Black Carbon in the Air of the Baikal Region, (Russia): Sources and Spatiotemporal Variations
Abstract
:1. Introduction
2. Methods
2.1. Equipment and Expedition Route for Analyzing Black Carbon in the Air above Lake Baikal
2.2. Listvyanka Monitoring Station
3. Results and Discussion
3.1. Black Carbon in the Air Basin of Lake Baikal
3.2. Black Carbon in the Air near the Listvyanka Station: Seasonal Variability and Main Air Pollution Sources
3.3. Relative Black Carbon Concentration in Submicron Aerosol Based on the Results of the Shipborne and Listvyanka Station Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maysyuk, E.P. The role of energy in the ecological state of the Baikal natural territory. Geogr. Nat. Resour. 2017, 1, 100–107. [Google Scholar] [CrossRef]
- On the State and Protection of the Environment of the Irkutsk Region Region in 2022; State Report; Maxima LLC: Irkutsk, Russia, 2023. (In Russian)
- Van Malderen, H.; Van Grieken, R.; Khodzher, T.; Obolkin, V.; Potemkin, V. Composition of individual aerosol particles above Lake Baikal, Siberia. Atmos. Environ. 1996, 30, 1453–1465. [Google Scholar] [CrossRef]
- Shimaraev, M.; Starygina, L. Zonal circulation of the atmosphere, climate and hydrological processes at lake Baikal (1968–2007). Geogr. Nat. Resour. 2010, 31, 245–250. [Google Scholar] [CrossRef]
- Shimaraev, M.N.; Troitskaya, E.S. Current Trends in Upper Water Layer Temperature in Coastal Zones of Baikal. Geogr. Nat. Resour. 2018, 39, 349–357. [Google Scholar] [CrossRef]
- Izmest’eva, L.R.; Moore, M.V.; Hampton, S.E.; Ferwerda, C.J.; Gray, D.K.; Woo, K.H.; Pislegina, H.V.; Krashchuk, L.S.; Shimaraeva, S.V.; Silow, E.A. Lake-wide physical and biological trends associated with warming in Lake Baikal. J. Great Lakes Res. 2016, 42, 17. [Google Scholar] [CrossRef]
- Kravtsova, L.S.; Izhboldina, L.A.; Khanaev, I.V.; Pomazkina, G.V.; Rodionova, E.V.; Domysheva, V.M.; Sakirko, M.V.; Tomberg, I.V.; Kostornova, T.Y.; Kravchenko, O.S.; et al. Nearshore benthic blooms of filamentous green algae in Lake Baikal. J. Great Lakes Res. 2014, 40, 441–448. [Google Scholar] [CrossRef]
- Timoshkin, O.A.; Samsonov, D.P.; Yamamuro, M.; Moore, M.V.; Belykh, O.I.; Malnik, V.V.; Sakirko, M.V.; Shirokaya, A.A.; Bondarenko, N.A.; Domysheva, V.M.; et al. Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): Is the site of the world’s greatest freshwater biodiversity in danger? J. Great Lakes Res. 2016, 42, 487–497. [Google Scholar] [CrossRef]
- Malnik, V.; Masumi, Y.; Tomberg, I.; Molozhnikova, E.; Bukin, Y.; Timoshkin, O. Lacustrine, wastewater, interstitial and fluvial water quality in the Southern Lake Baikal region. J. Water Health 2022, 20, 23–40. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Amiro, B.D.; Logan, K.A.; Stocks, B.J.; Wotton, B.M. Forest fires and climate change in the 21st century. Mitig. Adapt. Strateg. Glob. Chang. 2005, 11, 847–859. [Google Scholar] [CrossRef]
- Zong, X.Z.; Tian, X.R.; Yin, Y.H. Impacts of Climate Change on Wildfires in Central Asia. Forests 2020, 11, 802. [Google Scholar] [CrossRef]
- Lee, J.E.; Gorkowski, K.; Meyer, A.G.; Benedict, K.B.; Aiken, A.C.; Dubey, M.K. Wildfire smoke demonstrates significant and predictable black carbon light absorption enhancements. Geophys. Res. Lett. 2022, 49, e2022GL099334. [Google Scholar] [CrossRef]
- RIA Novosti “Large Wildfires in Russia in 2017–2022”. Available online: https://ria.ru/20220823/pozhary-1811555622.html (accessed on 10 May 2024).
- Kharuk, V.I.; Ponomarev, E.I.; Ivanova, G.A.; Dvinskaya, M.L.; Coogan, S.C.; Flannigan, M.D. Wildfires in the Siberian taiga. Ambio 2021, 50, 1953–1974. [Google Scholar] [CrossRef] [PubMed]
- Ponomarev, E.; Yakimov, N.; Ponomareva, T.; Yakubailik, O.; Conard, S.G. Current Trend of Carbon Emissions from Wildfires in Siberia. Atmosphere 2021, 12, 559. [Google Scholar] [CrossRef]
- Khodzher, T.V.; Zagaynov, V.A.; Lushnikov, A.A.; Chausov, V.D.; Zhamsueva, G.S.; Zayakhanov, A.S.; Tsydypov, V.V.; Potemkin, V.L.; Marinaite, I.I.; Maksimenko, V.V.; et al. Study of Aerosol Nano and Submicron Particle Compositions in the Atmosphere of Lake Baikal during Natural Fire Events and Their Interaction with Water Surface. Water Air Soil Pollut. 2021, 232, 266. [Google Scholar] [CrossRef]
- Vashukevich, N.V.; Timoshkin, O.A.; Samsonov, D.P.; Kulikova, N.N.; Levasheva, M.V.; Lukhnev, A.G. Taiga fire on Bolshoy Ushkany Island as a model case of forest soil transformation and potential source of eutrophication in Lake Baikal coastal zone. Limnol. Freshw. Biol. 2023, 6, 48–54. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; De Angelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Wang, R.; Tao, S.; Shen, H.; Huang, Y.; Chen, H.; Balkanski, Y.; Boucher, O.; Ciais, P.; Shen, G.; Li, W.; et al. Trend in global black carbon emissions from 1960 to 2007. Environ. Sci. Technol. 2014, 48, 6780–6787. [Google Scholar] [CrossRef]
- Waggoner, D.C.; Chen, H.; Willoughby, A.S.; Hatcher, P.G. Formation of black carbonlike and alicyclic aliphatic compounds by hydroxyl radical initiated degradation of lignin. Org. Geochem. 2015, 82, 69–76. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Belova, A.; Brandt, J.; Fann, N.; Greco, S.; Guttikunda, S.; Heroux, M.-E.; Hurley, F.; Krzyzanowski, M.; Medina, S.; et al. Survey of Ambient Air Pollution Health Risk Assessment Tools. Risk Anal. 2016, 36, 1718–1736. [Google Scholar] [CrossRef]
- Menon, S.; Hansen, J.; Nazarenko, L.; Luo, Y. Climate Effects of Black Carbon Aerosols in China and India. Science 2002, 297, 2250–22539. [Google Scholar] [CrossRef]
- Popovicheva, O.B.; Evangeliou, N.; Eleftheriadis, K.; Kalogridis, A.C.; Sitnikov, N.; Eckhardt, S.; Stohl, A. Black carbon sources constrained by observations in the Russian high arctic. Environ. Sci. Tech. 2017, 51, 3871–3879. [Google Scholar] [CrossRef] [PubMed]
- Vinogradova, A.A.; Ivanova, Y.A. Atmospheric Transport of Black Carbon to the Russian Arctic from Different Sources: Winter and Summer 2000–2016. Atmos. Ocean. Opt. 2023, 3, 758–766. (In Russian) [Google Scholar] [CrossRef]
- Zenkova, P.N.; Chernov, D.G.; Shmargunov, V.P.; Panchenko, M.V.; Belan, B.D. Submicron Aerosol and Absorbing Substance in the Troposphere of the Russian Sector of the Arctic According to Measurements Onboard the Tu-134 Optik Aircraft Laboratory in 2020. Atmos. Ocean. Opt. 2022, 35, 43–51. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, C.; Zheng, M. Source apportionment of black carbon during winter in Beijing. Sci. Total Environ. 2018, 618, 531–541. [Google Scholar] [CrossRef]
- Jaffe, D.A.; O’Neill, S.M.; Larkin, N.K.; Holder, A.L.; Peterson, D.L.; Halofsky, J.E.; Rappold, A.G. Wildfire and prescribed burning impacts on air quality in the United States. J. Air Waste Manag. Assoc. Critical Rev. 2020, 70, 583–615. [Google Scholar] [CrossRef]
- Mousavi, A.; Sowlat, M.H.; Hasheminassab, S.; Polidori, A.; Sioutas, C. Spatio-Temporal Trends and Source Apportionment of Fossil Fuel and Biomass Burning Black Carbon (BC) in the Los Angeles Basin. Sci. Total Environ. 2018, 640, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Popovicheva, O.; Chichaeva, M.; Kovach, R.; Zhdanova, E.; Kasimov, N. Seasonal, weekly, and diurnal black carbon in Moscow megacity background under impact of urban and regional sources. Atmosphere 2022, 13, 563. [Google Scholar] [CrossRef]
- Popovicheva, O.; Molozhnikova, E.; Nasonov, S.; Potemkin, V.; Penner, I.; Klemasheva, M.; Marinaite, I.; Golobokova, L.; Vratolis, S.; Eleftheriadis, K.; et al. Industrial and wildfire aerosol pollution over world heritage Lake Baikal. J. Environ. Sci. 2021, 107, 49–64. [Google Scholar] [CrossRef]
- Sandradewi, J.; Prev’ot, A.S.H.; Alfarra, M.R.; Szidat, S.; Wehrli, M.N.; Ruff, M.; Weimer, S.; Lanz, V.A.; Weingartner, E.; Perron, N.; et al. Comparison of several wood smoke markers and source apportionment methods for wood burning particulate mass. Atmos. Chem. Phys. 2008, 8, 8091–8118. [Google Scholar]
- Kozlov, V.S.; Shmargunov, V.P.; Panchenko, M.V. Modified aethalometer for monitoring of black carbon concentration in atmospheric aerosol and technique for correction of the spot loading effect. Proc. SPIE 2016, 10035, 1003530. [Google Scholar] [CrossRef]
- Hansen, A.D.A.; Rosen, H.; Novakov, T. The aethalometer-an instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ. 1984, 36, 191–196. [Google Scholar] [CrossRef]
- Kabanov, D.M.; Maslovsky, A.S.; Radionov, V.F.; Sakerin, S.M.; Chernov, D.G.; Sidorova, O.R. Seasonal and Interannual Variability of Aerosol Characteristics According to the Data of Long-Term (2011–2021) Measurements at the Russian Scientific Center on the Spitzbergen Archipelago. Atmos. Ocean. Opt. 2023, 36, 645–654. (In Russian) [Google Scholar] [CrossRef]
- Sakerin, S.M.; Kabanov, D.M.; Kalashnikova, D.A.; Kravchishina, M.D.; Kruglinsky, I.A.; Makarov, V.I.; Popova, S.A.; Pochufarov, A.O.; Simonova, G.V.; Turchinovich, Y.S.; et al. Spatiotemporal variations in atmospheric aerosol characteristics over the Kara, Barents, Norwegian, and Greenland Seas (2018–2021 expeditions). Atmos. Ocean. Opt. 2022, 35, 651–660. (In Russian) [Google Scholar] [CrossRef]
- Nasonov, S.; Balin, Y.; Klemasheva, M.; Kokhanenko, G.; Novoselov, M.; Penner, I. Study of Atmospheric Aerosol in the Baikal Mountain Basin with Shipborne and Ground-Based. Lidars Remote Sens. 2020, 15, 3816. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Molozhnikova, Y.V.; Shikhovtsev, M.Y.; Netsvetaeva, O.G.; Khodzher, T.V. Ecological Zoning of the Baikal Basin Based on the Results of Chemical Analysis of the Composition of Atmospheric Precipitation Accumulated in the Snow Cover. Appl. Sci. 2023, 13, 8171. [Google Scholar] [CrossRef]
- Kovadlo, P.G.; Shikhovtsev, A.Y. Energy structure of optical atmospheric turbulence at different air flow parameters. Bull. Irkutsk. State Univ. Ser. Earth Sci. 2014, 8, 42–55. (In Russian) [Google Scholar]
- Shikhovtsev, M.Y.; Obolkin, V.A.; Khodzher, T.V.; Molozhnikova, Y.V. Variability of the Ground Concentration of Particulate Matter PM1-PM10 in the Air Basin of the Southern Baikal Region. Atmos. Ocean. Opt. 2023, 36, 655–662. [Google Scholar] [CrossRef]
- Gorshkov, A.G.; Izosimova, O.N.; Kustova, O.V.; Marinaite, I.I.; Galachyants, Y.P.; Sinyukovich, V.N.; Khodzher, T.V. Wildfires as a Source of PAHs in Surface Waters of Background Areas (Lake Baikal, Russia). Water 2021, 13, 2636. [Google Scholar] [CrossRef]
- Kozlov, V.S.; Panchenko, M.V.; Yausheva, E.P. Relative soot content in submicron aerosol as an indicator of the influence of smoke from long range wildfires. Atmos. Ocean. Opt. 2006, 19, 484–491. (In Russian) [Google Scholar]
- Molozhnikova, E.V. Accounting for Environmental Pollution by Aerosols in Problems of Energy Systems Development. Doctoral Dissertation, L.A. Melentyev Energy Systems Institute, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, 2003. [Google Scholar]
- Panchenko, M.; Yausheva, E.; Chernov, D.; Kozlov, V.; Makarov, V.; Popova, S.; Shmargunov, V. Submicron Aerosol and Black Carbon in the Troposphere of Southwestern Siberia (1997–2018). Atmosphere 2021, 12, 351. [Google Scholar] [CrossRef]
- Sandeep, P.; Saradhi, I.V.; Pandit, G.G. Seasonal variation of black carbon in fine particulate matter (PM 2.5) at the tropical coastal city of Mumbai, India. Bull. Environ. Contam. Toxicol. 2013, 91, 605–610. [Google Scholar] [CrossRef] [PubMed]
Emission Type | Area | Mean MeBC ± SD, µg m−3 | Min | Max | N |
---|---|---|---|---|---|
Background level | Water area near the southwest coast, 25 to 27 July 2019 | 0.28 ± 0.09 | 0.12 | 0.53 | 54 |
Water area near northeast coast, 28 to 29 July 2019 | 0.17 ± 0.08 | 0.06 | 0.38 | 40 | |
Anthropogenic impact | Listvennichny Bay, 24 to 25 July 2019, 03 August 2019 | 0.59 ± 0.25 | 0.18 | 1.06 | 19 |
Water area near the Baikalsk town, 25 July 2019, 03 August 2019 | 0.93 ± 0.26 | 0.59 | 1.54 | 18 | |
Water area near the Slyudyanka town, 25 July 2019 | 1.08 ± 0.43 | 0.55 | 1.61 | 5 | |
Wildfires | Water area near the towns of Severobaikalsk town and Nizhneangarsk, 28 July 2019 | 1.09 ± 0.38 | 0.47 | 2.16 | 41 |
Chivyrkuy Bay–Barguzin Bay –water area along the Turka settlement-the Selenga delta route, 29 July to 01 August 2019 | 4.17 ± 0.83 | 2.46 | 6.33 | 104 |
Emission Type | Area | PM2.5 Average | Mean eBC ± SD, µg m−3 | Min | Max | N |
---|---|---|---|---|---|---|
Background level | South coast, 06–08 August 2023 | 2.29 | 0.27 ± 0.09 | 0.16 | 0.65 | 81 |
West coast, 08–09 August 2023 | 1.87 | 0.26 ± 0.03 | 0.16 | 0.37 | 119 | |
East coast, 10–13 August 2023 | 0.80 | 0.19 ± 0.08 | 0.07 | 0.74 | 244 | |
Anthropogenic impact | Listvennichny Bay, west coast 05 August 2023 | 1.83 | 0.40 ± 0.20 | 0.22 | 0.84 | 11 |
Angara River source, 05 August, 14–15 August 2023 | 1.65 | 0.94 ± 1.40 | 0.16 | 7.02 | 98 | |
Slyudyanka town, 06–07 August 2023 | 4.21 | 1.85 ± 1.42 | 0.32 | 6.3 | 46 | |
Baikalsk town, 07 August 2023 | 2.55 | 0.33 ± 0.08 | 0.22 | 0.45 | 15 | |
Khuzhir settlement, 08 August 2023 | 2.28 | 0.64 ± 0.19 | 0.36 | 0.94 | 12 | |
Severobaikalsk town, 09–10 August 2023 | 1.91 | 0.22 ± 0.12 | 0.11 | 0.59 | 55 | |
Barguzin River mouth, 12–13 August 2023 | 2.03 | 0.30 ± 0.20 | 0.13 | 0.95 | 34 | |
Bolshoye Goloustnoye settlement, 14 August 2023 | 4.00 | 0.76 ± 0.14 | 0.64 | 1.09 | 10 |
N BC | eBC Mean | eBC Mediane | Max eBC | Min eBC | PM ≤ 2.5 μm Mean | PM ≤ 2.5 μm Mediane | BC/PM ≤ 2.5 μm | SO2 | ||
---|---|---|---|---|---|---|---|---|---|---|
2023 | May | 116 | 0.07 | 0.06 | 0.19 | 0.01 | - | - | - | 10 |
June | 157 | 0.10 | 0.09 | 0.31 | 0.01 | 7 | 5 | 14 | 10 | |
July | 363 | 0.13 | 0.12 | 0.50 | 0.03 | 9 | 6 | 14 | 8 | |
August | 709 | 0.10 | 0.07 | 0.72 | 0.01 | 12 | 8 | 12 | 7 | |
September | 629 | 0.13 | 0.10 | 0.64 | 0.01 | 10 | 6 | 13 | 10 | |
October | 661 | 0.14 | 0.10 | 1.21 | 0.01 | 12 | 9 | 11 | 12 | |
November | 682 | 0.24 | 0.21 | 1.09 | 0.02 | 27 | 21 | 10 | 18 | |
December | 700 | 0.34 | 0.22 | 2.44 | 0.01 | 41 | 27 | 8 | 34 | |
2024 | January | 743 | 0.36 | 0.38 | 2.04 | 0.04 | 41 | 31 | 13 | 36 |
February | 458 | 0.36 | 0.33 | 1.20 | 0.05 | 46 | 39 | 8 | 33 |
Wind Direction | NE (0–90°) | SE (90°–180°) (Northern Part of the Lake) | SW (180°–270°) (Southern Part of the Lake) | NW (270°–360°) (from the Land to the Lake) | NW (330°–350°, <3 m/s) (along the Angara River Valley) | |
---|---|---|---|---|---|---|
August 2023 | Number of cases | 10 | 21 | 160 | 350 | 218 |
Mean eBC, μg m−3 | 0.07 | 0.08 | 0.11 | 0.17 | 0.21 | |
Max eBC, μg m−3 | 0.16 | 0.21 | 0.32 | 0.61 | 0.61 | |
January 2024 | Number of cases | 23 | 343 | 231 | 310 | 18 |
Mean eBC, μg m−3 | 0.23 | 0.28 | 0.29 | 0.49 | 0.70 | |
Max eBC, μg m−3 | 0.43 | 0.97 | 1.31 | 2.04 | 1.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khodzher, T.V.; Yausheva, E.P.; Shikhovtsev, M.Y.; Zhamsueva, G.S.; Zayakhanov, A.S.; Golobokova, L.P. Black Carbon in the Air of the Baikal Region, (Russia): Sources and Spatiotemporal Variations. Appl. Sci. 2024, 14, 6996. https://doi.org/10.3390/app14166996
Khodzher TV, Yausheva EP, Shikhovtsev MY, Zhamsueva GS, Zayakhanov AS, Golobokova LP. Black Carbon in the Air of the Baikal Region, (Russia): Sources and Spatiotemporal Variations. Applied Sciences. 2024; 14(16):6996. https://doi.org/10.3390/app14166996
Chicago/Turabian StyleKhodzher, Tamara V., Elena P. Yausheva, Maxim Yu. Shikhovtsev, Galina S. Zhamsueva, Alexander S. Zayakhanov, and Liudmila P. Golobokova. 2024. "Black Carbon in the Air of the Baikal Region, (Russia): Sources and Spatiotemporal Variations" Applied Sciences 14, no. 16: 6996. https://doi.org/10.3390/app14166996
APA StyleKhodzher, T. V., Yausheva, E. P., Shikhovtsev, M. Y., Zhamsueva, G. S., Zayakhanov, A. S., & Golobokova, L. P. (2024). Black Carbon in the Air of the Baikal Region, (Russia): Sources and Spatiotemporal Variations. Applied Sciences, 14(16), 6996. https://doi.org/10.3390/app14166996