---|
Effect Size | p-Value | Q (p-Value) | I2 (%) | τ2 | ||
Egg production | 16 | 0.0069 | 0.9723 | 200.69 (<0.0001) | 92.0 | 0.6022 |
Egg weight | 17 | 0.2126 | 0.8561 | 726.42 (<0.0001) | 97.7 | 24.3241 |
Feed intake | 15 | 0.3401 | 0.4675 | 479.96 (<0.0001) | 96.9 | 3.4058 |
Feed conversion ratio | 13 | −0.1494 | 0.6082 | 224.88 (<0.0001) | 94.2 | 1.1131 |
Egg yolk color | 18 | −3.2429 | 0.0872 | 1236.58 (<0.0001) | 98.5 | 67.1063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poaty Ditengou, J.I.C.; Ahn, S.-I.; Cho, S.; Chae, B.; Hirwa, F.; Cheon, I.; Choi, N.-J. Factors Influencing the Effects of Triticale on Laying Hens’ Performance: A Meta-Analysis. Appl. Sci. 2024, 14, 5745. https://doi.org/10.3390/app14135745
Poaty Ditengou JIC, Ahn S-I, Cho S, Chae B, Hirwa F, Cheon I, Choi N-J. Factors Influencing the Effects of Triticale on Laying Hens’ Performance: A Meta-Analysis. Applied Sciences. 2024; 14(13):5745. https://doi.org/10.3390/app14135745
Chicago/Turabian StylePoaty Ditengou, Junior Isaac Celestin, Sung-Il Ahn, Sangbuem Cho, Byungho Chae, Fabrice Hirwa, Inhyeok Cheon, and Nag-Jin Choi. 2024. "Factors Influencing the Effects of Triticale on Laying Hens’ Performance: A Meta-Analysis" Applied Sciences 14, no. 13: 5745. https://doi.org/10.3390/app14135745
APA StylePoaty Ditengou, J. I. C., Ahn, S.-I., Cho, S., Chae, B., Hirwa, F., Cheon, I., & Choi, N.-J. (2024). Factors Influencing the Effects of Triticale on Laying Hens’ Performance: A Meta-Analysis. Applied Sciences, 14(13), 5745. https://doi.org/10.3390/app14135745