Non-Thermal Technology Approaches to Improve Extraction, Fermentation, Microbial Stability, and Aging in the Winemaking Process
Abstract
:1. Introduction
2. Methodology and Analysis
3. Non-Thermal Technologies in Winemaking Process
3.1. High-Power Ultrasound (HPU) Effects on Varietal Aroma/Phenol Extraction and Wine Quality
Sample | Processing Conditions | Key Outcomes | References |
---|---|---|---|
Cabernet Sauvignon red wine/Graševina white wine | Ultrasonic bath (40, 60, 100% amplitude; 37 and 80 kHz frequency; 20, 40, 60 °C bath temperature; 20, 50, 65, 90 min); Ultrasonic probe (diameter 12.7, 19.1, 25.4 mm; 25, 50, 75, 100% amplitude; 3, 6, 9 min; immersion depth 2 cm) | Red wine:
| [24,25] |
Cabernet Sauvignon red wine | Ultrasonic bath (45, 80, 100 kHz; 120–300 W; 20–60 °C; 20–80 min) |
| [33] |
Cabernet Sauvignon red wine | Ultrasonic bath (25, 40, 59 kHz frequencies; 150–450 W powers; 20–45 °C temperatures; 10–50 min) |
| [30] |
Red wine | Flat tip ultrasonic probe (diameter 13 mm; 20 kHz frequency; 41 and 81% amplitude; 1, 3, 5 min; immersion depth 2 cm) |
| [27] |
White wine | Flat tip ultrasonic probe (diameter 13 mm; 20 kHz frequency; 30, 60, 90% amplitude; 5 and 10 min; immersion depth 2–2.5 cm) |
| [26] |
Sauvignon Blanc and Pinot Gris white wines Syrah and Pinot Noir red wines Rosé wine | Ultrasonic probe (diameter 14 mm; max. amplitude of 125 µm; 24 kHz; continuous mode with a flow rate of 0.73 mL/s; residence time of 20.5 s; specific acoustic power 10.8 W/mL) |
| [29] |
Monastrell red grapes | Pilot-scale power ultrasonic system (400 kg/h capacity; 2500 W power; 8 W/cm2 power density; 20 and 28 kHz frequency) |
| [19,20] / [22] |
Cabernet Sauvignon red wine | Ultrasonic cleaning bath (45–100 kHz; 25–45 °C; 180–300 W; 10–50 min); Ultrasonic multi frequency cleaning bath (25–59 kHz; 20–45 °C; 150–450 W; 10–50 min) Horn ultrasonic cell crusher (diameter 6 mm; 20 and 25 kHz; 100–700 W; 18 °C; 30 min) |
| [34] |
Cabernet Sauvignon red wine | Ultrasonic probe (diameter 22 mm; 24 kHz frequency; 400 W; 50, 75, 100% amplitude; 60, 90, 180 s) |
| [31] |
Cabernet Sauvignon red wine | Flat tip ultrasonic probe (diameter 13 mm; 26 kHz frequency; 30, 60, 90% amplitude; 2, 6, 10 min; immersion depth 2 cm) |
| [28] |
Monastrell red grapes | Semi-industrial-scale ultrasonic system (30 kHz frequency; 2500 W power; 8 W/cm2 power density) |
| [17] |
Merlot red grape must | Ultrasonic bath (120, 240, 400 W; 30 min) combined with low temperature pretreatment (4 °C/12 h) |
| [21] |
Merlot red grapes | Ultrasonic probe (diameter 13 mm; 20 kHz frequency; 50, 70, 90% amplitude; 3, 4, 5 min) |
| [18] |
Cabernet Sauvignon fortified sweet red wine | Ultrasonic bath (20 kHz; 200, 300, 400 W; 20, 40, 80 min) |
| [32] |
Sauvignon Blanc white grape must | Ultrasonic probe (diameter 13 mm; 20 kHz; 3 and 5 min; 153 µm amplitude; 200 W |
| [23] |
3.2. High Hydrostatic Pressure (HHP) Effects on Wine Phenolics, Color, and Aroma
Sample | Processing Conditions | Key Outcomes | References |
---|---|---|---|
Red wine | 500 MPa for 5 min at 20 °C |
| [36] |
Red wine | 350 MPa for 10 min at 8 °C |
| [39] |
Cabernet Sauvignon red wine and Graševina white wine | 200, 400 and 600 MPa for 5, 15 and 25 min at room temperature |
| [41] |
Cabernet Sauvignon red wine and Graševina sweet white wine | 100 and 200 MPa for 1, 3, 5, 15 and 25 min |
| [38] |
Red wine | 200, 400 and 600 MPa for 0, 5 and 15 min |
| [40] |
Tempranillo red wine and Cayetana white wine | 400 MPa for 5 and 30 min |
| [37] |
Sauvignon Blanc and Pinot Gris white wines Syrah and Pinot Noir red wines Rosé wine | 600 MPa for 5 min |
| [29] |
Red raspberry wine | 200, 300, 400, 500 and 600 MPa for 5 min at 20 °C |
| [35] |
3.3. Pulsed Electric Field (PEF) Effects on Microbial Populations, Phenolic Extraction, and Wine Quality
Sample | Processing Conditions | Key Outcomes | References |
---|---|---|---|
Tempranillo red wine | 23 kV/cm; 330 Hz; 95 kJ/kg; 8 µs pulse width; square bipolar pulses; continuous flow; T < 22 °C |
| [47] |
Tempranillo Rioja red wine | 33 kV/cm; 158 kJ/kg; 105 µs treatment time; 8 µs pulse width; continuous flow; T < 22 °C |
| [48] |
Cabernet Sauvignon red wine | 31, 40 and 50 kV/cm; frequencies of 100 Hz (up to 84 µs) and 250 Hz (up to 256 µs); 80–132 kJ/kg; continuous flow; T < 40 °C |
| [50] |
Caladoc and Grenache red grapes | 4 kV/cm; 3.7 pulses of 100 µs width; 2500 kg/h flow rate / 5 kV/cm; 8 and 46 pulses of 40 µs width; 140 kg/h flow rate; 320 and 1840 µs treatment time; 8.8 and 52.9 kJ/kg; T < 25–40 °C |
| [52] / [53] |
Red grape must | 20 kV/cm; 84 kJ/kg; 150 µs (50 pulses of 3 µs); square pulses; continuous flow; T < 30 °C |
| [49] |
Sangiovese red grapes | Pilot plant-scale PEF system; 0.9–3 kV/cm; 10.4–32.5 kJ/kg; continuous flow; T < 25° |
| [55] |
Sauvignon Blanc and Pinot Gris white wines Syrah and Pinot Noir red wines Rosé wine | 45 kV/cm; 800 Hz frequency; square bipolar pulses; 46 pulses of 70 µs; continuous flow |
| [29] |
Red grape must | 5 and 17.5 kV/cm; 63.4 kJ/kg; 45 pulses of 40 µs; monopolar rectangular pulses; T < 40 °C |
| [57] |
Red wine | 0, 17, 24 and 31 kV/cm; 500 pps of frequency; 0, 163, 325 and 488 µs treatment time; 40 mL/min; 20 µs pulse delay time; three µs pulse duration; square bipolar pulses; 0–13.2 kJ |
| [43] |
Graciano, Tempranillo and Grenache red grapes | 7.4 kV/cm; 300–400 Hz; 10–20 µs pulse width |
| [51] / [54] |
Chardonnay white wine | 15, 20 and 25 kV/cm; 10–117 Hz; 35–117 kJ/kg; 0–200 µs treatment time, pulses of 10 µs width; monopolar square pulses; continuous flow; T ≤ 50 °C |
| [44] |
Red wine | 10–25 kV/cm; frequency up to 200 Hz; square pulses of 5 µs width; 25–1000 µs treatment time; 40–170 kJ/kg; continuous flow; T ≤ 60 °C |
| [45] |
Red wine | 15, 20 and 25 kV/cm; 8–80 Hz frequencies; 20–175 µs treatment time; 35–120 kJ/kg; continuous flow; T < 50 °C |
| [46] |
Red wine | Pilot-scale PEF system; 15 kV/cm; 35 kJ/kg; 150 Hz; 10 µs; 1500 V; square bipolar pulses; continuous flow; T = 25.5 °C |
| [42] |
Arinto and Moscatel Graúdo white grapes and wines | Grapes: 1.2 and 1.6 kV/cm; 100 Hz frequency; monopolar pulses of 50 µs width Wines: 10 kV/cm; 150 Hz frequency; monopolar pulses of 25 µs width; 60–70 kJ/kg; continuous flow |
| [56] |
Xinomavro red wine | Stationary bench scale PEF system; 1.1 kV/cm; pulse width 10 µs; pulse period 1000 µs; rectangular monopole pulses; total treatment duration 20 min |
| [60] |
Merlot red grapes | Continuous PEF system; 25 and 33 kV; 2–25 Hz pulse frequency; 33.1 and 41.5 kV/cm, 4.7–49.4 kJ/L |
| [58]/[59] |
3.4. Other Non-Thermal Technologies in Winemaking Process
3.4.1. Ultra-High Pressure Homogenization (UHPH) Effects on Microbial Populations and Wine Quality
3.4.2. Cold Plasma (CP) Effects on Wine Phenolics and Color Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- OIV. World Wine Production Outlook. 2024. Available online: https://www.oiv.int/sites/default/files/documents/OIV_World_Wine_Production_Outlook_2023_2.pdf (accessed on 8 April 2024).
- Walker, G.M. Wines: Microbiology of Winemaking. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: London, UK, 2014; pp. 787–792. [Google Scholar]
- Kumar, Y.; Marangon, M.; Mayr Marangon, C. The Application of Non-Thermal Technologies for Wine Processing, Preservation, and Quality Enhancement. Beverages 2023, 9, 30. [Google Scholar] [CrossRef]
- Morata, A.; Loira, I.; Guamis, B.; Raso, J.; del Fresno, J.M.; Escott, C.; Bañuelos, M.A.; Álvarez, I.; Tesfaye, W.; González, C. Emerging Technologies to Increase Extraction, Control Microorganisms, and Reduce SO2. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; Cosme, F., Nunes, F.M., Filipe-Ribeiro, L., Eds.; InTechOpen: London, UK, 2020; pp. 1–20. [Google Scholar] [CrossRef]
- Silva, F.V.; Van Wyk, S. Emerging Non-Thermal Technologies as Alternative to SO2 for the Production of Wine. Foods 2021, 10, 2175. [Google Scholar] [CrossRef] [PubMed]
- Yap, A.; Logan, G. Winery Applications of High Power Ultrasonic Technology for Brettanomyces Control, Barrel Life Extension, Fermentation Management, Flavour Enhancement and Sustainability. In New Visions in Science and Technology; Bucci, G., Ed.; BP International: London, UK, 2021; Volume 10, pp. 119–156. [Google Scholar]
- Zhang, Q.-A.; Zheng, H.; Lin, J.; Nie, G.; Fan, X.; García-Martín, J.F. The State-of-the-Art Research of the Application of Ultrasound to Winemaking: A Critical Review. Ultrason. Sonochem. 2023, 95, 106384. [Google Scholar] [CrossRef] [PubMed]
- Gavahian, M.; Manyatsi, T.S.; Morata, A.; Tiwari, B.K. Ultrasound-assisted Production of Alcoholic Beverages: From Fermentation and Sterilization to Extraction and Aging. Compr. Rev. Food. Sci. Food Saf. 2022, 21, 5243–5271. [Google Scholar] [CrossRef] [PubMed]
- Maza, M.; Álvarez, I.; Raso, J. Thermal and Non-Thermal Physical Methods for Improving Polyphenol Extraction in Red Winemaking. Beverages 2019, 5, 47. [Google Scholar] [CrossRef]
- Nunes, C.; Santos, M.C.; Saraiva, J.A.; Rocha, S.M.; Coimbra, M.A. Influence of High Hydrostatic Pressure Technology on Wine Chemical and Sensorial Characteristics: Potentialities and Drawbacks. In Advances in Food and Nutrition Research, 1st ed.; Toldrá, F., Ed.; Academic Press: London, UK, 2017; Volume 82, pp. 205–235. [Google Scholar] [CrossRef]
- Chen, X.; Ma, Y.; Diao, T.; Leng, Y.; Lai, X.; Wei, X. Pulsed Electric Field Technology for the Manufacturing Processes of Wine: A Review. J. Food Process Preserv. 2022, 46, e16750. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, T.; Zhang, Y.; Zhang, A.; Gai, L.; Niu, D. Potential Applications of Pulsed Electric Field in the Fermented Wine Industry. Front. Nutr. 2022, 9, 1048632. [Google Scholar] [CrossRef] [PubMed]
- Comuzzo, P.; Calligaris, S. Potential Applications of High Pressure Homogenization in Winemaking: A Review. Beverages 2019, 5, 56. [Google Scholar] [CrossRef]
- Morata, A.; Guamis, B. Use of UHPH to Obtain Juices with Better Nutritional Quality and Healthier Wines with Low Levels of SO2. Front. Nutr. 2020, 7, 598286. [Google Scholar] [CrossRef] [PubMed]
- Morata, A.; Del Fresno, J.M.; Gavahian, M.; Guamis, B.; Palomero, F.; López, C. Effect of HHP and UHPH High-Pressure Techniques on the Extraction and Stability of Grape and Other Fruit Anthocyanins. Antioxidants 2023, 12, 1746. [Google Scholar] [CrossRef] [PubMed]
- Waghmare, R. Cold Plasma Technology for Fruit Based Beverages: A Review. Trends Food Sci. Technol. 2021, 114, 60–69. [Google Scholar] [CrossRef]
- Labrador Fernández, L.; Pérez-Porras, P.; Díaz-Maroto, M.C.; Gómez-Plaza, E.; Pérez-Coello, M.S.; Bautista-Ortín, A.B. The Technology of High-power Ultrasound and Its Effect on the Color and Aroma of Rosé Wines. J. Sci. Food Agric. 2023, 103, 6616–6624. [Google Scholar] [CrossRef] [PubMed]
- Maier, A.; Padureanu, V.; Lupu, M.I.; Canja, C.M.; Badarau, C.; Padureanu, C.; Alexa, E.; Poiana, M.-A. Optimization of A Procedure to Improve the Extraction Rate of Biologically Active Compounds in Red Grape Must Using High-Power Ultrasound. Sustainability 2023, 15, 6697. [Google Scholar] [CrossRef]
- Martínez-Pérez, M.P.; Bautista-Ortín, A.B.; Pérez-Porras, P.; Jurado, R.; Gómez-Plaza, E. A New Approach to the Reduction of Alcohol Content in Red Wines: The Use of High-Power Ultrasounds. Foods 2020, 9, 726. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Porras, P.; Bautista-Ortín, A.B.; Jurado, R.; Gómez-Plaza, E. Using High-Power Ultrasounds in Red Winemaking: Effect of Operating Conditions on Wine Physico-Chemical and Chromatic Characteristics. LWT-Food Sci. Technol. 2021, 138, 110645. [Google Scholar] [CrossRef]
- Xie, Q.; Tang, Y.; Wu, X.; Luo, Q.; Zhang, W.; Liu, H.; Fang, Y.; Yue, X.; Ju, Y. Combined Ultrasound and Low Temperature Pretreatment Improve the Content of Anthocyanins, Phenols and Volatile Substance of Merlot Red Wine. Ultrason. Sonochem. 2023, 100, 106636. [Google Scholar] [CrossRef] [PubMed]
- Oliver Simancas, R.; Díaz-Maroto, M.C.; Alañón Pardo, M.E.; Pérez Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E.; Pérez-Coello, M.S. Effect of Power Ultrasound Treatment on Free and Glycosidically-Bound Volatile Compounds and the Sensorial Profile of Red Wines. Molecules 2021, 26, 1193. [Google Scholar] [CrossRef]
- Roman, T.; Tonidandel, L.; Nicolini, G.; Bellantuono, E.; Barp, L.; Larcher, R.; Celotti, E. Evidence of the Possible Interaction between Ultrasound and Thiol Precursors. Foods 2020, 9, 104. [Google Scholar] [CrossRef] [PubMed]
- Lukić, K.; Brnčić, M.; Ćurko, N.; Tomašević, M.; Valinger, D.; Denoya, G.I.; Barba, F.J.; Kovačević Ganić, K. Effects of High Power Ultrasound Treatments on the Phenolic, Chromatic and Aroma Composition of Young and Aged Red Wine. Ultrason. Sonochem. 2019, 59, 104725. [Google Scholar] [CrossRef] [PubMed]
- Lukić, K.; Brnčić, M.; Ćurko, N.; Tomašević, M.; Tušek, A.J.; Kovačević Ganić, K. Quality Characteristics of White Wine: The Short-and Long-Term Impact of High Power Ultrasound Processing. Ultrason. Sonochem. 2020, 68, 105194. [Google Scholar] [CrossRef] [PubMed]
- Celotti, E.; Barahona, M.S.O.; Bellantuono, E.; Cardona, J.; Roman, T.; Nicolini, G.; Natolino, A. High-Power Ultrasound on the Protein Stability of White Wines: Preliminary Study of Amplitude and Sonication Time. LWT-Food Sci. Technol. 2021, 147, 111602. [Google Scholar] [CrossRef]
- Celotti, E.; Stante, S.; Ferraretto, P.; Román, T.; Nicolini, G.; Natolino, A. High Power Ultrasound Treatments of Red Young Wines: Effect on Anthocyanins and Phenolic Stability Indices. Foods 2020, 9, 1344. [Google Scholar] [CrossRef] [PubMed]
- Natolino, A.; Celotti, E. Ultrasound Treatment of Red Wine: Effect on Polyphenols, Mathematical Modeling, and Scale-up Considerations. LWT-Food Sci. Technol. 2022, 154, 112843. [Google Scholar] [CrossRef]
- van Wyk, S.; Hong, L.; Silva, F.V. Non-Thermal High Pressure Processing, Pulsed Electric Fields and Ultrasound Preservation of Five Different Table Wines. Beverages 2021, 7, 69. [Google Scholar] [CrossRef]
- Zhang, Q.-A.; Xu, B.-W.; Chen, B.-Y.; Zhao, W.-Q.; Xue, C.-H. Ultrasound as an Effective Technique to Reduce Higher Alcohols of Wines and Its Influencing Mechanism Investigation by Employing a Model Wine. Ultrason. Sonochem. 2020, 61, 104813. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Sadiq, M.B.; Liu, A.; Benjamin, T.; Gump, B.H. Effect of Low-Frequency Ultrasonication on Red Wine Astringency. J. Culin. Sci. Technol. 2021, 21, 679–701. [Google Scholar] [CrossRef]
- Liu, X.; Bai, Y.; Chen, Q.; Wang, X.; Duan, C.; Hu, G.; Wang, J.; Bai, L.; Du, J.; Han, F. Effect of Ultrasonic Treatment during Fermentation on the Quality of Fortified Sweet Wine. Ultrason. Sonochem. 2024, 105, 106872. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.-W.; Shen, Y.; Zhang, Q.-A.; Zhao, W.-Q.; Yi, X. Effect of Ultrasound Irradiation on the Particle Size Distribution and Rheological Properties of Red Wine. CyTA-J. Food 2019, 17, 180–188. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, H.; Cheng, S.; Xu, B.; Guo, P. Comparison of Ultrasound Type and Working Parameters on the Reduction of Four Higher Alcohols and the Main Phenolic Compounds. Sustainability 2021, 14, 417. [Google Scholar] [CrossRef]
- Cao, Z.; Li, Y.; Yu, C.; Li, S.; Zhang, X.; Tian, Y. Effect of High Hydrostatic Pressure on the Quality of Red Raspberry Wine. J. Food Process Preserv. 2022, 46, e16030. [Google Scholar] [CrossRef]
- Santos, M.C.; Nunes, C.; Ferreira, A.S.; Jourdes, M.; Teissedre, P.-L.; Rodrigues, A.; Amado, O.; Saraiva, J.A.; Coimbra, M.A. Comparison of High Pressure Treatment with Conventional Red Wine Aging Processes: Impact on Phenolic Composition. Food Res. Int. 2019, 116, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Valdés, M.E.; Ramírez, R.; Martínez-Cañas, M.A.; Frutos-Puerto, S.; Moreno, D. Accelerating Aging of White and Red Wines by the Application of Hydrostatic High Pressure and Maceration with Holm Oak (Quercus ilex) Chips. Influence on Physicochemical and Sensory Characteristics. Foods 2021, 10, 899. [Google Scholar] [CrossRef] [PubMed]
- Tomašević, M.; Križanović, S.; Ježek, D.; Ćurko, N.; Lukić, K.; Kovačević Ganić, K. Inactivation of Brettanomyces bruxellensis and Saccharomyces cerevisiae in Dry and Sweet Wines by High Hydrostatic Pressure. OENO One 2020, 54, 657–670. [Google Scholar] [CrossRef]
- Christofi, S.; Malliaris, D.; Katsaros, G.; Panagou, E.; Kallithraka, S. Limit SO2 Content of Wines by Applying High Hydrostatic Pressure. Innov. Food Sci. Emerg. Technol. 2020, 62, 102342. [Google Scholar] [CrossRef]
- Christofi, S.; Katsaros, G.; Mallouchos, A.; Cotea, V.; Kallithraka, S. Reducing SO2 Content in Wine by Combining High Pressure and Glutathione Addition. OENO One 2021, 55, 235–252. [Google Scholar] [CrossRef]
- Lukić, K.; Ćurko, N.; Tomašević, M.; Kovačević Ganić, K. Phenolic and Aroma Changes of Red and White Wines during Aging Induced by High Hydrostatic Pressure. Foods 2020, 9, 1034. [Google Scholar] [CrossRef] [PubMed]
- Aguiar-Macedo, M.; Pereira, M.T.; Redondo, L.M.; Silva, C. Controlling B. Bruxellensis with Pulsed Electric Fields: Optimization of Industrial Protocols and Impact on the Wine Profile. BIO Web Conf. 2023, 68, 02041. [Google Scholar] [CrossRef]
- Akdemir Evrendilek, G. Pulsed Electric Field Processing of Red Wine: Effect on Wine Quality and Microbial Inactivation. Beverages 2022, 8, 78. [Google Scholar] [CrossRef]
- Delso, C.; Berzosa, A.; Sanz, J.; Álvarez, I.; Raso, J. Pulsed Electric Field Processing as an Alternative to Sulfites (SO2) for Controlling Saccharomyces cerevisiae Involved in the Fermentation of Chardonnay White Wine. Food Res. Int. 2023, 165, 112525. [Google Scholar] [CrossRef] [PubMed]
- Delso, C.; Berzosa, A.; Sanz, J.; Álvarez, I.; Raso, J. Synergetic Effect of Combining PEF Treatments with Sublethal Doses of SO2 on the Inactivation of Saccharomyces bayanus and Brettanomyces bruxellensis in Red Wine. Front. Food Sci. Technol. 2023, 3, 1209452. [Google Scholar] [CrossRef]
- Delso, C.; Berzosa, A.; Sanz, J.; Álvarez, I.; Raso, J. Microbial Decontamination of Red Wine by Pulsed Electric Fields (PEF) after Alcoholic and Malolactic Fermentation: Effect on Saccharomyces cerevisiae, Oenococcus oeni, and Oenological Parameters during Storage. Foods 2023, 12, 278. [Google Scholar] [CrossRef] [PubMed]
- González-Arenzana, L.; López-Alfaro, I.; Gutiérrez, A.R.; López, N.; Santamaría, P.; López, R. Continuous Pulsed Electric Field Treatments’ Impact on the Microbiota of Red Tempranillo Wines Aged in Oak Barrels. Food Biosci. 2019, 27, 54–59. [Google Scholar] [CrossRef]
- González-Arenzana, L.; Portu, J.; López, N.; Santamaría, P.; Gutiérrez, A.R.; López, R.; López-Alfaro, I. Pulsed Electric Field Treatment after Malolactic Fermentation of Tempranillo Rioja Wines: Influence on Microbial, Physicochemical and Sensorial Quality. Innov. Food Sci. Emerg. Technol. 2019, 51, 57–63. [Google Scholar] [CrossRef]
- Morata, A.; Bañuelos, M.A.; Loira, I.; Raso, J.; Álvarez, I.; Garcíadeblas, B.; González, C.; Suárez Lepe, J.A. Grape Must Processed by Pulsed Electric Fields: Effect on the Inoculation and Development of Non-Saccharomyces Yeasts. Food Bioprocess Technol. 2020, 13, 1087–1094. [Google Scholar] [CrossRef]
- van Wyk, S.; Silva, F.V.; Farid, M.M. Pulsed Electric Field Treatment of Red Wine: Inactivation of Brettanomyces and Potential Hazard Caused by Metal Ion Dissolution. Innov. Food Sci. Emerg. Technol. 2019, 52, 57–65. [Google Scholar] [CrossRef]
- López-Giral, N.; López, R.; Santamaría, P.; González-Arenzana, L.; Garde-Cerdán, T. Phenolic and Colour Characteristics of Must and Wine Obtained from Red Grapes Treated by Pulsed Electric Fields. Efficacy of PEF to Reduce Maceration Time in Elaboration of Red Wines. Eur. Food Res. Technol. 2023, 249, 273–282. [Google Scholar] [CrossRef]
- Maza, M.A.; Martínez, J.M.; Hernández-Orte, P.; Cebrián, G.; Sánchez-Gimeno, A.C.; Álvarez, I.; Raso, J. Influence of Pulsed Electric Fields on Aroma and Polyphenolic Compounds of Garnacha Wine. Food Bioprod. Process. 2019, 116, 249–257. [Google Scholar] [CrossRef]
- Maza, M.A.; Pereira, C.; Martínez, J.M.; Camargo, A.; Álvarez, I.; Raso, J. PEF Treatments of High Specific Energy Permit the Reduction of Maceration Time during Vinification of Caladoc and Grenache Grapes. Innov. Food Sci. Emerg. Technol. 2020, 63, 102375. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Pérez-Álvarez, E.P.; Rubio Bretón, M.P.; López-Giral, N. Pulsed Electric Fields as a Green Pretreatment to Enhance Mass Transfer from Grapes of Bioactive Molecules: Aromatic, Phenolic, and Nitrogen Compounds. In Trends and Innovations in Food Science; El-Samragy, Y., Ed.; InTechOpen: London, UK, 2022; pp. 1–22. [Google Scholar] [CrossRef]
- Ricci, A.; Parpinello, G.P.; Banfi, B.A.; Olivi, F.; Versari, A. Preliminary Study of the Effects of Pulsed Electric Field (PEF) Treatments in Wines Obtained from Early-Harvested Sangiovese Grapes. Beverages 2020, 6, 34. [Google Scholar] [CrossRef]
- Silva, F.V.M.; Borgo, R.; Guanziroli, A.; Ricardo-da-Silva, J.M.; Aguiar-Macedo, M.; Redondo, L.M. Pilot Scale Continuous Pulsed Electric Fields Treatments for Vinification and Stabilization of Arinto and Moscatel Graúdo (Vitis vinifera L.) White Grape Varieties: Effects on Sensory and Physico-Chemical Quality of Wines. Beverages 2024, 10, 6. [Google Scholar] [CrossRef]
- Vaquero, C.; Loira, I.; Raso, J.; Álvarez, I.; Delso, C.; Morata, A. Pulsed Electric Fields to Improve the Use of Non-Saccharomyces Starters in Red Wines. Foods 2021, 10, 1472. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.Y.; Treadwell, M.; Liu, T.; Hochberg, M.; Sack, M.; Mueller, G.; Sigler, J.; Silcock, P.; Oey, I. Influence of Pulsed Electric Fields Processing at High-Intensity Electric Field Strength on the Relationship between Anthocyanins Composition and Colour Intensity of Merlot (Vitis vinifera L.) Musts during Cold Maceration. Innov. Food Sci. Emerg. Technol. 2020, 59, 102243. [Google Scholar] [CrossRef]
- Arcena, M.R.; Leong, S.Y.; Then, S.; Hochberg, M.; Sack, M.; Mueller, G.; Sigler, J.; Kebede, B.; Silcock, P.; Oey, I. The Effect of Pulsed Electric Fields Pre-Treatment on the Volatile and Phenolic Profiles of Merlot Grape Musts at Different Winemaking Stages and the Sensory Characteristics of the Finished Wines. Innov. Food Sci. Emerg. Technol. 2021, 70, 102698. [Google Scholar] [CrossRef]
- Toulaki, A.K.; Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Bozinou, E.; Roufas, K.; Mantanis, G.I.; Dourtoglou, V.G.; Lalas, S.I. Investigation of Xinomavro Red Wine Aging with Various Wood Chips Using Pulsed Electric Field. Beverages 2024, 10, 13. [Google Scholar] [CrossRef]
- Bañuelos, M.A.; Loira, I.; Guamis, B.; Escott, C.; Del Fresno, J.M.; Codina-Torrella, I.; Quevedo, J.M.; Gervilla, R.; Chavarría, J.M.R.; de Lamo, S.; et al. White Wine Processing by UHPH without SO2. Elimination of Microbial Populations and Effect in Oxidative Enzymes, Colloidal Stability and Sensory Quality. Food Chem. 2020, 332, 127417. [Google Scholar] [CrossRef] [PubMed]
- Loira, I.; Morata, A.; Bañuelos, M.A.; Puig-Pujol, A.; Guamis, B.; González, C.; Suárez-Lepe, J.A. Use of Ultra-High Pressure Homogenization Processing in Winemaking: Control of Microbial Populations in Grape Musts and Effects in Sensory Quality. Innov. Food Sci. Emerg. Technol. 2018, 50, 50–56. [Google Scholar] [CrossRef]
- Puig-Pujol, A.; Roca-Domènech, G.; Quevedo, J.-M.; Trujillo, A.-J. Application of Ultra-High Pressure Homogenization (UHPH) at Different Stages of Wine Production. BIO Web Conf. 2023, 68, 02025. [Google Scholar] [CrossRef]
- Vaquero, C.; Escott, C.; Loira, I.; Guamis, B.; del Fresno, J.M.; Quevedo, J.M.; Gervilla, R.; de Lamo, S.; Ferrer-Gallego, R.; González, C.; et al. Cabernet Sauvignon Red Must Processing by UHPH to Produce Wine without SO2: The Colloidal Structure, Microbial and Oxidation Control, Colour Protection and Sensory Quality of the Wine. Food Bioprocess Technol. 2022, 15, 620–634. [Google Scholar] [CrossRef]
- Escott, C.; Vaquero, C.; del Fresno, J.M.; Topo, A.; Comuzzo, P.; Gonzalez, C.; Morata, A. Effect of Processing Verdejo Grape Must by UHPH Using Non-Saccharomyces Yeasts in the Absence of SO2. Sustain. Food Technol. 2024, 2, 437–446. [Google Scholar] [CrossRef]
- Huzum, R.; Nastuta, A.V. Helium Atmospheric Pressure Plasma Jet Source Treatment of White Grapes Juice for Winemaking. Appl. Sci. 2021, 11, 8498. [Google Scholar] [CrossRef]
- Lukić, K.; Vukušić, T.; Tomašević, M.; Ćurko, N.; Gracin, L.; Kovačević Ganić, K. The Impact of High Voltage Electrical Discharge Plasma on the Chromatic Characteristics and Phenolic Composition of Red and White Wines. Innov. Food Sci. Emerg. Technol. 2019, 53, 70–77. [Google Scholar] [CrossRef]
- Sainz-García, E.; López-Alfaro, I.; Múgica-Vidal, R.; López, R.; Escribano-Viana, R.; Portu, J.; Alba-Elías, F.; González-Arenzana, L. Effect of the Atmospheric Pressure Cold Plasma Treatment on Tempranillo Red Wine Quality in Batch and Flow Systems. Beverages 2019, 5, 50. [Google Scholar] [CrossRef]
- Niedźwiedź, I.; Płotka-Wasylka, J.; Kapusta, I.; Simeonov, V.; Stój, A.; Waśko, A.; Pawłat, J.; Polak-Berecka, M. The Impact of Cold Plasma on the Phenolic Composition and Biogenic Amine Content of Red Wine. Food Chem. 2022, 381, 132257. [Google Scholar] [CrossRef] [PubMed]
- Niedźwiedź, I.; Simeonov, V.; Waśko, A.; Polak-Berecka, M. Comparison of the Effect of Cold Plasma with Conventional Preservation Methods on Red Wine Quality Using Chemometrics Analysis. Molecules 2022, 27, 7048. [Google Scholar] [CrossRef] [PubMed]
- Sainz-García, A.; González-Marcos, A.; Múgica-Vidal, R.; Muro-Fraguas, I.; Escribano-Viana, R.; González-Arenzana, L.; López-Alfaro, I.; Alba-Elías, F.; Sainz-García, E. Application of Atmospheric Pressure Cold Plasma to Sanitize Oak Wine Barrels. LWT-Food Sci. Technol. 2021, 139, 110509. [Google Scholar] [CrossRef]
- Herceg, Z.; Brnčić, M.; Režek Jambrak, A.; Rimac Brnčić, S.; Badanjak, M.; Sokolić, I. Possibility of Application High Intensity Ultrasound in Milk Industry. Mljekarstvo J. Dairy Prod. Process. Improv. 2009, 59, 65–69. [Google Scholar]
- Astráin-Redín, L.; Raso, J.; Condón, S.; Cebrián, G.; Álvarez, I. Application of High-Power Ultrasound in the Food Industry. In Sonochemical Reactions; Karakuş, S., Ed.; InTechOpen: London, UK, 2020; pp. 1–24. [Google Scholar] [CrossRef]
- Jeličić, I.; Božanić, R.; Brnčić, M.; Tripalo, B. Influence and Comparison of Thermal, Ultrasonic and Thermo-Sonic Treatments on Microbiological Quality and Sensory Properties of Rennet Cheese Whey. Mljekarstvo J. Dairy Prod. Process. Improv. 2012, 62, 165–178. [Google Scholar]
- van Wyk, S.; Silva, F.V. Nonthermal Preservation of Wine. In Preservatives and Preservation Approaches in Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Elsevier Inc.: Cambridge, MA, USA, 2019; Volume 15, pp. 203–235. [Google Scholar] [CrossRef]
- Carpentieri, S.; Soltanipour, F.; Ferrari, G.; Pataro, G.; Donsì, F. Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food by-Products as Promising Ingredients for the Food Industry. Antioxidants 2021, 10, 1417. [Google Scholar] [CrossRef] [PubMed]
- OIV. International Code of Oenological Practices; OIV: Dijon, France, 2024. [Google Scholar]
- Chakka, A.K.; Sriraksha, M.; Ravishankar, C. Sustainability of Emerging Green Non-Thermal Technologies in the Food Industry with Food Safety Perspective: A Review. LWT-Food Sci. Technol. 2021, 151, 112140. [Google Scholar] [CrossRef]
- Morata, A.; Loira, I.; Vejarano, R.; González, C.; Callejo, M.J.; Suárez-Lepe, J.A. Emerging Preservation Technologies in Grapes for Winemaking. Trends Food Sci. Technol. 2017, 67, 36–43. [Google Scholar] [CrossRef]
- Morata, A.; Escott, C.; Loira, I.; López, C.; Palomero, F.; González, C. Emerging Non-Thermal Technologies for the Extraction of Grape Anthocyanins. Antioxidants 2021, 10, 1863. [Google Scholar] [CrossRef] [PubMed]
- Cejudo, C.; Díaz, A.B.; Casas, L.; Martínez de la Ossa, E.; Mantell, C. Supercritical CO2 Processing of White Grape Must as a Strategy to Reduce the Addition of SO2. Foods 2023, 12, 3085. [Google Scholar] [CrossRef]
- Mohamed, M.E.; Eissa, A.H.A. Pulsed Electric Fields for Food Processing Technology. In Structure and Function of Food Engineering; InTechOpen: London, UK, 2012; Volume 11, pp. 275–306. ISBN 953-51-0695-1. [Google Scholar]
- Niu, D.; Zeng, X.-A.; Ren, E.-F.; Xu, F.-Y.; Li, J.; Wang, M.-S.; Wang, R. Review of the Application of Pulsed Electric Fields (PEF) Technology for Food Processing in China. Food Res. Int. 2020, 137, 109715. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Parpinello, G.P.; Versari, A. Recent Advances and Applications of Pulsed Electric Fields (PEF) to Improve Polyphenol Extraction and Color Release during Red Winemaking. Beverages 2018, 4, 18. [Google Scholar] [CrossRef]
- Vejarano, R.; Luján-Corro, M. Red Wine and Health: Approaches to Improve the Phenolic Content during Winemaking. Front. Nutr. 2022, 9, 890066. [Google Scholar] [CrossRef] [PubMed]
- Morata, A.; Escott, C.; del Fresno, J.M.; Guamis, B.; Loira, I.; Bañuelos, M.A.; López, C.; Palomero, F.; González, C. Use of UHPH to Sterilize Grape Juices and to Facilitate the Implantation of Saccharomyces and Other Emerging Fermentation Biotechnologies in Wines. In New Advances in Saccharomyces; Morata, A., Loira, I., González, C., Escott, C., Eds.; IntechOpen: London, UK, 2024; pp. 1–13. [Google Scholar] [CrossRef]
- Morata, A.; Loira, I.; Escott, C.; Vaquero, C.; Bañuelos, M.A.; del Fresno, J.M.; González, C.; Guamis, B. UHPH Processing of Grape Must to Improve Wine Quality. BIO Web Conf. 2023, 56, 02006. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Suri, S.; Nayi, P.; Phimolsiripol, Y. Cold Plasma for Microbial Safety: Principle, Mechanism, and Factors Responsible. J. Food Process Preserv. 2022, 46, e16850. [Google Scholar] [CrossRef]
- Sakudo, A.; Misawa, T.; Yagyu, Y. Equipment Design for Cold Plasma Disinfection of Food Products. In Advances in Cold Plasma Applications for Food Safety and Preservation, 1st ed.; Bermudez-Aguirre, D., Ed.; Academic Press: London, UK, 2020; pp. 289–307. [Google Scholar] [CrossRef]
- Varilla, C.; Marcone, M.; Annor, G.A. Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review. Foods 2020, 9, 1435. [Google Scholar] [CrossRef] [PubMed]
Non-Thermal Technologies | Applications | Benefits | Challenges | References |
---|---|---|---|---|
High-power ultrasound (HPU) |
|
|
| [7] |
High hydrostatic pressure (HHP) |
|
|
| [10] |
Pulsed electric field (PEF) |
|
|
| [11] |
Ultra-high pressure homogenization (UHPH) |
|
|
| [14] |
Cold plasma (CP) |
|
|
| [16,70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perić, K.; Tomašević, M.; Ćurko, N.; Brnčić, M.; Kovačević Ganić, K. Non-Thermal Technology Approaches to Improve Extraction, Fermentation, Microbial Stability, and Aging in the Winemaking Process. Appl. Sci. 2024, 14, 6612. https://doi.org/10.3390/app14156612
Perić K, Tomašević M, Ćurko N, Brnčić M, Kovačević Ganić K. Non-Thermal Technology Approaches to Improve Extraction, Fermentation, Microbial Stability, and Aging in the Winemaking Process. Applied Sciences. 2024; 14(15):6612. https://doi.org/10.3390/app14156612
Chicago/Turabian StylePerić, Katarina, Marina Tomašević, Natka Ćurko, Mladen Brnčić, and Karin Kovačević Ganić. 2024. "Non-Thermal Technology Approaches to Improve Extraction, Fermentation, Microbial Stability, and Aging in the Winemaking Process" Applied Sciences 14, no. 15: 6612. https://doi.org/10.3390/app14156612
APA StylePerić, K., Tomašević, M., Ćurko, N., Brnčić, M., & Kovačević Ganić, K. (2024). Non-Thermal Technology Approaches to Improve Extraction, Fermentation, Microbial Stability, and Aging in the Winemaking Process. Applied Sciences, 14(15), 6612. https://doi.org/10.3390/app14156612