The Geographic Automata Tool: A New General-Purpose Geosimulation Extension for ArcGIS Pro
Abstract
:1. Introduction
2. Brief Overview of Geographic CA Modeling and Tools
2.1. Typical CA Transition Rule Mechanisms
2.2. Previous General-Purpose CA Modeling Tools
2.3. Essential Elements of GUI-Based Geographic CA Modeling Tools
3. Methodology
3.1. Model Parameterization
3.1.1. Specifying Neighborhood Functions
3.1.2. Specifying Transition Rules
Neighborhood-Based Rules
Cell-Level Rules
Stochastic Disturbance Rules
Constraint Rules
Allocation and Quantity Rules
Rule Priority Scheme
3.2. Model Execution
3.2.1. Basic and Advanced CA Modeling Tools
3.2.2. Transition Rule Execution
3.3. Model Evaluation
4. Implementing Models with the Geographic Automata Add-In: Two Case Studies
4.1. Case Study 1: Multi-Class CA Modeling of a Forest Insect Infestation
4.1.1. Study Area and Datasets
4.1.2. Model Implementation
Cell States
Scenario Setup and Transition Rules
Model Execution
4.1.3. Results
4.2. Case Study 2: Comparing ML-CA Models of Urban Growth
4.2.1. Study Area and Datasets
4.2.2. Model Implementation
Cell States
Training ML Models and Generating Change Probability Maps
Model Types and Transition Rule Specification
Model Execution
Model Evaluation
4.2.3. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Software Availability Statement
References
- Torrens, P.M.; Benenson, I. Geographic Automata Systems. Int. J. Geogr. Inf. Sci. 2005, 19, 385–412. [Google Scholar] [CrossRef]
- Wu, X.; Dong, W.; Wu, L.; Liu, Y. Research Themes of Geographical Information Science during 1991–2020: A Retrospective Bibliometric Analysis. Int. J. Geogr. Inf. Sci. 2022, 37, 243–275. [Google Scholar] [CrossRef]
- Batty, M.; Xie, Y. From Cells to Cities. Environ. Plan. B Plan. Des. 1994, 21, 531–548. [Google Scholar] [CrossRef]
- Rienow, A.; Mustafa, A.; Krelaus, L.; Lindner, C. Modeling Urban Regions: Comparing Random Forest and Support Vector Machines for Cellular Automata. Trans. GIS 2021, 25, 1625–1645. [Google Scholar] [CrossRef]
- Santé, I.; García, A.M.; Miranda, D.; Crecente, R. Cellular Automata Models for the Simulation of Real-World Urban Processes: A Review and Analysis. Landsc. Urban. Plan. 2010, 96, 108–122. [Google Scholar] [CrossRef]
- Von Neumann, J. Theory of Self-Reproducing Automata; Burks, A.W., Ed.; University of Illinois Press: Champaign, IL, USA, 1966. [Google Scholar]
- Wolfram, S. Cellular Automata as Models of Complexity. Nature 1984, 311, 419–424. [Google Scholar] [CrossRef]
- Torrens, P.M. Cellular Automata. In International Encyclopedia of Human Geography, 1st ed.; Thrift, N., Kitchin, R., Eds.; Elsevier Science: London, UK, 2009; pp. 1–4. ISBN 9780080449104. [Google Scholar]
- Batty, M.; Couclelis, H.; Eichen, M. Urban Systems as Cellular Automata. Environ. Plan. B Plan. Des. 1997, 24, 159–164. [Google Scholar] [CrossRef]
- Itami, R.M. Simulating Spatial Dynamics: Cellular Automata Theory. Landsc. Urban. Plan. 1994, 30, 27–47. [Google Scholar] [CrossRef]
- Xie, Y. A Generalized Model for Cellular Urban Dynamics. Geogr. Anal. 1996, 28, 350–373. [Google Scholar] [CrossRef]
- Batty, M.; Torrens, P.M. Modelling and Prediction in a Complex World. Futures 2005, 37, 745–766. [Google Scholar] [CrossRef]
- Wu, F. A Linguistic Cellular Automata Simulation Approach for Sustainable Land Development in a Fast Growing Region. Comput. Environ. Urban. Syst. 1996, 20, 367–387. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Lin, Z.; Zhang, X.; Zhang, H. The Delineation of Urban Growth Boundaries in Complex Ecological Environment Areas by Using Cellular Automata and a Dual-Environmental Evaluation. J. Clean. Prod. 2020, 256, 120361. [Google Scholar] [CrossRef]
- Wen, R.; Li, S. Spatial Decision Support Systems with Automated Machine Learning: A Review. ISPRS Int. J. Geoinf. 2023, 12, 12. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.O. Zoning Land for Agricultural Protection by the Integration of Remote Sensing, GIS, and Cellular Automata. Photogramm. Eng. Remote Sens. 2001, 67, 471–477. [Google Scholar]
- White, R.; Engelen, G. High-Resolution Integrated Modelling of the Spatial Dynamics of Urban and Regional Systems. Comput. Environ. Urban. Syst. 2000, 24, 383–400. [Google Scholar] [CrossRef]
- Liu, M.; Chen, H.; Qi, L.; Chen, C. LUCC Simulation Based on RF-CNN-LSTM-CA Model with High-Quality Seed Selection Iterative Algorithm. Appl. Sci. 2023, 13, 3407. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash’aari, Z.H. The Simulation and Prediction of Spatio-Temporal Urban Growth Trends Using Cellular Automata Models: A Review. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 380–389. [Google Scholar] [CrossRef]
- Liu, M.; Liao, X.; Chen, C. Urbanization Process: A Simulation Method of Urban Expansion Based on RF-SNSCNN-CA Model. Appl. Sci. 2023, 13, 6615. [Google Scholar] [CrossRef]
- Kyriakou, C.; Georgoudas, I.G.; Papanikolaou, N.P.; Sirakoulis, G.C. A GIS-Aided Cellular Automata System for Monitoring and Estimating Graph-Based Spread of Epidemics. Nat. Comput. 2022, 21, 463–480. [Google Scholar] [CrossRef]
- Addae, B.; Dragićević, S. Modelling Global Deforestation Using Spherical Geographic Automata Approach. ISPRS Int. J. Geoinf. 2023, 12, 306. [Google Scholar] [CrossRef]
- Alexandridis, A.; Vakalis, D.; Siettos, C.I.; Bafas, G.V. A Cellular Automata Model for Forest Fire Spread Prediction: The Case of the Wildfire That Swept through Spetses Island in 1990. Appl. Math. Comput. 2008, 204, 191–201. [Google Scholar] [CrossRef]
- Bone, C.; Dragicevic, S.; Roberts, A. A Fuzzy-Constrained Cellular Automata Model of Forest Insect Infestations. Ecol. Model. 2006, 192, 107–125. [Google Scholar] [CrossRef]
- Perez, L.; Dragicevic, S. Landscape-Level Simulation of Forest Insect Disturbance: Coupling Swarm Intelligent Agents with GIS-Based Cellular Automata Model. Ecol. Model. 2012, 231, 53–64. [Google Scholar] [CrossRef]
- Pardo-Igúzquiza, E.; Collados-Lara, A.J.; Pulido-Velazquez, D. Estimation of the Spatiotemporal Dynamics of Snow Covered Area by Using Cellular Automata Models. J. Hydrol. 2017, 550, 230–238. [Google Scholar] [CrossRef]
- Georgoudas, I.G.; Sirakoulis, G.C.; Scordilis, E.M.; Andreadis, I. A Cellular Automaton Simulation Tool for Modelling Seismicity in the Region of Xanthi. Environ. Model. Softw. 2007, 22, 1455–1464. [Google Scholar] [CrossRef]
- Barchyn, T.E.; Hugenholtz, C.H. A New Tool for Modeling Dune Field Evolution Based on an Accessible, GUI Version of the Werner Dune Model. Geomorphology 2012, 138, 415–419. [Google Scholar] [CrossRef]
- Fonseca, P.; Colls, M.; Casanovas, J. A Novel Model to Predict a Slab Avalanche Configuration Using m:N-CAk Cellular Automata. Comput. Environ. Urban. Syst. 2011, 35, 12–24. [Google Scholar] [CrossRef]
- Clarke, K.C.; Hoppen, S.; Gaydos, L. A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area. Environ. Plan. B Plan. Des. 1997, 24, 247–261. [Google Scholar] [CrossRef]
- Batty, M.; Xie, Y.; Sun, Z. Modeling Urban Dynamics through GIS-Based Cellular Automata. Comput. Environ. Urban. Syst. 1999, 23, 205–233. [Google Scholar] [CrossRef]
- Waddell, P. Urbansim: Modeling Urban Development for Land Use, Transportation, and Environmental Planning. J. Am. Plan. Assoc. 2002, 68, 297–314. [Google Scholar] [CrossRef]
- Van Delden, H.; Escudero, J.C.; Uljee, I.; Engelen, G. METRONAMICA: A Dynamic Spatial Land Use Model Applied to Vitoria-Gasteiz. In Virtual Seminar of the MILES Project; Centro de Estudios Ambientales: Vitoria-Gasteiz, Spain, 2005; pp. 1–8. [Google Scholar]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban. Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Stevens, D.; Dragicevic, S.; Rothley, K. ICity: A GIS-CA Modelling Tool for Urban Planning and Decision Making. Environ. Model. Softw. 2007, 22, 761–773. [Google Scholar] [CrossRef]
- Cuellar, Y.; Perez, L. Assessing the Accuracy of Sensitivity Analysis: An Application for a Cellular Automata Model of Bogota’s Urban Wetland Changes. Geocarto Int. 2023, 38, 2186491. [Google Scholar] [CrossRef]
- Gounaridis, D.; Chorianopoulos, I.; Symeonakis, E.; Koukoulas, S. A Random Forest-Cellular Automata Modelling Approach to Explore Future Land Use/Cover Change in Attica (Greece), under Different Socio-Economic Realities and Scales. Sci. Total Environ. 2019, 646, 320–335. [Google Scholar] [CrossRef] [PubMed]
- Kamusoko, C.; Gamba, J. Simulating Urban Growth Using a Random Forest-Cellular Automata (RF-CA) Model. ISPRS Int. J. Geoinf. 2015, 4, 447–470. [Google Scholar] [CrossRef]
- Wu, F. SimLand: A Prototype to Simulate Land Conversion through the Integrated GIS and CA with AHP-Derived Transition Rules. Int. J. Geogr. Inf. Sci. 1998, 12, 63–82. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Liu, X.; Li, D.; He, J. Concepts, Methodologies, and Tools of an Integrated Geographical Simulation and Optimization System. Int. J. Geogr. Inf. Sci. 2011, 25, 633–655. [Google Scholar] [CrossRef]
- Kocabas, V.; Dragicevic, S. Enhancing a GIS Cellular Automata Model of Land Use Change: Bayesian Networks, Influence Diagrams and Causality. Trans. GIS 2007, 11, 681–702. [Google Scholar] [CrossRef]
- Yassemi, S.; Dragićević, S.; Schmidt, M. Design and Implementation of an Integrated GIS-Based Cellular Automata Model to Characterize Forest Fire Behaviour. Ecol. Model. 2008, 210, 71–84. [Google Scholar] [CrossRef]
- Asia Air Survey; NextGIS. MOLUSCE: Modules for Land Use Change Evaluation. 2014. Available online: https://github.com/nextgis/qgis_molusce (accessed on 10 July 2024).
- Breckling, B.; Pe’er, G.; Matsinos, Y.G. Cellular Automata in Ecological Modelling. In Modelling Complex Ecological Dynamics: An Introduction into Ecological Modelling for Students, Teachers & Scientists; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; pp. 105–117. ISBN 9783642050282. [Google Scholar]
- Soares, B.S.; Cerqueira, G.C.; Pennachin, C.L. DINAMICA—A Stochastic Cellular Automata Model Designed to Simulate the Landscape Dynamics in an Amazonian Colonization Frontier. Ecol. Model. 2002, 154, 217–235. [Google Scholar] [CrossRef]
- White, R.; Engelen, G. Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns. Environ. Plan. A 1993, 25, 1175–1199. [Google Scholar] [CrossRef]
- Park, S.; Wagner, D.F. Incorporating Cellular Automata Simulators as Analytical Engines in GIS. Trans. GIS 1997, 2, 213–231. [Google Scholar] [CrossRef]
- Wu, F.; Webster, C.J. Simulation of Land Development through the Integration of Cellular Automata and Multicriteria Evaluation. Environ. Plan. B Plan. Des. 1998, 25, 103–126. [Google Scholar] [CrossRef]
- Lai, T.; Dragićević, S.; Schmidt, M. Integration of Multicriteria Evaluation and Cellular Automata Methods for Landslide Simulation Modelling. Geomat. Nat. Hazards Risk 2013, 4, 355–375. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Asghari, A.; Tayyebi, A.; Taleai, M. Coupling Machine Learning, Tree-Based and Statistical Models with Cellular Automata to Simulate Urban Growth. Comput. Environ. Urban. Syst. 2017, 64, 297–308. [Google Scholar] [CrossRef]
- Gao, C.; Feng, Y.; Tong, X.; Lei, Z.; Chen, S.; Zhai, S. Modeling Urban Growth Using Spatially Heterogeneous Cellular Automata Models: Comparison of Spatial Lag, Spatial Error and GWR. Comput. Environ. Urban. Syst. 2020, 81, 101459. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.O. Neural-Network-Based Cellular Automata for Simulating Multiple Land Use Changes Using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- Ménard, A.; Marceau, D.J. Exploration of Spatial Scale Sensitivity in Geographic Cellular Automata. Environ. Plan. B Plan. Des. 2005, 32, 693–714. [Google Scholar] [CrossRef]
- Verstegen, J.A.; Karssenberg, D.; van der Hilst, F.; Faaij, A.P.C. Identifying a Land Use Change Cellular Automaton by Bayesian Data Assimilation. Environ. Model. Softw. 2014, 53, 121–136. [Google Scholar] [CrossRef]
- Liang, L.; Li, X.; Huang, Y.; Qin, Y.; Huang, H. Integrating Remote Sensing, GIS and Dynamic Models for Landscape-Level Simulation of Forest Insect Disturbance. Ecol. Model. 2017, 354, 1–10. [Google Scholar] [CrossRef]
- Olmedo, M.T.C.; Paegelow, M.; Mas, J.F.; Escobar, F. The Simulation Stage in LUCC Modeling. In Geomatic Approaches for Modeling Land Change Scenarios; Springer: Berlin/Heidelberg, Germany, 2018; pp. 27–51. ISBN 9783319608013. [Google Scholar]
- Moreno, N.; Ablan, M.; Tonella, G. SpaSim: A Software to Simulate Cellular Automata Models. In Proceedings of the 1st International Congress on Environmental Modelling and Software, Lugano, Switzerland, 24–27 June 2002; pp. 348–353. [Google Scholar]
- Clark Labs. TerrSet 2020 Geospatial Monitoring and Modeling Software. Available online: https://clarklabs.org/terrset/ (accessed on 10 July 2024).
- Viana, C.M.; Pontius, R.G.; Rocha, J. Four Fundamental Questions to Evaluate Land Change Models with an Illustration of a Cellular Automata–Markov Model. Ann. Am. Assoc. Geogr. 2023, 113, 2497–2511. [Google Scholar] [CrossRef]
- Anderson, T.; Dragicevic, S. A Geosimulation Approach for Data Scarce Environments: Modeling Dynamics of Forest Insect Infestation across Different Landscapes. ISPRS Int. J. Geoinf. 2016, 5, 9. [Google Scholar] [CrossRef]
- Ornstein, A. The Frequency of Hands-on Experimentation and Student Attitudes toward Science: A Statistically Significant Relation (2005-51-Ornstein). J. Sci. Educ. Technol. 2006, 15, 285–297. [Google Scholar] [CrossRef]
- Wagner, D.F. Cellular Automata and Geographic Information Systems. Environ. Plan. B Plan. Des. 1997, 24, 219–234. [Google Scholar] [CrossRef]
- Stevens, D.; Dragićević, S. A GIS-Based Irregular Cellular Automata Model of Land-Use Change. Environ. Plan. B Plan. Des. 2007, 34, 708–724. [Google Scholar] [CrossRef]
- Couclelis, H. From Cellular Automata to Urban Models: New Principles for Model Development and Implementation. Environ. Plan. B Plan. Des. 1997, 24, 165–174. [Google Scholar] [CrossRef]
- Jakeman, A.J.; Letcher, R.A.; Norton, J.P. Ten Iterative Steps in Development and Evaluation of Environmental Models. Environ. Model. Softw. 2006, 21, 602–614. [Google Scholar] [CrossRef]
- Microsoft C# Language Documentation. Available online: https://learn.microsoft.com/en-us/dotnet/csharp/ (accessed on 21 April 2024).
- Esri ArcGIS Pro SDK for .NET. Available online: https://developers.arcgis.com/documentation/arcgis-add-ins-and-automation/arcgis-pro/ (accessed on 8 January 2024).
- Costanza, R.; Wainger, L.; Folke, C. Modeling Complex Ecological Economic Systems. Bioscience 1993, 43, 545–555. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, L.; Chi, X.; Li, Y.; Sun, Y. Quantifying and Analyzing Neighborhood Configuration Characteristics to Cellular Automata for Land Use Simulation Considering Data Source Error. Earth Sci. Inform. 2012, 5, 77–86. [Google Scholar] [CrossRef]
- Pan, Y.; Roth, A.; Yu, Z.; Doluschitz Reiner, R. The Impact of Variation in Scale on the Behavior of a Cellular Automata Used for Land Use Change Modeling. Comput. Environ. Urban. Syst. 2010, 34, 400–408. [Google Scholar] [CrossRef]
- Howard, G. Cellular Automata: Theory and Experiment; Gutowitz, H., Ed.; Special issues of physica D; 1st MIT Pr.; MIT Press: Cambridge, MA, USA, 1991; ISBN 0-262-57086-6. [Google Scholar]
- Song, Y.; Wang, H.; Zhang, B.; Zeng, H.; Li, J.; Zhang, J. A Methodology to Geographic Cellular Automata Model Accounting for Spatial Heterogeneity and Adaptive Neighborhoods. Int. J. Geogr. Inf. Sci. 2024, 38, 699–725. [Google Scholar] [CrossRef]
- Rienow, A.; Goetzke, R. Supporting SLEUTH—Enhancing a Cellular Automaton with Support Vector Machines for Urban Growth Modeling. Comput. Environ. Urban. Syst. 2015, 49, 66–81. [Google Scholar] [CrossRef]
- Roodposhti, M.S.; Hewitt, R.J.; Bryan, B.A. Towards Automatic Calibration of Neighbourhood Influence in Cellular Automata Land-Use Models. Comput. Environ. Urban. Syst. 2020, 79, 101416. [Google Scholar] [CrossRef]
- Painter, K.J.; Gentile, A.; Ferraris, S. A Stochastic Cellular Automaton Model to Describe the Evolution of the Snow-Covered Area across a High-Elevation Mountain Catchment. Sci. Total Environ. 2023, 857, 159195. [Google Scholar] [CrossRef]
- Colasanti, R.L.; Grime, J.P. Resource Dynamics and Vegetation Processes: A Deterministic Model Using Two-Dimensional Cellular Automata. Funct. Ecol. 1993, 7, 169. [Google Scholar] [CrossRef]
- Li, Y.; Wu, G.; Zhang, S.; Li, M.; Nie, B.; Chen, Z. A Novel Method of Modeling Grassland Wildfire Dynamics Based on Cellular Automata: A Case Study in Inner Mongolia, China. ISPRS Int. J. Geoinf. 2023, 12, 474. [Google Scholar] [CrossRef]
- Hojati, M.; Robertson, C. Integrating Cellular Automata and Discrete Global Grid Systems: A Case Study into Wildfire Modelling. AGILE GIScience Ser. 2020, 1, 1–23. [Google Scholar] [CrossRef]
- Sakieh, Y.; Salmanmahiny, A.; Mirkarimi, S.H. Rules versus Layers: Which Side Wins the Battle of Model Calibration? Environ. Monit. Assess. 2016, 188, 633. [Google Scholar] [CrossRef]
- Brown, D.G.; Aspinall, R.; Bennett, D.A. Landscape Models and Explanation in Landscape Ecology—A Space for Generative Landscape Science? Prof. Geogr. 2006, 58, 369–382. [Google Scholar] [CrossRef]
- Tang, W.; Bennett, D.A. Parallel Agent-Based Modeling of Spatial Opinion Diffusion Accelerated Using Graphics Processing Units. Ecol. Model. 2011, 222, 3605–3615. [Google Scholar] [CrossRef]
- Guan, Q.; Clarke, K.C. A General-Purpose Parallel Raster Processing Programming Library Test Application Using a Geographic Cellular Automata Model. Int. J. Geogr. Inf. Sci. 2010, 24, 695–722. [Google Scholar] [CrossRef]
- Pontius, R.G.; Boersma, W.; Castella, J.-C.C.; Clarke, K.; Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the Input, Output, and Validation Maps for Several Models of Land Change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef]
- Tong, X.; Feng, Y. A Review of Assessment Methods for Cellular Automata Models of Land-Use Change and Urban Growth. Int. J. Geogr. Inf. Sci. 2020, 34, 866–898. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Pontius, R.G. Quantification Error versus Location Error in Comparison of Categorical Maps. Photogramm. Eng. Remote Sens. 2000, 66, 1011–1016. [Google Scholar]
- Camacho Olmedo, M.T.; Pontius, R.G.; Paegelow, M.; Mas, J.F. Comparison of Simulation Models in Terms of Quantity and Allocation of Land Change. Environ. Model. Softw. 2015, 69, 214–221. [Google Scholar] [CrossRef]
- Paegelow, M.; Camacho Olmedo, M.T.; Mas, J.; Houet, T. Benchmarking of LUCC Modelling Tools by Various Validation Techniques and Error Analysis. Cybergeo Eur. J. Geogr. 2014, 701. [Google Scholar] [CrossRef]
- Perez, L.; Dragicevic, S. Modeling Mountain Pine Beetle Infestation with an Agent-Based Approach at Two Spatial Scales. Environ. Model. Softw. 2010, 25, 223–236. [Google Scholar] [CrossRef]
- Government of British Columbia. British Columbia Data Catalogue. Available online: https://catalogue.data.gov.bc.ca/dataset?download_audience=Public (accessed on 19 February 2024).
- Westfall, J.; Ebata, T.; HR GISolutions Inc. Forest Health Aerial Overview Survey Standards for British Columbia; BC Ministry of Forests, Resources Practices Branch: Victoria, BC, Canada, 2019. Available online: https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/Data_stds/AOS%20Standards%202019.pdf (accessed on 10 July 2024).
- Ministry of Forests Lands and Natural Resource Operations Bark Beetle Susceptibility Rating. Available online: https://catalogue.data.gov.bc.ca/dataset/bark-beetle-susceptibility-rating (accessed on 9 December 2023).
- Zhang, B.; Xia, C.; Zhang, B. The Effects of Sample Size and Sample Prevalence on Cellular Automata Simulation of Urban Growth Automata Simulation of Urban Growth. Int. J. Geogr. Inf. Sci. 2022, 36, 158–187. [Google Scholar] [CrossRef]
- Tan, X.; Deng, M.; Chen, K.; Shi, Y.; Zhao, B.; Liu, Q.; Tan, X. A Spatial Hierarchical Learning Module Based Cellular Automata Model for Simulating Urban Expansion: Case Studies of Three Chinese Urban Areas Simulating Urban Expansion: Case Studies of Three Chinese Urban Areas. GISci Remote Sens. 2024, 61, 2290352. [Google Scholar] [CrossRef]
Rule Mode | Description | Use Case Example |
---|---|---|
(1) Allocation Limit | The potential change must meet or exceed a minimum suitability/susceptibility/probability threshold. | Limiting insect infestation propagation to locations with MCE-derived susceptibility values exceeding 0.6 [60]. |
(2) Quantity Limit | The potential change locations are limited to Q random locations. | Refining insect infestation rates or area using historical averages [55]. |
(3) Allocation and Quantity Limits | The potential change location must be in the top Q suitable locations based on the suitability map. If specified, the location must also meet or exceed a minimum suitability threshold. | Limiting urban growth transitions to the top Q locations based on transition probability maps generated by ML algorithms [20,50]. |
Basic CA Tool | Advanced CA Tool | |
---|---|---|
Description |
|
|
Required model execution parameters |
|
|
Parameterization |
|
|
Benefits |
|
|
Limitations |
|
|
Rule ID | Rule Type | Purpose | Transition Rule Description | Scenario Application |
---|---|---|---|---|
A | Neighborhood-Based | Propagating the hypothetical insect infestation to nearby areas. | IF 15 to 122 infested cells are within a 11 × 11 circular neighborhood of an uninfested cell, THEN the central cell has an 80% chance of transitioning to light-moderate infestation. | All Scenarios |
B | Cell-Level | Randomly increase infestation severity. | IF a cell is currently undergoing light-moderate infestation, THEN the cell has a 20% chance of becoming severely infested. | Scenarios 2, 3, 4, and 5 |
C | Neighborhood-Based | Hypothetical “infilling” behavior, where new infestation occurs within gaps between existing patches. | IF 4 to 25 cells are undergoing severe infestation within the 5 × 5 circular neighborhood of a light-moderate infested location, THEN the central cell has a 100% chance of becoming severely infested. | |
D | Stochastic Disturbance | Short-distance dispersal behavior, where MPB flights can occur randomly up to a specified distance. | IF an uninfested cell is located within 1 and 9 cells (up to 270 m) THEN the uninfested cell has a 10% chance of becoming a light-moderate infestation. | Scenarios 3, 4, and 5 |
E | Allocation and Quantity | Imposing an arbitrary quantity limit on infestation spread. | IF a potential new infestation location is among the 10,000 most susceptible locations, THEN the cell is permitted to transition; ELSE, the cell maintains its previous state. | Scenarios 4 and 5 |
F | Allocation and Quantity | Imposing an arbitrary minimum susceptibility value required for a location to host severe infestations. | IF a potential new location for severe infestation corresponds with a susceptibility value of 0.1 or higher, THEN the cell is permitted to transition; ELSE, the cell maintains its previous state. | |
G | Constraint | Infestation locations are prevented from propagating to water bodies and rivers. | IF a potential new infestation location is not located within a restricted area, THEN the cell is permitted to transition; ELSE, the cell maintains its previous state. | Scenario 5 |
Description | Data Source | |
---|---|---|
Land Use Data | 2000 (Initial) | AAFC Land Use |
2010 (Calibration) | ||
2020 (Validation) | ||
Driving Factors | (1) Current land use type | AAFC Land Use |
(2) Elevation | ASTER Digital Elevation Model | |
(3) Slope | ||
(4) Euclidean distance to railways | BC Data Catalogue | |
(5) Euclidean distance to streets | ||
(6) Euclidean distance to highways | ||
(7) Euclidean distance to conservation areas | Township of Langley Open Data Portal | |
(8) Euclidean distance to parks | ||
(9) Euclidean distance to commercial areas | ||
(10) Euclidean distance to industrial areas | ||
(11) Euclidean distance to institutional areas | ||
(12) Euclidean distance to rivers | Government of Canada Open Data Portal |
Rule ID | Rule Type | Transition Rule Description | Model Types Using the Rule |
---|---|---|---|
Rule A | Neighborhood-Based | IF there are 1 to 25 urban cells within the 5 × 5 Moore neighborhood of a non-urban location, THEN the central cell will become urban with a probability of 60%. | All |
Rule B | Constraint | IF a cell potentially transitioning to urban is located within a restricted area, THEN the cell is prevented from transitioning and will maintain its previous state. | All |
Rule C | Allocation and Quantity | Cells potentially transitioning to urban must be in a location where the suitability value is at least 0.5. | LR-CA, RF-CA, andAutoML-CA1 |
Rule D | Allocation and Quantity | Only the 30,000 most suitable cells potentially transitioning to urban are permitted to become urban at the next iteration. | AutoML-CA2 |
Metric | LR-CA | RF-CA | AutoML-CA1 | AutoML-CA2 | |
---|---|---|---|---|---|
Calibration 2000–2010 | Overall Accuracy (%) | 81.31 | 86.64 | 86.80 | 89.41 |
Kappa | 0.61 | 0.71 | 0.72 | 0.77 | |
FOM | 0.24 | 0.33 | 0.34 | 0.35 | |
Validation 2010–2020 | Overall Accuracy (%) | 75.72 | 85.58 | 86.05 | 87.66 |
Kappa | 0.52 | 0.71 | 0.71 | 0.74 | |
FOM | 0.32 | 0.44 | 0.45 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Duynhoven, A.; Dragićević, S. The Geographic Automata Tool: A New General-Purpose Geosimulation Extension for ArcGIS Pro. Appl. Sci. 2024, 14, 6530. https://doi.org/10.3390/app14156530
van Duynhoven A, Dragićević S. The Geographic Automata Tool: A New General-Purpose Geosimulation Extension for ArcGIS Pro. Applied Sciences. 2024; 14(15):6530. https://doi.org/10.3390/app14156530
Chicago/Turabian Stylevan Duynhoven, Alysha, and Suzana Dragićević. 2024. "The Geographic Automata Tool: A New General-Purpose Geosimulation Extension for ArcGIS Pro" Applied Sciences 14, no. 15: 6530. https://doi.org/10.3390/app14156530
APA Stylevan Duynhoven, A., & Dragićević, S. (2024). The Geographic Automata Tool: A New General-Purpose Geosimulation Extension for ArcGIS Pro. Applied Sciences, 14(15), 6530. https://doi.org/10.3390/app14156530