Impact of Classical Music Listening on Cognitive and Functional Performances in Middle-Aged Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Exprimental Protocole
2.3. Functional Performance Assessment
2.3.1. Arm Curl Test
2.3.2. Timed Up and Go Test
2.3.3. Thirty-Second Chair Stand Test
2.3.4. Two-Minute Step Test
2.4. Cognitive Performance Assessment
2.4.1. Corsi Block-Tapping Task Test
2.4.2. Simple Reaction Time Test
2.5. Statistical Analysis
3. Results
3.1. Functional Performances
3.2. Cognitive Performances
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horowitz, A.; Brennan, M.; Reinhardt, J.P. Prevalence and risk factors for self-reported visual impairment among middle-aged and older adults. Res. Aging 2005, 27, 307–326. [Google Scholar] [CrossRef]
- Kronfol, N. Biological, Medical and Behavioural Risk Factors on Falls; World Health Organisation: Geneva, Switzerland, 2007. [Google Scholar]
- Isles, R.C.; Choy, N.L.L.; Steer, M.; Nitz, J.C. Normal values of balance tests in women aged 20–80. J. Am. Geriatr. Soc. 2004, 52, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Hung, W.W.; Ross, J.S.; Boockvar, K.S.; Siu, A.L. Recent trends in chronic disease, impairment and disability among older adults in the United States. BMC Geriatr. 2011, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.B.; Simonsick, E.M.; Naydeck, B.L.; Boudreau, R.M.; Kritchevsky, S.B.; Nevitt, M.C.; Pahor, M.; Satterfield, S.; Brach, J.S.; Studenski, S.A. Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. JAMA 2006, 295, 2018–2026. [Google Scholar] [CrossRef] [PubMed]
- Talbot, L.A.; Musiol, R.J.; Witham, E.K.; Metter, E.J. Falls in young, middle-aged and older community dwelling adults: Perceived cause, environmental factors and injury. BMC Public Health 2005, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Kilpi, F.; Soares, A.L.G.; Fraser, A.; Nelson, S.M.; Sattar, N.; Fallon, S.J.; Tilling, K.; Lawlor, D.A. Changes in six domains of cognitive function with reproductive and chronological ageing and sex hormones: A longitudinal study in 2411 UK mid-life women. BMC Women’s Health 2020, 20, 177. [Google Scholar] [CrossRef] [PubMed]
- Bondarev, D.; Finni, T.; Kokko, K.; Kujala, U.M.; Aukee, P.; Kovanen, V.; Laakkonen, E.K.; Sipilä, S. Physical performance during the menopausal transition and the role of physical activity. J. Gerontol. Ser. A 2021, 76, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Bayles, C.M.; Cochran, K.; Anderson, C. The psychosocial aspects of osteoporosis in women. Nurs. Clin. N. Am. 2000, 35, 279–286. [Google Scholar] [CrossRef]
- Lemmink, K.A.; Han, K.; de Greef, M.H.; Rispens, P.; Stevens, M. Reliability of the Groningen fitness test for the elderly. J. Aging Phys. Act. 2001, 9, 194–212. [Google Scholar] [CrossRef]
- Jones, C.J.; Rikli, R.E. Measuring functional. J. Act. Aging 2002, 1, 24–30. [Google Scholar]
- Ruiz, J.R.; Castro-Piñero, J.; España-Romero, V.; Artero, E.G.; Ortega, F.B.; Cuenca, M.M.; Jimenez-Pavón, D.; Chillón, P.; Girela-Rejón, M.J.; Mora, J. Field-based fitness assessment in young people: The ALPHA health-related fitness test battery for children and adolescents. Br. J. Sports Med. 2011, 45, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Dubé, L.; Le Bel, J. The content and structure of laypeople’s concept of pleasure. Cogn. Emot. 2003, 17, 263–295. [Google Scholar] [CrossRef] [PubMed]
- Nadon, É.; Tillmann, B.; Saj, A.; Gosselin, N. The emotional effect of background music on selective attention of adults. Front. Psychol. 2021, 12, 729037. [Google Scholar] [CrossRef] [PubMed]
- Karageorghis, C.I.; Priest, D.-L. Music in the exercise domain: A review and synthesis (Part I). Int. Rev. Sport Exerc. Psychol. 2012, 5, 44–66. [Google Scholar] [CrossRef] [PubMed]
- Karageorghis, C.I.; Hutchinson, J.C.; Jones, L.; Farmer, H.L.; Ayhan, M.S.; Wilson, R.C.; Rance, J.; Hepworth, C.J.; Bailey, S.G. Psychological, psychophysical, and ergogenic effects of music in swimming. Psychol. Sport Exerc. 2013, 14, 560–568. [Google Scholar] [CrossRef]
- Dyrlund, A.K.; Wininger, S.R. The effects of music preference and exercise intensity on psychological variables. J. Music Ther. 2008, 45, 114–134. [Google Scholar] [CrossRef] [PubMed]
- Bartolomei, S.; Michele, R.D.; Merni, F. Effects of self-selected music on maximal bench press strength and strength endurance. Percept. Mot. Ski. 2015, 120, 714–721. [Google Scholar] [CrossRef]
- Karageorghis, C.I.; Bigliassi, M.; Tayara, K.; Priest, D.-L.; Bird, J.M. A grounded theory of music use in the psychological preparation of academy soccer players. Sport Exerc. Perform. Psychol. 2018, 7, 109. [Google Scholar] [CrossRef]
- Waer, F.B.; Sahli, S.; Alexe, C.I.; Man, M.C.; Alexe, D.I.; Burchel, L.O. The Effects of Listening to Music on Postural Balance in Middle-Aged Women. Sensors 2024, 24, 202. [Google Scholar] [CrossRef] [PubMed]
- Maatoug, H.; Baccouch, R.; Borji, R.; Rebai, H.; Sahli, S. Effects of music listening on postural balance in adolescents with visual impairment. Percept. Mot. Ski. 2023, 130, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Keller, P.E.; Schubert, E. Cognitive and affective judgements of syncopated musical themes. Adv. Cogn. Psychol. 2011, 7, 142. [Google Scholar] [CrossRef] [PubMed]
- Husain, G.; Thompson, W.F.; Schellenberg, E.G. Effects of musical tempo and mode on arousal, mood, and spatial abilities. Music Percept. 2002, 20, 151–171. [Google Scholar] [CrossRef]
- Rickard, N.S.; Toukhsati, S.R.; Field, S.E. The effect of music on cognitive performance: Insight from neurobiological and animal studies. Behav. Cogn. Neurosci. Rev. 2005, 4, 235–261. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, F.; Fiore, M.; Ricci, E.; Padua, L.; Sabino, A.; Tonali, P.A. Investigating the neurobiology of music: Brain-derived neurotrophic factor modulation in the hippocampus of young adult mice. Behav. Pharmacol. 2007, 18, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Koelsch, S. Brain correlates of music-evoked emotions. Nat. Rev. Neurosci. 2014, 15, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Peck, K.J.; Girard, T.A.; Russo, F.A.; Fiocco, A.J. Music and memory in Alzheimer’s disease and the potential underlying mechanisms. J. Alzheimer’s Dis. 2016, 51, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Särkämö, T.; Ripollés, P.; Vepsäläinen, H.; Autti, T.; Silvennoinen, H.M.; Salli, E.; Laitinen, S.; Forsblom, A.; Soinila, S.; Rodríguez-Fornells, A. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: A voxel-based morphometry study. Front. Hum. Neurosci. 2014, 8, 245. [Google Scholar]
- Mammarella, N.; Fairfield, B.; Cornoldi, C. Does music enhance cognitive performance in healthy older adults? The Vivaldi effect. Aging Clin. Exp. Res. 2007, 19, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Bottiroli, S.; Rosi, A.; Russo, R.; Vecchi, T.; Cavallini, E. The cognitive effects of listening to background music on older adults: Processing speed improves with upbeat music, while memory seems to benefit from both upbeat and downbeat music. Front. Aging Neurosci. 2014, 6, 284. [Google Scholar] [CrossRef] [PubMed]
- Innes, K.E.; Selfe, T.K.; Kandati, S.; Wen, S.; Huysmans, Z. Effects of mantra meditation versus music listening on knee pain, function, and related outcomes in older adults with knee osteoarthritis: An exploratory Randomized Clinical Trial (RCT). Evid. -Based Complement. Altern. Med. 2018, 2018, 7683897. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- McClung, M.R.; Pinkerton, J.; Blake, J.; Cosman, F.; Lewiecki, E.; Shapiro, M. Management of osteoporosis in postmenopausal women: The 2021 position statement of The North American Menopause Society. Menopause 2021, 28, 973–997. [Google Scholar]
- Craig, C.; Marshall, A.; Sjostrom, M.; Bauman, A.; Lee, P.; Macfarlane, D.; Lam, T.; Stewart, S. International physical activity questionnaire-short form. J. Am. Coll. Health 2017, 65, 492–501. [Google Scholar]
- Rubenstein, L.Z.; Vivrette, R.; Harker, J.O.; Stevens, J.A.; Kramer, B.J. Validating an evidence-based, self-rated fall risk questionnaire (FRQ) for older adults. J. Saf. Res. 2011, 42, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Rikli, R.E.; Jones, C.J. Development and validation of a functional fitness test for community-residing older adults. J. Aging Phys. Act. 1999, 7, 129–161. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Senior Fitness Test Manual; Human kinetics: Champaign, IL, USA, 2013. [Google Scholar]
- Matos, T.; Vornicoglo, D.; Coelho, P.J.; Zdravevski, E.; Albuquerque, C.; Pires, I.M. Can sensors be used to measure the Arm Curl Test results? a systematic review. Discov. Appl. Sci. 2024, 6, 48. [Google Scholar] [CrossRef]
- Wu, F.; Wills, K.; Laslett, L.; Oldenburg, B.; Seibel, M.; Jones, G.; Winzenberg, T. Cut-points for associations between vitamin D status and multiple musculoskeletal outcomes in middle-aged women. Osteoporos. Int. 2017, 28, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Garcia, M.; Marin-Jimenez, N.; Perez-Bey, A.; Sánchez-Oliva, D.; Camiletti-Moiron, D.; Alvarez-Gallardo, I.C.; Ortega, F.B.; Castro-Pinero, J. Reliability of field-based fitness tests in adults: A systematic review. Sports Med. 2022, 52, 1961–1979. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, T.; Kahraman, B.O.; Sengul, Y.S.; Kalemci, O. Assessment of sit-to-stand movement in nonspecific low back pain: A comparison study for psychometric properties of field-based and laboratory-based methods. Int. J. Rehabil. Res. 2016, 39, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Crouch, R.H. Two-minute step test of exercise capacity: Systematic review of procedures, performance, and clinimetric properties. J. Geriatr. Phys. Ther. 2019, 42, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Ben Waer, F.; Laatar, R.; Jouira, G.; Lahiani, M.; Rebai, H.; Sahli, S. Effects of 12 weeks of caffeine supplementation and Zumba training on postural balance and cognitive performances in middle-aged women. Health Care Women Int. 2023, 44, 1601–1621. [Google Scholar] [CrossRef] [PubMed]
- Berch, D.B.; Krikorian, R.; Huha, E.M. The Corsi block-tapping task: Methodological and theoretical considerations. Brain Cogn. 1998, 38, 317–338. [Google Scholar] [CrossRef] [PubMed]
- Saggino, A.; Balsamo, M.; Grieco, A.; Cerbone, M.R.; Raviele, N.N. Corsi’s Block-Tapping Task: Standardization and location in factor space with the WAIS–R for two normal samples of older adults. Percept. Mot. Ski. 2004, 98, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Haxby, J.V.; Parasuraman, R.; Lalonde, F.; Abboud, H. SuperLab: General-purpose Macintosh software for human experimental psychology and psychological testing. Behav. Res. Methods Instrum. Comput. 1993, 25, 400–405. [Google Scholar] [CrossRef]
- Ohyanagi, T.; Sengoku, Y. A solution for measuring accurate reaction time to visual stimuli realized with a programmable microcontroller. Behav. Res. Methods 2010, 42, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Boso, M.; Politi, P.; Barale, F.; Emanuele, E. Neurophysiology and neurobiology of the musical experience. Funct. Neurol. 2006, 21, 187. [Google Scholar] [PubMed]
- Satoh, M.; Takeda, K.; Nagata, K.; Hatazawa, J.; Kuzuhara, S. The anterior portion of the bilateral temporal lobes participates in music perception: A positron emission tomography study. Am. J. Neuroradiol. 2003, 24, 1843–1848. [Google Scholar] [PubMed]
- Ballmann, C.G.; McCullum, M.J.; Rogers, R.R.; Marshall, M.R.; Williams, T.D. Effects of preferred vs. nonpreferred music on resistance exercise performance. J. Strength Cond. Res. 2021, 35, 1650–1655. [Google Scholar] [CrossRef] [PubMed]
- Karow, M.C.; Rogers, R.R.; Pederson, J.A.; Williams, T.D.; Marshall, M.R.; Ballmann, C.G. Effects of preferred and nonpreferred warm-up music on exercise performance. Percept. Mot. Ski. 2020, 127, 912–924. [Google Scholar] [CrossRef]
- Stork, M.J.; Kwan, M.Y.; Gibala, M.J.; Ginis, K.A.M. Music enhances performance and perceived enjoyment of sprint interval exercise. Med. Sci. Sports Exerc. 2015, 47, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Biagini, M.S.; Brown, L.E.; Coburn, J.W.; Judelson, D.A.; Statler, T.A.; Bottaro, M.; Tran, T.T.; Longo, N.A. Effects of self-selected music on strength, explosiveness, and mood. J. Strength Cond. Res. 2012, 26, 1934–1938. [Google Scholar] [CrossRef] [PubMed]
- Hsu, D.Y.; Huang, L.; Nordgren, L.F.; Rucker, D.D.; Galinsky, A.D. The music of power: Perceptual and behavioral consequences of powerful music. Soc. Psychol. Personal. Sci. 2015, 6, 75–83. [Google Scholar] [CrossRef]
- Bigliassi, M.; Karageorghis, C.I.; Bishop, D.T.; Nowicky, A.V.; Wright, M.J. Cerebral effects of music during isometric exercise: An fMRI study. Int. J. Psychophysiol. 2018, 133, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Boutcher, S.H.; Trenske, M. The effects of sensory deprivation and music on perceived exertion and affect during exercise. J. Sport Exerc. Psychol. 1990, 12, 167–176. [Google Scholar] [CrossRef]
- Ballmann, C.G.; Maynard, D.J.; Lafoon, Z.N.; Marshall, M.R.; Williams, T.D.; Rogers, R.R. Effects of listening to preferred versus non-preferred music on repeated wingate anaerobic test performance. Sports 2019, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.T.; Wright, M.J.; Karageorghis, C.I. Tempo and intensity of pre-task music modulate neural activity during reactive task performance. Psychol. Music 2014, 42, 714–727. [Google Scholar] [CrossRef]
- Tenenbaum, G.; Lidor, R.; Lavyan, N.; Morrow, K.; Tonnel, S.; Gershgoren, A.; Meis, J.; Johnson, M. The effect of music type on running perseverance and coping with effort sensations. Psychol. Sport Exerc. 2004, 5, 89–109. [Google Scholar] [CrossRef]
- Rejeski, W.J. Perceived exertion: An active or passive process? J. Sport Exerc. Psychol. 1985, 7, 371–378. [Google Scholar] [CrossRef]
- Menon, V.; Levitin, D.J. The rewards of music listening: Response and physiological connectivity of the mesolimbic system. Neuroimage 2005, 28, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Peretz, I.; Zatorre, R.J. Brain organization for music processing. Annu. Rev. Psychol. 2005, 56, 89–114. [Google Scholar] [CrossRef] [PubMed]
- Schellenberg, E.G. Music and cognitive abilities. Curr. Dir. Psychol. Sci. 2005, 14, 317–320. [Google Scholar] [CrossRef]
- Gevins, A.; Smith, M.E.; McEvoy, L.; Yu, D. High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cereb. Cortex 1997, 7, 374–385. [Google Scholar] [CrossRef] [PubMed]
No Music | With Music | |
---|---|---|
Functional Performances | ||
TUG test (sec) | 7.69 ± 0.72 | 6.47 ± 0.67 ** |
Arm Curl test (reps) | 24.28 ± 5.12 | 24.94 ± 5.17 |
30 s Chair Stand test (reps) | 21.28 ± 3.52 | 21.61 ± 3.52 |
2 min Step test (reps) | 8.50 ±0.98 | 9.49 ± 1.21 ** |
Cognitive performances | ||
SRT (ms) | 415.04 ± 64.98 | 382.39 ± 350.33 * |
Corsi Block-Tapping Task (scores) | 5.33 ± 0.84 | 5.78 ± 1.00 |
t | p-Value | Cohen’s d | 95% CI | ||
---|---|---|---|---|---|
Lower Limit | Upper Limit | ||||
Functional performances | |||||
TUG test (s) | 7.58 | <0.001 | 1.75 | 0.87 | 1.55 |
Arm Curl test (reps) | −1.04 | 0.31 | 0.13 | −2.01 | 0.67 |
30 s Chair Stand test (reps) | −0.37 | 0.71 | 0.09 | −2.22 | 1.55 |
2 min Step test (reps) | −5.93 | <0.001 | 2.09 | 40.36 | −19.19 |
Cognitive performances | |||||
SRT (ms) | 2.13 | <0.05 | 0.57 | 0.42 | 64.86 |
Corsi Block-Tapping Task (scores) | −1.32 | 0.2 | 0.48 | −1.15 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waer, F.B.; Alexe, D.I.; Alexe, C.I.; Eken, Ö.; Păun, L.I.; Sahli, S. Impact of Classical Music Listening on Cognitive and Functional Performances in Middle-Aged Women. Appl. Sci. 2024, 14, 6779. https://doi.org/10.3390/app14156779
Waer FB, Alexe DI, Alexe CI, Eken Ö, Păun LI, Sahli S. Impact of Classical Music Listening on Cognitive and Functional Performances in Middle-Aged Women. Applied Sciences. 2024; 14(15):6779. https://doi.org/10.3390/app14156779
Chicago/Turabian StyleWaer, Fatma Ben, Dan Iulian Alexe, Cristina Ioana Alexe, Özgür Eken, Laurian Ioan Păun, and Sonia Sahli. 2024. "Impact of Classical Music Listening on Cognitive and Functional Performances in Middle-Aged Women" Applied Sciences 14, no. 15: 6779. https://doi.org/10.3390/app14156779
APA StyleWaer, F. B., Alexe, D. I., Alexe, C. I., Eken, Ö., Păun, L. I., & Sahli, S. (2024). Impact of Classical Music Listening on Cognitive and Functional Performances in Middle-Aged Women. Applied Sciences, 14(15), 6779. https://doi.org/10.3390/app14156779