Design Considerations Concerning an Innovative Drive System for a Manual Wheelchair
Abstract
:1. Introduction
2. Materials and Methods
2.1. Kinematic Scheme
2.2. Design Considerations Based on a 3D Model
2.3. Electronic Control System
2.4. Measurement Methodology
3. Results and Discussion
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hartley, S.; Jessup, N.; Madden, R.; Officer, A.; Posarac, S.; Shakespeare, T. The way forward: Recommendations. In World Report on Disability; World Health Organization: Geneva, Switzerland, 2011; ISBN 978-92-4068-800-1. [Google Scholar]
- Sydor, M. Selecting and Using a Wheelchair (orginal Polish title: Wybór i eksploatacja wózka inwalidzkiego); Publishing House of the Agricultural University of A. Cieszkowski in Poznań: Poznan, Poland, 2003; pp. 20–26. ISBN 83-7160-315-0. [Google Scholar]
- Fiok, K. Parametric Optimization of an Innovative Manual Wheelchair (original title in Polish: Optymalizacja parametryczna innowacyjnego wózka inwalidzkiego z napędem ręcznym); Warsaw University of Technology: Warsaw, Poland, 2014; pp. 15–26. [Google Scholar]
- Yang, L.; Guo, N.; Sakamoto, R.; Kato, N.; Yano, K. Electric Wheelchair Hybrid Operating System Coordinated with Working Range of a Robotic Arm. J. Robot. Control. 2022, 3, 679–689. [Google Scholar] [CrossRef]
- Ravindu, H.M.; Priyanayana, K.S.; Pathirana, C.D.; Jayasekara, B. Hybrid Navigation Decision Control Mechanism for Intelligent Wheel-Chair. Inst. Electr. Electron. Eng. Access 2023, 11, 118558–118576. [Google Scholar] [CrossRef]
- Sydor, M.; Zabłocki, M.; Torzyński, D. Functional translation of user needs into wheelchair design. In Scientific Papers of the Poznań University of Technology. Organization and Management; Poznań University of Technology Publishing House: Poznan, Poland, 2017; pp. 214–216. [Google Scholar] [CrossRef]
- de Souza, L.H.; Frank, O.A. Problematic clinical features of powered wheelchair users with severely disabling multiple sclerosis. Disabil. Rehabil. 2015, 37, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Ning, M.; Yu, K.; Zhang, C.; Wu, Z.; Wang, Y. Wheelchair design with variable posture adjustment and obstacle-overcoming ability. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 197. [Google Scholar] [CrossRef]
- Levy, C.E.; Buman, M.P.; Chow, J.W.; Tillman, M.D.; Fournier, K.A.; Giacobbi, P., Jr. Use of power assist wheels results in increased distance traveled compared with conventional manual wheeling. Am. J. Phys. Med. Rehabil. 2010, 89, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Kloosterman, M.G.; Snoek, G.J.; van der Woude, L.H.; Buurke, J.H.; Rietman, J.S. A systematic review on the pros and cons of using a pushrim-activated power-assisted wheelchair. Clin. Rehabil. 2012, 27, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Giacobbi, P., Jr.; Levy, C.E.; Dietrich, F.D.; Winkler, S.H.; Tillman, M.D.; Chow, J.W. Wheelchair users’ perceptions of and experiences with power assist wheels. Am. J. Phys. Med. Rehabil. 2010, 89, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Andrew, O.F.; de Souza, L.H. Clinical features of children and adults with a muscular dystrophy using powered indoor/outdoor wheelchairs: Disease features, comorbidities and complications of disability. Disabil. Rehabil. 2017, 40, 1007–1013. [Google Scholar] [CrossRef]
- Jang, D.J.; Kim, Y.C.; Hong, E.P.; Kim, G.S. Development of Power-Assist Device for a Manual Wheelchair Using Cycloidal Reducer. Appl. Sci. 2023, 13, 954. [Google Scholar] [CrossRef]
- Khalili, M.; Eugenio, A.; Wood, A.; Van der Loos, M.; Bennett Mortenson, W.; Borisoff, J.F. Perceptions of power-assist devices: Interviews with manual wheelchair users. Disabil. Rehabilitation. Assist. Technol. 2021, 18, 1–11. [Google Scholar] [CrossRef]
- Dhaliwal, M.; Janssen, S.; Kuik, K.; Giesbrecht, E.M. Choosing a Power Assist Device; Rady Faculty of Health Sciences University of Manitoba: Winnipeg, MB, Canada, 2021. [Google Scholar] [CrossRef]
- Weng, F.T.; Jenq, S.M. Designing of Rear Derailleur Mechanism on Bicycle. J. Comput. Theor. Nanosci. 2013, 19, 2336–2339. [Google Scholar] [CrossRef]
- Casteel, E.A.; Archibald, M. A Study on the Efficiency of Bicycle Hub Gears. In Proceeding of the ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, CA, USA, 15–21 November 2013. [Google Scholar] [CrossRef]
- Levarda, E. Bicycle transmissions. IOP Conf. Ser. Mater. Sci. Eng. 2018, 444, 052013. [Google Scholar] [CrossRef]
- Kukla, M.; Maliga, W. Symmetry Analysis of Manual Wheelchair Propulsion Using Motion Capture Techniques. Symmetry 2022, 14, 1164. [Google Scholar] [CrossRef]
- Figas, G.; Hadamus, A.; Błażkiewicz, M.; Kujawa, J. Symmetry of the Neck Muscles’ Activity in the Electromyography Signal during Basic Motion Patterns. Sensors 2023, 23, 4170. [Google Scholar] [CrossRef] [PubMed]
- Kalyanasundaram, S.; Lowe, A.; Watters, A. Finite element analysis and optimization of composite wheelchair wheels. Compos. Struct. 2006, 75, 393–399. [Google Scholar] [CrossRef]
- Keangin, P.; Chawengwanicha, P.; Wimala, N.; Nakbanpotkul, T. Structural analysis of three-dimensional finite element model to design multifunction wheelchair for patients. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1137, 12054. [Google Scholar] [CrossRef]
- Chen, L.; Cheng, C.; Zhou, C.; Zhang, Y.; Wu, J. Flapping rotary wing: A novel low-Reynolds number layout merging bionic features into micro rotors. Prog. Aerosp. Sci. 2024, 146, 100984. [Google Scholar] [CrossRef]
- Phan, H.V.; Park, H.C. Insect-inspired, tailless, hover-capable flapping-wing robots: Recent progress, challenges, and future directions. Prog. Aerosp. Sci. 2019, 111, 100573. [Google Scholar] [CrossRef]
- Sprigle, S.; Huang, M.; Lin, J.T. Inertial and frictional influences of instrumented wheelchair wheels. J. Rehabil. Assist. Technol. Eng. 2016, 3, 1–5. [Google Scholar] [CrossRef]
- Sprigle, S.; Huang, M. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque. Assist. Technol. Off. J. RESNA 2015, 27, 226–235. [Google Scholar] [CrossRef]
- Raez, M.B.I.; Sajjad Hussain, M.; Mohd-Yasin, F. Techniques of EMG signal analysis: Detection, processing, classification and applications. Biol. Proced. Online 2006, 8, 11–35. [Google Scholar] [CrossRef] [PubMed]
- Hof, A.L. EMG and muscle force: An introduction. Hum. Mov. Sci. 1984, 3, 119–153. [Google Scholar] [CrossRef]
- Wieczorek, B.; Kukla, M.; Warguła, Ł. The symmetric nature of the position distribution of the human body center of gravity during propelling manual wheelchairs with innovative propulsion systems. Symmetry 2021, 13, 154. [Google Scholar] [CrossRef]
- Wieczorek, B.; Kukla, M.; Warguła, Ł. Describing a Set of Points with Elliptical Areas: Mathematical Description and Verification on Operational Tests of Technical Devices. Appl. Sci. 2022, 12, 445. [Google Scholar] [CrossRef]
- Kończak, M.; Kukla, M.; Warguła, Ł.; Rybarczyk, D.; Wieczorek, B. Considerations for the Design of a Wheelchair Dynamometer concerning a Dedicated Braking System. Appl. Sci. 2023, 13, 7447. [Google Scholar] [CrossRef]
- Briz, F.; Cancelas, J.A.; Diez, A. Speed measurement using rotary encoders for high performance AC drives. In Proceedings of the Proceedings of IECON’94-20th Annual Conference of IEEE Industrial Electronics, Bologna, Italy, 5–9 September 1994; Volume 1. [Google Scholar] [CrossRef]
- Colominas, J.; Pallas-Areny, R. A new method for measuring RMS values. Inst. Electr. Electron. Eng. Xplore 1986, 74, 1468–1469. [Google Scholar] [CrossRef]
- Arnet, U.; van Drongelen, S.; Veeger, D.; van der Woude, L.H.V. Force Application During Handcycling and Handrim Wheelchair Propulsion: An Initial Comparison. J. Appl. Biomech. 2013, 29, 687–695. [Google Scholar] [CrossRef]
- Boninger, M.; Cooper, R.; Robertson, R.; Shimada, S. Three-dimensional pushrim forces during two speeds of wheelchair propulsion. Am. J. Phys. Med. Rehabil. 1997, 76, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, A. Analysis of a Lever-Driven Wheelchair Prototype and the Correlation Between. IFAC Proc. Vol. 2014, 47, 9895–9900. [Google Scholar] [CrossRef]
- Mills, K.R. The basics of electromyography. Br. Med. J. 2005, 76, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Elamvazuthi, I.; Duy, N.H.X.; Zulfiqar, A.; Su, S.W.; Khan, A.; Parasuraman, S. Electromyography (EMG) based Classification of Neuromuscular Disorders using Multi-Layer Perceptron. Procedia Comput. Sci. 2015, 76, 223–228. [Google Scholar] [CrossRef]
- Pierce, R. Spirometry: An essential clinical measurement. Aust. Fam. Physician 2005, 34, 535–539. [Google Scholar] [PubMed]
- wen Sewa, D.; Ong, T.H. Pulmonary Function Test: Spirometry. Proc. Singap. Healthc. 2014, 23, 57–64. [Google Scholar] [CrossRef]
- Paraskeva, M.; Borg, B.M.; Naughton, M.T. Spirometry. Aust. Fam. Physician 2011, 40, 216–219. [Google Scholar] [PubMed]
Name | Designation | Value |
---|---|---|
Diameter of a wheel | 609.6 mm | |
Diameter of a pushrim | 520 mm | |
Number of sprocket teeth at the input from the wheel hub | 23 teeth | |
Number of teeth of Shimano cassette sprockets | 11, 13, 15, 18, 22, 27, 33, 40 teeth | |
Number of teeth on the countershaft sprocket | 20 teeth | |
Number of sprocket teeth at the exit from the wheel hub | 25 teeth | |
The number of gear teeth changing the direction of chain movement for the right wheel gear | 90 teeth | |
The number of gear teeth changing the direction of chain movement for the right wheel gear | 80 teeth | |
Torque gauge | TG | - |
Encoder | E | - |
Encoder pulley diameter at input | 54 mm | |
Output encoder pulley diameter | 24 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kończak, M.; Kukla, M.; Rybarczyk, D. Design Considerations Concerning an Innovative Drive System for a Manual Wheelchair. Appl. Sci. 2024, 14, 6604. https://doi.org/10.3390/app14156604
Kończak M, Kukla M, Rybarczyk D. Design Considerations Concerning an Innovative Drive System for a Manual Wheelchair. Applied Sciences. 2024; 14(15):6604. https://doi.org/10.3390/app14156604
Chicago/Turabian StyleKończak, Michał, Mateusz Kukla, and Dominik Rybarczyk. 2024. "Design Considerations Concerning an Innovative Drive System for a Manual Wheelchair" Applied Sciences 14, no. 15: 6604. https://doi.org/10.3390/app14156604
APA StyleKończak, M., Kukla, M., & Rybarczyk, D. (2024). Design Considerations Concerning an Innovative Drive System for a Manual Wheelchair. Applied Sciences, 14(15), 6604. https://doi.org/10.3390/app14156604