Investigation of the Complexation Activity of 2,4-Dithiouracil with Au(III) and Cu(II) and Biological Activity of the Newly Formed Complexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spectra Measurements
2.2. MP-AES Determination of Cu and Au and ICP-OES Determination of S in the Complexes
2.3. Synthesis of Cu(II) and Au(III) Complexes—General Procedure
2.4. Antimicrobial Assay
3. Results and Discussion
3.1. Physical Characteristics of the Metal Complexes
3.2. Structure Verification of 2,4-DTu by NMR
3.3. Structure Elucidation of the Au Complex by NMR
3.4. Structure Elucidation of the Cu Complex by NMR
3.5. Spectral Data for 2,4-DTu and the Metal Complexes
3.6. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parker, W.B. Enzymology of Purine and Pyrimidine Antimetabolites Used in the Treatment of Cancer. Chem. Rev. 2009, 109, 2880–2893. [Google Scholar] [CrossRef] [PubMed]
- Astwood, E.B. Treatment of hyperthyroidism with thiourea and thiouracil. JAMA 1984, 251, 1743–1746. [Google Scholar] [CrossRef] [PubMed]
- Elgemeie, G.H.; Mohamed-Ezzat, R.A. Chapter 1—Medicinal chemistry of anticancer agents. In New Strategies Targeting Cancer Metabolism, Anticancer Drugs, Synthetic Analogs, and Antitumor Agents; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–33. ISBN 978-0-12-821783-2. [Google Scholar] [CrossRef]
- Singh, R.; Yadav, R.A. Raman and IR studies and DFT calculations of the vibrational spectra of 2,4-Dithiouracil and its cation and anion. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 188–197. [Google Scholar] [CrossRef]
- Ruckenbauer, M.; Mai, S.; Marquetand, P.; González, L. Photoelectron spectra of 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil. J. Chem. Phys. 2016, 144, 074303. [Google Scholar] [CrossRef] [PubMed]
- Pollum, M.; Martínez-Fernández, L.; Crespo-Hernández, C.E. Photochemistry of Nucleic Acid Bases and Their Thio- and Aza-Analogues in Solution. In Photoinduced Phenomena in Nucleic Acids I; Barbatti, M., Borin, A., Ullrich, S., Eds.; Topics in Current Chemistry; Springer: Cham, Switzerland, 2014; Volume 355. [Google Scholar] [CrossRef]
- Mai, S.; Pollum, M.; Martínez-Fernández, L.; Dunn, N.; Marquetand, P.; Corral, I.; Crespo-Hernández, C.E.; González, L. The origin of efficient triplet state population in sulfur-substituted nucleobases. Nat. Commun. 2016, 7, 13077. [Google Scholar] [CrossRef]
- Mohamadzade, A.; Ullrich, S. Internal conversion and intersystem crossing dynamics of uracil upon double thionation: A time-resolved photoelectron spectroscopy study in the gas phase. Phys. Chem. Chem. Phys. 2020, 22, 15608–15615. [Google Scholar] [CrossRef]
- Shefter, E.; Mautner, H.G. The Crystal and Molecular Structure of 2,4-Dithiouracil. J. Am. Chem. Soc. 1967, 89, 1249–1253. [Google Scholar] [CrossRef]
- Leszczyiiski, J.; Lammertsma, K. 2,4-Dithiouracil tautomers: Structures and energies. J. Phys. Chem. 1991, 95, 3128–3132. [Google Scholar] [CrossRef]
- Palafox, M.A.; Benial, A.M.F.; Rastogi, V.K. Biomolecules of 2-Thiouracil, 4-Thiouracil and 2,4-Dithiouracil: A DFT Study of the Hydration, Molecular Docking and Effect in DNA:RNA Microhelixes. Int. J. Mol. Sci. 2019, 20, 3477. [Google Scholar] [CrossRef]
- Nelson, H.C.; Villa, J.F. Copper(II) Complexes of 2-Thiocytosine and 2,4-Dithiouracil. Inorg. Chim. Acta 1979, 34, L235–L237. [Google Scholar] [CrossRef]
- Lamsabhi, A.M.; Alcamí, M.; Mó, O.; Yáñez, M.; Tortajada, J. Association of Cu2+ with Uracil and Its Thio Derivatives: A Theoretical Study. Chem. Phys. Chem. 2004, 5, 1871–1878. [Google Scholar] [CrossRef]
- Lamsabhi, A.M.; Alcamí, M.; Mó, O.; Yáñez, M. Gas-phase reactivity of uracil, 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil towards the Cu+ cation: A DFT study. Chem. Phys. Chem. 2003, 4, 1011–1017. [Google Scholar] [CrossRef]
- Rastogi, V.K.; Alcolea Palafox, M.; Singh, C.; Gupta, S.L. Synthesis and characterisation of complex of Cu(II) with 5-carboxy-2-thiouracil. In Spectroscopy of Biological Molecules: New Directions; Greve, J., Puppels, G.J., Otto, C., Eds.; Springer: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Singh, U.P.; Singh, S.; Singh, S.M. Synthesis, characterization and antitumour activity of metal complexes of 5-carboxy-2-thiouracil. Metal-Based Drugs 1998, 5, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Papazoglou, I.; Cox, P.J.; Hatzidimitriou, A.G.; Kokotidou, C.; Choli-Papadopoulou, T.; Aslanidis, P. Copper(I) halide complexes of 5-carbethoxy-2-thiouracil: Synthesis, structure and in vitro cytotoxicity. Eur. J. Med. Chem. 2014, 78, 383–391. [Google Scholar] [CrossRef]
- Worachartcheewan, A.; Pingaew, R.; Lekcharoen, D.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, Antioxidant and Antimicrobial Activities of Metal Complexes of 2-thiouracil-hydroxyquinoline Derivatives. Lett. Drug Des. Discov. 2018, 15, 602–611. [Google Scholar] [CrossRef]
- Shaikh, M.N.; Al-Maythalony, B.A.; Wazeer, M.I.M.; Isab, A.A. Complexations of 2-thiouracil and 2,4-dithiouracil with Cd(SeCN)2 and Hg(SeCN)2: NMR and anti-bacterial activity studies. Spectroscopy 2011, 25, 187–195. [Google Scholar] [CrossRef]
- Cookson, P.D.; Tiekink, E.R.T.; Whitehouse, M.W. Phosphinegold(I) complexes Containing the Purine-6-thiolate Anion, and their Antiart hritic Activity. Aust. J. Chem. 1994, 47, 577–586. [Google Scholar] [CrossRef]
- Gimeno, M.C.; Laguna, A. Some recent highlights in gold chemistry. Gold Bull. 2003, 36, 83–92. [Google Scholar] [CrossRef]
- Yang, W.; Hu, Y. Conformations of 2-thiouracil in the aqueous solution and its adsorption behavior on the gold substrates explored by DFT calculations and experimental methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 134, 399–405. [Google Scholar] [CrossRef]
- Lorenzana-Vázquez, G.; Pavel, I.; Meléndez, E. Gold Nanoparticles Functionalized with 2-Thiouracil for Antiproliferative and Photothermal Therapies in Breast Cancer Cells. Molecules 2023, 28, 4453. [Google Scholar] [CrossRef]
- Fernández-Moreira, V.; Herrera, R.P.; Gimeno, M.C. Anticancer properties of gold complexes with biologically relevant ligands. Pure Appl. Chem. 2018, 91, 247–269. [Google Scholar] [CrossRef]
- Vicente, J.; Chicote, S.M.-T.; Gonzalez-Herrero, P.; Jones, P.G. Complexes with S-Donor Ligands. Part 2. Synthesis of Anionic Bis(thiolato)gold(I) Complexes. Crystal Structure of [N(PPh3)2][Au(SR)2] (R = benzoxazol-2-yl)+. J. Chem. Soc. Dalton Trans. [CrossRef]
- Seifert, T.P.; Naina, V.R.; Feuerstein, T.J.; Knöfel, N.D.; Roesk, P.W. Molecular gold strings: Aurophilicity, luminescence and structure–property correlations. Nanoscale 2020, 12, 20065–20088. [Google Scholar] [CrossRef] [PubMed]
- Lusty, J.R.; Chan, H.S.O.; Peeling, J. The synthesis and characterisation of dithiouracil complexes of rodium(III), irdium(III), palladium(II) and platinum(II). Transition Met. Chem. 1983, 8, 343–345. [Google Scholar] [CrossRef]
- Vetter, C.; Kaluderovic, G.N.; Paschke, R.; Kluge, R.; Schmidt, J.; Steinborn, D. Synthesis, characterization and in vitro cytotoxicity studies of platinum(IV) complexes with thiouracil ligands. Inorg. Chim. Acta 2010, 363, 2452–2460. [Google Scholar] [CrossRef]
- Crestoni, M.E.; Corinti, D.; Chiavarino, B.; Fornarini, S.; Scuderi, D.; Salpin, J.-Y. Insights into Cisplatin Binding to Uracil and Thiouracils from IRMPD Spectroscopy and Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2020, 31, 946–960. [Google Scholar]
- Kamalakannan, P.; Venkappayya, D.; Balasubramanian, T. A new antimetabolite, 5-morpholinomethyl-2-thiouracil—Spectral properties, thermal profiles, antibacterial, antifungal and antitumour studies of some of its metal chelates. J. Chem. Soc. Dalton Trans. 2002, Issue 17, 3381–3391. [Google Scholar] [CrossRef]
- Marinova, P.; Tsoneva, S.; Frenkeva, M.; Blazheva, D.; Slavchev, A.; Penchev, P. New Cu(II), Pd(II) and Au(III) complexes with 2-thiouracil: Synthesis, Characteration and Antibacterial Studies. Russ. J. Gen. Chem. 2022, 92, 1578–1584. [Google Scholar] [CrossRef]
- Marinova, P.; Hristov, M.; Tsoneva, S.; Burdzhiev, N.; Blazheva, D.; Slavchev, A.; Varbanova, E.; Penchev, P. Synthesis, Characterization and Antibacterial Studies of new Cu(II) and Pd(II) complexes with 6-methyl-2-thiouracil and 6-propyl-2-thiouracil. Appl. Sci. 2023, 13, 13150. [Google Scholar] [CrossRef]
- Abou-Melha, K.S. A Series of Nano-sized Metal ion-thiouracil Complexes, tem, Spectral, γ-irradiation, Molecular Modeling and Biological Studies. Orient. J. Chem. 2015, 31, 1897–1913. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Youns, M.M.; Ahmed, N.M. Synthesis, antimicrobial, antioxidant activities of novel 6-aryl-5-cyano thiouracil derivatives. Eur. J. Med. Chem. 2013, 69, 591–600. [Google Scholar] [CrossRef]
- Masoud, M.S.; Soayed, A.A.; El-Husseiny, A.F. Coordination modes, spectral, thermal and biological evaluation of hetero-metal copper containing 2-thiouracil complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 99, 365–372. [Google Scholar] [CrossRef]
- Tyagi, S.; Singh, S.M.; Gencaslan, S.; Sheldrick, W.S.; Singh, U.P. Metal-5-fluorouracil-histamine complexes: Solution, structural, and antitumor studies. Metal-Based Drugs 2002, 8, 337–345. [Google Scholar] [CrossRef]
- Kumar, B.; Suman, A. Synthesis, spectroscopic characterization and biological application of copper complex of 5-carbethoxy-2-thiouracil. J. Drug Deliv. Ther. 2020, 10, 145–148. [Google Scholar] [CrossRef]
- Illán-Cabeza, N.A.; García-García, A.R.; Moreno-Carretero, M.N.; Martínez-Martos, J.M.; Ramírez-Expósito, M.J. Synthesis, characterization and antiproliferative behavior of tricarbonyl complexes of rhenium(I) with some 6-amino-5-nitrosouracil derivatives: Crystal structure of fac-[ReCl(CO)3(DANU-N5,O4)] (DANU = 6-amino-1,3-dimethyl-5-nitrosouracil). J. Inorg. Biochem. 2005, 99, 1637–1645. [Google Scholar] [CrossRef]
- Marinova, P.E.; Tamahkyarova, K.D. Synthesis and Biological Activities of Some Metal Complexes of 2-Thiouracil and Its Derivatives: A Review. Compounds 2024, 4, 186–213. [Google Scholar] [CrossRef]
- Christoph Steinbeck, Stefan Kuhn, NMRShiftDB—Compound identification and structure elucidation support through a free community-built web database. Phytochemistry 2004, 65, 2711–2717. [CrossRef]
- Novakov, I.A.; Orlinson, B.S.; Navrotskii, M.B. Desulfurization of 2-Thioxo-1,2,3,4-tetrahydropyrimidin-4-ones with oxiranes and 2-Haloacetonitriles. Russ. J. Org. Chem. 2005, 41, 607–609. [Google Scholar] [CrossRef]
- Marinova, P.; Burdzhiev, N.; Blazheva, D.; Slavchev, A. Synthesis and Antibacterial Studies of a New Au(III) Complex with 6-Methyl-2-Thioxo-2,3-Dihydropyrimidin-4(1H)-One. Molbank 2024, 2024, M1827. [Google Scholar] [CrossRef]
- Ghosh, P.; Mukhopadhyay, T.K.; Sarkar, A.R. Interaction of Divalent Metal Ions with Uracil III. Complexes of MnII, FeII, CoII, NiII and CuII with Uracil Acting as Bidentate Ligand. Transit. Met. Chem. 1984, 9, 46–48. [Google Scholar] [CrossRef]
- Shareena Dasari, T.P.; Zhang, Y.; Yu, H. Antibacterial Activity and Cytotoxicity of Gold(I) and (III) Ions and Gold Nanoparticles. Biochem. Pharmacol. 2015, 4, 199–203. [Google Scholar] [CrossRef]
- Zhang, Y.; Dasari, T.; Deng, H.; Yu, H. Antimicrobial Activity of Gold Nanoparticles and Ionic Gold. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2015, 3, 286–327. [Google Scholar] [CrossRef] [PubMed]
Complexes | Color | Yield (%) | Melting Point (°C) | Solubility |
---|---|---|---|---|
2,4-DTu | yellow | 279–281 | soluble in DMSO | |
Cu(II) | yellow-green | 56 | >350 °C | limited solubility in DMSO, C6H12, and DMF; and insoluble in EtOH, H2O, THF, and EtOAc. |
Au(III) | beige | 52 | >350 °C | limited solubility in DMSO and DMF; insoluble in H2O, THF, EtOH, EtOAc, and C6H12. |
Metal Complex | Composition * | Formula | Molecular Weight | W(M)% Calc./Exp. | W(S)% Calc./Exp. |
---|---|---|---|---|---|
Au(III) | [2,4-DTu.(2-Tu)2.Au].U.5DMSO.5H2O | C26H51N8O14S9Au | 1185.28 g/mol | 16.62/16.7 ± 1.5 | 24.35/25.2 ± 2.1 |
Au(III) | [2,4-DTu.(2-Tu)2.Au].U.2-Tu. | C28H37N12O10S9Au | 1187.22 g/mol | 16.59/16.7 ± 1.5 | 24.31/25.2 ± 2.1 |
2,4-DTu.2DMSO.3H2O | |||||
Cu(II) | [2-Tu.U.Cu].4DMSO.4H2O | C16H36N4O11S5Cu | 684.35 g/mol | 9.29/9.23 ± 0.65 | 23.43/21.9 ± 1.8 |
Atom | δ (13C) ppm | DEPT-135 | δ (1H) ppm | Multiplicity (J, Hz) | 1H-1H COSY | HMBC |
---|---|---|---|---|---|---|
1 (NH) | 12.90 | s | ||||
2 (C=S) | 172.87 | C | ||||
3 (NH) | 13.64 | s | ||||
4 (C=S) | 187.81 | C | ||||
5 | 117.16 | CH | 6.50 | d (7.1) | 6 | 4, 6 |
6 | 136.69 | CH | 7.27 | d (7.1) | 5 | 2, 4, 5 |
Atom | 2,4-DTu b | 2-Tu b | U b | 2,4-DTu.(2-Tu)2.Au c |
---|---|---|---|---|
1 | 12.88, s | 12.27, s | 10.81, s | 14.13, s (2,4-DTu) |
2 | ||||
3 | 13.62, s | 12.43, s | 11.00, s | - |
4 | ||||
5 | 6.51, d(6.7 Hz) | 5.81, d(7.50 Hz) | 5.44, m | 7.10, d(6.8 Hz), (2,4-DTu) 7.39, m, (2-Tu) 7.39, m, (2-Tu) |
6 | 7.26, t(6.2 Hz) | 7.39, m | 7.39, m | 7.76, d(6.7 Hz), (2,4-DTu) 8.31, d(4.7 Hz), (2-Tu) 8.31, d(4.7 Hz), (2-Tu) |
Atom | 2-Tu b | U b | 2-Tu.U.Cu c |
---|---|---|---|
1 | 12.26, s | 10.80, s | |
2 | |||
3 | 12.43, s | 11.00, s | |
4 | |||
5 | 5.81, d (7.3 Hz) | 5.45, d (8.2 Hz) | 7.28, d (5.5 Hz) (U) 7.40 d, m (2-Tu) |
6 | 7.38 d, m | 7.38 d, m | 8.33, m (U) 8.33, m (2-Tu) |
2,4-DTu | Au Complex | Cu Complex | |||
---|---|---|---|---|---|
Raman, cm−1 | ATR, cm−1 | Raman, cm−1 | ATR, cm−1 | Raman, cm−1 | ATR, cm−1 |
3097(ν(C-H)) 3080 (ν(C-H)) 3058 1605 1547 (ν(C=C)) 1491 1425 1359 1357 1254 (ν(C=S)) 1230 1189 1118 1076 984 965 858 683 611 461 444 399 387 229 | 3168 (ν(NH)) 3096 ((ν(C-H)) 3080 (ν(C-H) 2994 2923 2894 2720 1921 1695 1673 1610 1565 (ν(C=C)) 1486 1411 1368 1358 1319 1252 (ν(C=S)) 1230 1211 1123 1099 1076 984 965 858 820 792 695 680 614 | 3066 (ν(C-H)) 2902 1604 1544 (ν(C=C)) 1411 1363 1289 1253 (ν(C=S)) 1219 1189 1147 1120 1099 978 967 816 715 683 611 542 461 444 399 387 269 246 230 | 3100 3064 (ν(C-H)) 1603 1539 (ν(C=C)) 1520 1486 1445 1407 1363 1326 1285 1252 (ν(C=S)) 1226 1189 1122 1077 1013 978 966 949 932 857 803 789 761 735 706 680 | 3101 3018 (ν(C-H)) 2911 1546 (ν(C=C)) 1480 1412 1384 1305 1283 1193 1148 1096 1014 978 820 804 681 544 449 420 388 269 246 205 | 3386 (ν(O-H)) 3078 (ν(C-H)) 2996 2908 2362 1654 1600 1546 (ν(C=C)) 1481 1433 1380 1366 1307 1282 1185 1159 1148 1095 1012 950 817 754 707 679 613 |
Test Microorganisms | DMSO | 2,4-DTu | Cu(II) | Au(III) |
---|---|---|---|---|
Inhibition Zone, mm | ||||
Staphylococcus aureus ATCC 25923 | - | 14 ± 1.00 | 15 ± 0.58 | 19 * ± 1.00 |
Eterococcus faecalis ATCC 19433 | - | 12 ± 1.00 | 13 ± 1.00 | 16 ± 0.58 |
Listeria monocytogenes ATCC 8787 | - | 12 ± 1.00 | 12 ± 0.58 | 14 ± 0.58 |
Bacillus subtilis ATCC 6633 | - | 11 ± 0.58 | 11 ± 0.58 | 13 ± 0.58 |
Bacillus cereus ATCC 11778 | - | 11 ± 0.58 | 11 ± 0.58 | 14 * ± 0.58 |
Escherichia coli ATCC 8739 | - | 14 ± 0.58 | 15 ± 0.58 | 14 ± 1.00 |
Salmonella enterica ssp. enterica ser. Enetritidis ATCC 13076 | - | 14 ± 0.00 | 15 ± 0.00 | 15 ± 0.58 |
Pseudomonas aeruginosa ATCC 9027 | - | 13 ± 1.00 | 12 ± 0.58 | 15 ± 0.00 |
Proteus vulgaris G | - | 12 * ± 0.58 | 12 * ± 0.58 | 14 * ± 1.00 |
Klebsiella pneumoniae ATCC 13883 | - | 12 * ± 0.58 | 11 * ± 0.58 | 15 ± 0.58 |
Candida albicans ATCC 10231 | - | 10 ± 0.58 | 11 * ± 0.58 | 12 ± 0.58 |
Saccharomyces cerevisiae | - | 11 ± 1.00 | 10 ± 0.00 | 12 ± 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinova, P.; Stoitsov, D.; Burdzhiev, N.; Tsoneva, S.; Blazheva, D.; Slavchev, A.; Varbanova, E.; Penchev, P. Investigation of the Complexation Activity of 2,4-Dithiouracil with Au(III) and Cu(II) and Biological Activity of the Newly Formed Complexes. Appl. Sci. 2024, 14, 6601. https://doi.org/10.3390/app14156601
Marinova P, Stoitsov D, Burdzhiev N, Tsoneva S, Blazheva D, Slavchev A, Varbanova E, Penchev P. Investigation of the Complexation Activity of 2,4-Dithiouracil with Au(III) and Cu(II) and Biological Activity of the Newly Formed Complexes. Applied Sciences. 2024; 14(15):6601. https://doi.org/10.3390/app14156601
Chicago/Turabian StyleMarinova, Petya, Dimitar Stoitsov, Nikola Burdzhiev, Slava Tsoneva, Denica Blazheva, Aleksandar Slavchev, Evelina Varbanova, and Plamen Penchev. 2024. "Investigation of the Complexation Activity of 2,4-Dithiouracil with Au(III) and Cu(II) and Biological Activity of the Newly Formed Complexes" Applied Sciences 14, no. 15: 6601. https://doi.org/10.3390/app14156601
APA StyleMarinova, P., Stoitsov, D., Burdzhiev, N., Tsoneva, S., Blazheva, D., Slavchev, A., Varbanova, E., & Penchev, P. (2024). Investigation of the Complexation Activity of 2,4-Dithiouracil with Au(III) and Cu(II) and Biological Activity of the Newly Formed Complexes. Applied Sciences, 14(15), 6601. https://doi.org/10.3390/app14156601