Bacterial Aerosol in Ambient Air—A Review Study
Abstract
:1. Introduction
2. Sources of Bacterial Aerosol in Ambient Air
3. Discussion
3.1. Interactions with Air Pollutants
3.1.1. Particulate Matter (PM1, PM2.5, and PM10)
3.1.2. Ozone (O3)
3.2. Interactions with Meteorological Factors
3.2.1. Temperature
3.2.2. Relative Humidity (RH)
3.2.3. Solar Radiation
3.2.4. Wind Speed
3.2.5. Rainfall
4. Future Directions (Control and Mitigation Strategies)
- (1)
- Enhanced predictive models and characterization
- (2)
- Improved measurement techniques and atmospheric dynamics
- (3)
- Ecosystem and climate interactions
- (4)
- Health implications and public health strategies
- (5)
- Biotechnological applications and air quality
- (6)
- Regulatory and policy considerations
- (7)
- Interdisciplinary collaboration
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chi, N.D.T.; Ngan, T.A.; Cong-Thanh, T.; Huy, D.H.; Lung, S.C.C.; Hien, T.T. Calibration of DustTrak and Low-Cost Sensors and Their Application for Assessment of Inhalation Exposures to Traffic-Related PM2.5 and PM1 in Ho Chi Minh City. Atmosphere 2023, 14, 1504. [Google Scholar] [CrossRef]
- Pacitto, A.; Stabile, L.; Moreno, T.; Kumar, P.; Wierzbicka, A.; Morawska, L. The Influence of Lifestyle on Airborne Particle Surface Area Doses Received by Different Western Populations. Environ. Pollut. 2018, 232, 113–122. [Google Scholar] [CrossRef]
- Tofful, L.; Canepari, S.; Sargolini, T.; Perrino, C. Indoor Air Quality in a Domestic Environment: Combined Contribution of Indoor and Outdoor PM Sources. Build. Environ. 2021, 202, 108050. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Mainka, A.; Pastuszka, J. Concentration and Size Distribution of Culturable Bacteria in Ambient Air during Spring and Sinter in Gliwice: A Typical Urban Area. Atmosphere 2017, 8, 239. [Google Scholar] [CrossRef]
- Ashmore, M.R.; Dimitroulopoulou, C. Personal Exposure of Children to Air Pollution. Atmos. Environ. 2009, 43, 128–141. [Google Scholar] [CrossRef]
- De Leeuw, F.; Horálek, J. Quantifying the Health Impacts of Ambient Air Pollution: Methodology and Input Data; ETC/ACM Technical Paper 2016/5; European Topic Centre on Air Pollution and Climate Change Mitigation: Bilthoven, The Netherlands, 2016. [Google Scholar]
- WHO Guidelines for Indoor Air Quality: Dampness and Mould; WHO Regional Office for Europe: Copenhagen, Denmark, 2009; Available online: https://iris.who.int/handle/10665/164348 (accessed on 10 September 2024).
- Zhen, Q.; Deng, Y.; Wang, Y.; Wang, X.; Zhang, H.; Sun, X.; Ouyang, Z. Meteorological Factors Had More Impact on Airborne Bacterial Communities than Air Pollutants. Sci. Total Environ. 2017, 601–602, 703–712. [Google Scholar] [CrossRef]
- Tham, K.W. Indoor Air Quality and Its Effects on Humans—A Review of Challenges and Developments in the Last 30 Years. Energy Build. 2016, 130, 637–650. [Google Scholar] [CrossRef]
- Madsen, A.M.; Moslehi-Jenabian, S.; Islam, M.Z.; Frankel, M.; Spilak, M.; Frederiksen, M.W. Concentrations of Staphylococcus Species in Indoor Air as Associated with Other Bacteria, Season, Relative Humidity, Air Change Rate, and S. Aureus-Positive Occupants. Environ. Res. 2018, 160, 282–291. [Google Scholar] [CrossRef]
- Fröhlich-Nowoisky, J.; Kampf, C.J.; Weber, B.; Huffman, J.A.; Pöhlker, C.; Andreae, M.O.; Lang-Yona, N.; Burrows, S.M.; Gunthe, S.S.; Elbert, W.; et al. Bioaerosols in the Earth System: Climate, Health, and Ecosystem Interactions. Atmos. Res. 2016, 182, 346–376. [Google Scholar] [CrossRef]
- Haverinen-Shaughnessy, U.; Toivola, M.; Alm, S.; Putus, T.; Nevalainen, A. Personal and Microenvironmental Concentrations of Particles and Microbial Aerosol in Relation to Health Symptoms among Teachers. J. Expo. Sci. Environ. Epidemiol. 2006, 17, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol Health Effects and Exposure Assessment: Progress and Prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Mainka, A. Assessment of Personal Deposited Dose and Particle Size Distribution of Bacterial Aerosol in Kindergarten Located in Southern Poland. Environ. Pollut. 2024, 343, 123208. [Google Scholar] [CrossRef]
- Latif, M.T.; Yong, S.M.; Saad, A.; Mohamad, N.; Baharudin, N.H.; Bin Mokhtar, M.; Tahir, N.M. Composition of Heavy Metals in Indoor Dust and Their Possible Exposure: A Case Study of Preschool Children in Malaysia. Air Qual. Atmos. Health 2014, 7, 181–193. [Google Scholar] [CrossRef]
- Nasir, Z.A.; Colbeck, I. Assessment of Bacterial and Fungal Aerosol in Different Residential Settings. Water Air Soil Pollut. 2010, 211, 367–377. [Google Scholar] [CrossRef]
- Nevalainen, A.; Willeke, K.; Liebhaber, F.; Pastuszka, J.S.; Burge, H.; Henningson, E. Bioaerosol Sampling. In Aerosol Measurement: Principles, Techniques and Applications; Willeke, K., Baron, P., Eds.; Van Nostrand Reinhold: New York, NY, USA, 1993; pp. 471–492. [Google Scholar]
- Kutz, M. Handbook of Environmental Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; ISBN 9781119304401. [Google Scholar]
- Brandl, H. Bioaerosols in Indoor Environment—A Review with Special Reference to Residential and Occupational Locations. Open Environ. Biol. Monit. J. 2011, 4, 83–96. [Google Scholar] [CrossRef]
- Elin, R.J.; Robertson, E.A.; Sever, G.A. Workload, Space, and Personnel of Microbiology Laboratories in Teaching Hospitals. Am. J. Clin. Pathol. 1984, 82, 78–84. [Google Scholar] [CrossRef]
- Chen, J.; Kawamura, K.; Liu, C.-Q.; Fu, P. Long-Term Observations of Saccharides in Remote Marine Aerosols from the Western North Pacific: A Comparison between 1990–1993 and 2006–2009 Periods. Atmos. Environ. 2013, 67, 448–458. [Google Scholar] [CrossRef]
- Zangrando, R.; Barbaro, E.; Kirchgeorg, T.; Vecchiato, M.; Scalabrin, E.; Radaelli, M.; Đorđević, D.; Barbante, C.; Gambaro, A. Five Primary Sources of Organic Aerosols in the Urban Atmosphere of Belgrade (Serbia). Sci. Total Environ. 2016, 571, 1441–1453. [Google Scholar] [CrossRef]
- Cao, C.; Jiang, W.; Wang, B.; Fang, J.; Lang, J.; Tian, G.; Jiang, J.; Zhu, T.F. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event. Environ. Sci. Technol. 2014, 48, 1499–1507. [Google Scholar] [CrossRef]
- Keishams, F.; Goudarzi, G.; Hajizadeh, Y.; Hashemzadeh, M.; Teiri, H. Influence of Meteorological Parameters and PM2.5 on the Level of Culturable Airborne Bacteria and Fungi in Abadan, Iran. Aerobiologia 2022, 38, 233–245. [Google Scholar] [CrossRef]
- Polymenakou, P.N. Atmosphere: A Source of Pathogenic or Beneficial Microbes? Atmosphere 2012, 3, 87–102. [Google Scholar] [CrossRef]
- Hospodsky, D.; Qian, J.; Nazaroff, W.W.; Yamamoto, N.; Bibby, K.; Rismani-Yazdi, H.; Peccia, J. Human Occupancy as a Source of Indoor Airborne Bacteria. PLoS ONE 2012, 7, e34867. [Google Scholar] [CrossRef]
- Kim, N.Y.; Kim, Y.R.; Kim, M.K.; Cho, D.W.; Kim, J. Isolation and Characterization of Airborne Bacteria and Fungi in Indoor Environment of Elementary Schools. Korean J. Microbiol. 2007, 43, 193–200. [Google Scholar]
- Al Mijalli, S.H. Bacterial Contamination of Indoor Air in Schools of Riyadh, Saudi Arabia. Air Water Borne Dis. 2017, 6, 1–8. [Google Scholar] [CrossRef]
- Andualem, Z.; Gizaw, Z.; Bogale, L.; Dagne, H. Indoor Bacterial Load and Its Correlation to Physical Indoor Air Quality Parameters in Public Primary Schools. Multidiscip. Respir. Med. 2019, 14, 1–7. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Biedroń, I. Indoor Air Quality and Potential Health Risk Impacts of Exposure to Antibiotic Resistant Bacteria in an Office Rooms in Southern Poland. Int. J. Environ. Res. Public Health 2018, 15, 2604. [Google Scholar] [CrossRef]
- Mentese, S.; Rad, A.Y.; Arisoy, M.; Gullu, G. Seasonal and Spatial Variations of Bioaerosols in Indoor Urban Environments, Ankara, Turkey. Indoor Built Environ. 2012, 21, 797–810. [Google Scholar] [CrossRef]
- Kallawicha, K.; Lung, S.C.C.; Chuang, Y.C.; Wu, C.D.; Chen, T.H.; Tsai, Y.J.; Chao, H.J. Spatiotemporal Distributions and Land-Use Regression Models of Ambient Bacteria and Endotoxins in the Greater Taipei Area. Aerosol Air Qual. Res. 2015, 15, 1448–1459. [Google Scholar] [CrossRef]
- Ruiz-Gil, T.; Acuña, J.J.; Fujiyoshi, S.; Tanaka, D.; Noda, J.; Maruyama, F.; Jorquera, M.A. Airborne Bacterial Communities of Outdoor Environments and Their Associated Influencing Factors. Environ. Int. 2020, 145, 106156. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Harrison, R.M. The Effects of Meteorological Factors on Atmospheric Bioaerosol Concentrations—A Review. Sci. Total Environ. 2004, 326, 151–180. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, V.; Gandolfi, I.; Ambrosini, R.; Bestetti, G.; Innocente, E.; Rampazzo, G.; Franzetti, A. Temporal Variability and Effect of Environmental Variables on Airborne Bacterial Communities in an Urban Area of Northern Italy. Appl. Microbiol. Biotechnol. 2013, 97, 6561–6570. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, B.T.; Lighthart, B. Survey of Culturable Airborne Bacteria at Four Diverse Locations in Oregon: Urban, Rural, Forest, and Coastal. Microb. Ecol. 1997, 34, 167–177. [Google Scholar] [CrossRef]
- Tong, Y.; Lighthart, B. The Annual Bacterial Particle Concentration and Size Distribution in the Ambient Atmosphere in a Rural Area of the Willamette Valley, Oregon. Aerosol Sci. Technol. 2000, 32, 393–403. [Google Scholar] [CrossRef]
- Haas, D.; Unteregger, M.; Habib, J.; Galler, H.; Marth, E.; Reinthaler, F.F. Exposure to Bioaerosol from Sewage Systems. Water Air Soil Pollut. 2010, 207, 49–56. [Google Scholar] [CrossRef]
- Woo, A.C.; Brar, M.S.; Chan, Y.; Lau, M.C.Y.; Leung, F.C.C.; Scott, J.A.; Vrijmoed, L.L.P.; Zawar-Reza, P.; Pointing, S.B. Temporal Variation in Airborne Microbial Populations and Microbially-Derived Allergens in a Tropical Urban Landscape. Atmos. Environ. 2013, 74, 291–300. [Google Scholar] [CrossRef]
- Jeon, E.M.; Kim, H.J.; Jung, K.; Kim, J.H.; Kim, M.Y.; Kim, Y.P.; Ka, J.O. Impact of Asian Dust Events on Airborne Bacterial Community Assessed by Molecular Analyses. Atmos. Environ. 2011, 45, 4313–4321. [Google Scholar] [CrossRef]
- Whitby, C.; Ferguson, R.M.W.; Colbeck, I.; Dumbrell, A.J.; Nasir, Z.A.; Marczylo, E.; Kinnersley, R.; Douglas, P.; Drew, G.; Bhui, K.; et al. Compendium of Analytical Methods for Sampling, Characterization and Quantification of Bioaerosols. Adv. Ecol. Res. 2022, 67, 101–229. [Google Scholar] [CrossRef]
- Hernández-Castillo, O.; Mugica-Álvarez, V.; Castañeda-Briones, M.T.; Murcia, J.M.; García-Franco, F.; Falcón Briseño, Y. Aerobiological Study in the Mexico City Subway System. Aerobiologia 2014, 30, 357–367. [Google Scholar] [CrossRef]
- Hosseini, N.; Hajizadeh, Y.; Nikaeen, M.; Hatamzadeh, M. Spatiotemporal Variation of Ambient Bioaerosols in a Large and Industrialized Metropolis of Iran and Their Association with PM2.5 and Meteorological Factors. Aerobiologia 2021, 37, 105–117. [Google Scholar] [CrossRef]
- Fraczek, K.; Górny, R.L. Microbial Air Quality at Szczawnica Sanatorium, Poland. Ann. Agric. Environ. Med. 2011, 18, 63–71. [Google Scholar]
- Di Giorgio, C.; Krempff, A.; Guiraud, H.; Binder, P.; Tiret, C.; Dumenil, G. Atmospheric Pollution by Airborne Microorganisms in the City of Marseilles. Atmos. Environ. 1996, 30, 155–160. [Google Scholar] [CrossRef]
- Hai, V.D.; Hoang, S.M.T.; Hung, N.T.Q.; Ky, N.M.; Gwi-Nam, B.; Ki-hong, P.; Chang, S.W.; Bach, Q.V.; Nhu-Trang, T.T.; Nguyen, D.D. Characteristics of Airborne Bacteria and Fungi in the Atmosphere in Ho Chi Minh City, Vietnam—A Case Study over Three Years. Int. Biodeterior. Biodegrad. 2019, 145, 104819. [Google Scholar] [CrossRef]
- Yang, L.; Shen, Z.; Wang, D.; Wei, J.; Wang, X.; Sun, J.; Xu, H.; Cao, J. Diurnal Variations of Size-Resolved Bioaerosols during Autumn and Winter over a Semi-Arid Megacity in Northwest China. Geohealth 2021, 5, e2021GH000411. [Google Scholar] [CrossRef]
- Yan, X.; Qiu, D.; Zheng, S.; Yang, J.; Sun, H.; Wei, Y.; Han, J.; Sun, J.; Su, X. Distribution Characteristics and Noncarcinogenic Risk Assessment of Culturable Airborne Bacteria and Fungi during Winter in Xinxiang, China. Environ. Sci. Pollut. Res. 2019, 26, 36698–36709. [Google Scholar] [CrossRef]
- Madhwal, S.; Prabhu, V.; Sundriyal, S.; Shridhar, V. Ambient Bioaerosol Distribution and Associated Health Risks at a High Traffic Density Junction at Dehradun City, India. Environ. Monit. Assess. 2020, 192, 196. [Google Scholar] [CrossRef]
- Nasir, Z.A.; Colbeck, I.; Sultan, S.; Ahmed, S. Bioaerosols in Residential Micro-Environments in Low Income Countries: A Case Study from Pakistan. Environ. Pollut. 2012, 168, 15–22. [Google Scholar] [CrossRef]
- Mouli, P.C.; Mohan, S.V.; Reddy, S.J. Assessment of Microbial (Bacteria) Concentrations of Ambient Air at Semi-Arid Urban Region: Influence of Meteorological Factors. Appl. Ecol. Environ. Res. 2005, 3, 139–149. [Google Scholar] [CrossRef]
- Manninen, H.E.; Sihto-Nissilä, S.L.; Hiltunen, V.; Aalto, P.P.; Kulmala, M.; Petäjä, T.; Manninen, H.E.; Bäck, J.; Hari, P.; Huffman, J.A.; et al. Patterns in Airborne Pollen and Other Primary Biological Aerosol Particles (PBAP), and Their Contribution to Aerosol Mass and Number in a Boreal Forest. Boreal Environ. Res. 2014, 19, 383–405. [Google Scholar]
- Després, V.R.; Alex Huffman, J.; Burrows, S.M.; Hoose, C.; Safatov, A.S.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.O.; Pöschl, U.; et al. Primary Biological Aerosol Particles in the Atmosphere: A Review. Tellus B Chem. Phys. Meteorol. 2012, 64, 15598. [Google Scholar] [CrossRef]
- Yang, C. Aerosol Filtration Application Using Fibrous Media—An Industrial Perspective. Chin. J. Chem. Eng. 2012, 20, 1–9. [Google Scholar] [CrossRef]
- Reanprayoon, P.; Yoonaiwong, W. Airborne Concentrations of Bacteria and Fungi in Thailand Border Market. Aerobiologia 2012, 28, 49–60. [Google Scholar] [CrossRef]
- Faridi, S.; Hassanvand, M.S.; Naddafi, K.; Yunesian, M.; Nabizadeh, R.; Sowlat, M.H.; Kashani, H.; Gholampour, A.; Niazi, S.; Zare, A.; et al. Indoor/Outdoor Relationships of Bioaerosol Concentrations in a Retirement Home and a School Dormitory. Environ. Sci. Pollut. Res. 2015, 22, 8190–8200. [Google Scholar] [CrossRef] [PubMed]
- Smets, W.; Moretti, S.; Denys, S.; Lebeer, S. Airborne Bacteria in the Atmosphere: Presence, Purpose, and Potential. Atmos. Environ. 2016, 139, 214–221. [Google Scholar] [CrossRef]
- Akila, M.; Earappa, R.; Qureshi, A. Ambient Concentration of Airborne Microbes and Endotoxins in Rural Households of Southern India. Build Environ. 2020, 179, 106970. [Google Scholar] [CrossRef]
- Yang, L.; Shen, Z.; Wei, J.; Wang, X.; Xu, H.; Sun, J.; Wang, Q.; Cao, J. Size Distribution, Community Composition, and Influencing Factors of Bioaerosols on Haze and Non-Haze Days in a Megacity in Northwest China. Sci. Total Environ. 2022, 838, 155969. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, D.; Lyu, Z.; Zhang, J.; Wu, X.; Yu, Y. Effects of Extreme Precipitation on Bacterial Communities and Bioaerosol Composition: Dispersion in Urban Outdoor Environments and Health Risks. Environ. Pollut. 2024, 344, 123406. [Google Scholar] [CrossRef]
- Osunmakinde, C.O.; Selvarajan, R.; Ogola, H.J.O.; Sibanda, T.; Msagati, T. Microbiological Air Quality in Different Indoor and Outdoor Settings in Africa and Beyond: Challenges and Prospects. In Current Microbiological Research in Africa; Springer International Publishing: Cham, Switzerland, 2020; pp. 137–174. ISBN 9783030352967. [Google Scholar]
- Li, Y.; Fu, H.; Wang, W.; Liu, J.; Meng, Q.; Wang, W. Characteristics of Bacterial and Fungal Aerosols during the Autumn Haze Days in Xi’an, China. Atmos. Environ. 2015, 122, 439–447. [Google Scholar] [CrossRef]
- Gao, M.; Qiu, T.; Jia, R.; Han, M.; Song, Y.; Wang, X. Concentration and Size Distribution of Viable Bioaerosols during Non-Haze and Haze Days in Beijing. Environ. Sci. Pollut. Res. 2015, 22, 4359–4368. [Google Scholar] [CrossRef]
- Góralska, K.; Lis, S.; Gawor, W.; Karuga, F.; Romaszko, K.; Brzeziańska-Lasota, E. Culturable Filamentous Fungi in the Air of Recreational Areas and Their Relationship with Bacteria and Air Pollutants during Winter. Atmosphere 2022, 13, 207. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Mainka, A.; Biedroń, I. Ambient Air Quality in Upper Silesia Region Pre-during, and Post-COVID-19 Periods. Archit. Civ. Eng. Environ. 2023, 4, 135–148. [Google Scholar] [CrossRef]
- Rosas, I.; Yela, A.; Burgoa, C.S.; Santos-Burgoa, C. Occurrence of Airborne Enteric Bacteria in Mexico City. Aerob1ologia 1994, 10, 39–45. [Google Scholar]
- Rajput, P.; Anjum, M.H.; Gupta, T. One Year Record of Bioaerosols and Particles Concentration in Indo-Gangetic Plain: Implications of Biomass Burning Emissions to High-Level of Endotoxin Exposure. Environ. Pollut. 2017, 224, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Qi, J.; Zhang, H.; Huang, S.; Li, L.; Gao, D. Concentration and Size Distribution of Bioaerosols in an Outdoor Environment in the Qingdao Coastal Region. Sci. Total Environ. 2011, 409, 3812–3819. [Google Scholar] [CrossRef]
- Wang, W.; Ma, Y.; Ma, X.; Wu, F.; Ma, X.; An, L.; Feng, H. Seasonal Variations of Airborne Bacteria in the Mogao Grottoes, Dunhuang, China. Int. Biodeterior. Biodegrad. 2010, 64, 309–315. [Google Scholar] [CrossRef]
- Sajjad, B.; Rasool, K.; Siddique, A.; Jabbar, K.A.; El-Malaha, S.S.; Sohail, M.U.; Almomani, F.; Alfarra, M.R. Size-Resolved Ambient Bioaerosols Concentration, Antibiotic Resistance, and Community Composition during Autumn and Winter Seasons in Qatar. Environ. Pollut. 2023, 336, 122401. [Google Scholar] [CrossRef]
- Lighthart, B. The Ecology of Bacteria in the Alfresco Atmosphere. FEMS Microbiol. Ecol. 1997, 23, 263–274. [Google Scholar] [CrossRef]
- Raisi, L.; Aleksandropoulou, V.; Lazaridis, M.; Katsivela, E. Size Distribution of Viable, Cultivable, Airborne Microbes and Their Relationship to Particulate Matter Concentrations and Meteorological Conditions in a Mediterranean Site. Aerobiologia 2013, 29, 233–248. [Google Scholar] [CrossRef]
- Xie, Z.; Fan, C.; Lu, R.; Liu, P.; Wang, B.; Du, S.; Jin, C.; Deng, S.; Li, Y. Characteristics of Ambient Bioaerosols during Haze Episodes in China: A Review. Environ. Pollut. 2018, 243, 1930–1942. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, S.; Zheng, D.; Li, J.; Tian, H.; Wang, Y. Effects of Haze Pollution on Microbial Community Changes and Correlation with Chemical Components in Atmospheric Particulate Matter. Sci. Total Environ. 2018, 637–638, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. The Role of Stable Free Radicals, Metals and PAHs of Airborne Particulate Matter in Mechanisms of Oxidative Stress and Carcinogenicity. In Urban Airborne Particulate Matter; Zereini, F., Wiseman, C.L.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 411–426. ISBN 978-3-642-12277-4. [Google Scholar]
- Estillore, A.D.; Trueblood, J.V.; Grassian, V.H. Atmospheric Chemistry of Bioaerosols: Heterogeneous and Multiphase Reactions with Atmospheric Oxidants and Other Trace Gases. Chem. Sci. 2016, 7, 6604–6616. [Google Scholar] [CrossRef]
- Scherer, P.; Sahm, H. Microbk and Biotechnology Influence of Sulphur-Containing Compounds on the Growth of Methanosarcina Barkeri in a Defined Medium. Eur. J. Appl. Microbiol. Biotechnol. 1981, 12, 28–35. [Google Scholar] [CrossRef]
- Dong, L.; Qi, J.; Shao, C.; Zhong, X.; Gao, D.; Cao, W.; Gao, J.; Bai, R.; Long, G.; Chu, C. Concentration and Size Distribution of Total Airborne Microbes in Hazy and Foggy Weather. Sci. Total Environ. 2016, 541, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Michiels, J.; Xi, C.; Verhaert, J.; Vanderleyden, J. The Functions of Ca2+ in Bacteria: A Role for EF-Hand Proteins? Trends Microbiol. 2002, 10, 87–93. [Google Scholar] [CrossRef]
- Xu, C.; Wei, M.; Chen, J.; Wang, X.; Zhu, C.; Li, J.; Zheng, L.; Sui, G.; Li, W.; Wang, W.; et al. Bacterial Characterization in Ambient Submicron Particles during Severe Haze Episodes at Ji’nan, China. Sci. Total Environ. 2017, 580, 188–196. [Google Scholar] [CrossRef]
- Kulmala, M.; Laakso, L.; Lehtinen, K.E.J.; Riipinen, I.; Dal Maso, M.; Anttila, T.; Kerminen, V.-M.; Hõrrak, U.; Vana, M.; Tammet, H. Initial Steps of Aerosol Growth. Atmos. Chem. Phys. 2004, 4, 2553–2560. [Google Scholar] [CrossRef]
- Mainka, A.; Mucha, W.; Pastuszka, J.S.; Brągoszewska, E.; Janoszek, A. Non-Commercial Air Purifier—The Effectiveness and Safety. Buildings 2020, 10, 104. [Google Scholar] [CrossRef]
- Sharma, M.; Hudson, J.B. Ozone Gas Is an Effective and Practical Antibacterial Agent. Am. J. Infect. Control. 2008, 36, 559–563. [Google Scholar] [CrossRef]
- Cox, C.S.; Wayhes, C.M. Bioaerosols Handbook; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 1995; ISBN 978-0-367-57973-9. [Google Scholar]
- Cox, C.S.; Hood, A.M.; Baxter, J. Method for Comparing Concentrations of the Open-Air Factor. Appl. Microbiol. 1973, 26, 640. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Zhang, H.; Yao, X.; Zhou, M.; Wang, J.; He, Z.; Zhang, H.; Lou, L.; Mao, W.; et al. Effect of Air Pollution on the Total Bacteria and Pathogenic Bacteria in Different Sizes of Particulate Matter. Environ. Pollut. 2018, 233, 483–493. [Google Scholar] [CrossRef]
- Kowalski, M.; Pastuszka, J.S. Effect of ambient air temperature and solar radiation on changes in bacterial and fungal aerosols concentration in the urban environment. Ann. Agric. Environ. Med. 2018, 25, 259–261. [Google Scholar] [CrossRef]
- Delort, A.-M.; Amato, P. Microbiology of Aerosols; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; ISBN 978-1-119-13228-8. [Google Scholar]
- Aydogdu, H.; Asan, A.; Tatman Otkun, M. Indoor and Outdoor Airborne Bacteria in Child Day-Care Centers in Edirne City (Turkey), Seasonal Distribution and Influence of Meteorological Factors. Environ. Monit. Assess. 2010, 164, 53–66. [Google Scholar] [CrossRef]
- Bowers, R.M.; McCubbin, I.B.; Hallar, A.G.; Fierer, N. Seasonal Variability in Airborne Bacterial Communities at a High-Elevation Site. Atmos. Environ. 2012, 50, 41–49. [Google Scholar] [CrossRef]
- Lighthart, B.; Stetzenbach, L.D. Distribution of Microbial Bioaerosol. In Atmospheric Microbial Aerosols: Theory and Applications; Lighthart, B., Mohr, A.J., Eds.; Springer: Boston, MA, USA, 1994; pp. 68–98. ISBN 978-1-4684-6438-2. [Google Scholar]
- Joung, Y.S.; Ge, Z.; Buie, C.R. Bioaerosol Generation by Raindrops on Soil. Nat. Commun. 2017, 8, 14668. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Qi, J.; Li, H.; Dong, L.; Gao, D. Seasonal Distribution of Microbial Activity in Bioaerosols in the Outdoor Environment of the Qingdao Coastal Region. Atmos. Environ. 2016, 140, 506–513. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Pastuszka, J.S. Influence of Meteorological Factors on the Level and Characteristics of Culturable Bacteria in the Air in Gliwice, Upper Silesia (Poland). Aerobiologia 2018, 34, 241–255. [Google Scholar] [CrossRef]
- Wang, C.C.; Fang, G.C.; Kuo, C.H. Bioaerosols as Contributors to Poor Air Quality in Taichung City, Taiwan. Environ. Monit. Assess. 2010, 166, 1–9. [Google Scholar] [CrossRef]
- Chi, M.C.; Li, C.S. Fluorochrome in Monitoring Atmospheric Bioaerosols and Correlations with Meteorological Factors and Air Pollutants. Aerosol Sci. Technol. 2007, 41, 672–678. [Google Scholar] [CrossRef]
- Izquierdo, R.; Avila, A.; Alarcón, M. Trajectory Statistical Analysis of Atmospheric Transport Patterns and Trends in Precipitation Chemistry of a Rural Site in NE Spain in 1984–2009. Atmos. Environ. 2012, 61, 400–408. [Google Scholar] [CrossRef]
- Heo, K.J.; Kim, H.B.; Lee, B.U. Concentration of Environmental Fungal and Bacterial Bioaerosols during the Monsoon Season. J. Aerosol Sci. 2014, 77, 31–37. [Google Scholar] [CrossRef]
- Šantl-Temkiv, T.; Sikoparija, B.; Maki, T.; Carotenuto, F.; Amato, P.; Yao, M.; Morris, C.E.; Schnell, R.; Jaenicke, R.; Pöhlker, C.; et al. Bioaerosol Field Measurements: Challenges and Perspectives in Outdoor Studies. Aerosol Sci. Technol. 2020, 54, 520–546. [Google Scholar] [CrossRef]
- Huffman, J.A.; Perring, A.E.; Savage, N.J.; Clot, B.; Crouzy, B.; Tummon, F.; Shoshanim, O.; Damit, B.; Schneider, J.; Sivaprakasam, V.; et al. Real-Time Sensing of Bioaerosols: Review and Current Perspectives. Aerosol Sci. Technol. 2020, 54, 465–495. [Google Scholar] [CrossRef]
- Sekiguchi, M.; Nakajima, T.; Suzuki, K.; Kawamoto, K.; Higurashi, A.; Rosenfeld, D.; Sano, I.; Sonoyo, M. A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud properties. J. Geophys. Res. 2003, 108, 4699. [Google Scholar] [CrossRef]
- Gao, J.; Woodward, A.; Vardoulakis, S.; Kovats, S.; Wilkinson, P.; Li, L.; Xu, L.; Li, J.; Yang, J.; Li, J.; et al. Haze, Public Health and Mitigation Measures in China: A Review of the Current Evidence for Further Policy Response. Sci. Total Environ. 2017, 578, 148–157. [Google Scholar] [CrossRef]
- Cox, J.; Mbareche, H.; Lindsley, W.G.; Duchaine, C. Field Sampling of Indoor Bioaerosols. Aerosol Sci. Technol. 2020, 54, 572–584. [Google Scholar] [CrossRef]
Independent Variable | Correlation | Total Bacteria | References | |
---|---|---|---|---|
R | p | CFU/m3 | ||
PM1, μg/m3 | ||||
68–120 | 0.60 | * | 1963 ± 616 | [49] |
PM2.5, μg/m3 | ||||
12.9 ± 8.4 78.8 ± 47.8 | 0.020 spring −0.261 winter | * | 355 (80–1124) 65 (4–265) | [4] |
93.24 ± 14.05 | 0.652 | ** | 570 ± 313 | [24] |
40 ± 25 29 ± 19 | dust days and non-dust days | >0.05 | 1–40 6–68 | [40] |
16.6–40.4 | >0.05 | 35–116 | [43] | |
108.5 ± 42.3 146.9 ± 93.4 | 0.139 autumn −0.491 winter | * | 523.5 ± 301.1 581 ± 305.4 | [47] |
90 (11–230) | 0.6 | * | 4595 ± 3410 | [48] |
95–150 | 0.55 | * | 1963 ± 616 | [49] |
31.3–214.7 | 0.808 | ** | 497.7–1736.5 | [62] |
57.04–355.67 | −0.300 FB −0.249 CB | 129–5035 (FB + CB) | [63] | |
8–32 | −0.0505 | 36.7–268.04 | [64] | |
13.74–72.57 9.08–62.88 11.08–61.19 | 0.77 pre-COVID-19 0.60 during COVID-19 0.67 post-COVID-19 | 782 602 529 | [65] | |
PM10, μg/m3 | ||||
27.4 ± 21.5 90.5 ± 50.4 | −0.067 spring −0.301 winter | * | 355 (80–1124) 65 (4–265) | [4] |
241 ± 165 58 ± 32 | 0.573 dust days non-dust days | * >0.05 | 1–40 6–68 | [40] |
144 (29–315) | 0.6 | * | 4595 ± 3410 | [48] |
160–230 | 0.75 | * | 1963 ± 616 | [49] |
16–112 | 0.0883 | 36.7–268.04 | [64] | |
16.33–87.65 14.36–83.13 17.80–70.37 | 0.89 pre-COVID-19 0.80 during COVID-19 0.81 post-COVID-19 | 782 602 529 | [65] | |
26–230 | 0.40 | * | 14–2999 | [66] |
O3, μg/m3 | ||||
9.8 ± 9.4 13.1 ± 9.8 | 0.016 autumn −0.795 winter | ** | 523.5 ± 301.1 581 ± 305.4 | [47] |
46 (5–160) | −0.6 | ** | 4595 ± 3410 | [48] |
44.35–88.6 | 0.5252 | * | 36.7–268.04 | [64] |
Independent Variable | Correlation | Total Bacteria | References | |
---|---|---|---|---|
R | p | CFU/m3 | ||
Temperature, °C | ||||
18.7 ± 4.7 −3.6 ± 4.4 | −0.316 spring 0.675 winter | * * | 355 (80–1124) 65 (4–265) | [4] |
23.28 (16.0–38.7) | −0.618 | ** | 570 ± 313 | [24] |
16.8–31.2 24.8–31.7 | 0.531 winter 0.293 spring | * | 1–40 6–68 | [42] |
6.9–30.3 | −0.04 | 35–116 | [43] | |
15–20 29–25 >25 10–15 15–20 | city city city island island | 0.04 0.006 | 801 736 752 68 88 | [45] |
29.9–33.89 | 0.440 | 790.6–1514.8 | [46] | |
11.4 ± 3.7 5 ± 3.3 | −0.471 autumn 0.314 winter | * | 523.5 ± 301.1 581 ± 305.4 | [47] |
5.6 (−8.1–23.9) | −0.3 | 4595 ± 3410 | [48] | |
17.0–30.1 | 0.70 | * | 1963 ± 616 | [49] |
11.1–20.6 | 0.088 | 497.7–1736.5 | [62] | |
26–33 | −0.334 FB −0.285 CB | ** * | 129–5035 (FB + CB) | [63] |
−2–9 | 0.5468 | * | 36.7–268.04 | [64] |
−9.8–12.03 −2.24–12.29 −0.79–14.87 | −0.27 pre-COVID-19 0.28 during COVID-19 0.41 post-COVID-19 | 782 602 529 | [65] | |
11.8–30.1 | 0.08 | 14–2999 | [66] | |
26–40 | −0.66 GPB −0.64 GNB | 21–272 21–352 | [67] | |
−2.5–26.4 | −0.256 TB −0.203 MB | 33–664 63–815 | [68] | |
−8.7–26.7 | 0.716 | * | 101–3800 | [69] |
17.66–35.6 | −0.073 | 111–536 | [70] | |
Relative humidity, % | ||||
72.2 ± 15.7 77.4 ± 11.2 | 0.156 spring 0.351 winter | * | 355 (80–1124) 65 (4–265) | [4] |
45 (22–72) | >0.05 | 570 ± 313 | [24] | |
10.7–40 14.3–43.4 | 0.150 winter 0.530 spring | * | 1–40 6–68 | [42] |
12.7–58.2 | >0.05 | 35–116 | [43] | |
<50 >50 <50 >50 | city city island island | 0.529 0.291 | 868 609 57 53 | [45] |
58.04–76.3 | −0.530 | 790.6–1514.8 | [46] | |
66.6 ± 13.8 54.4 ± 8.9 | 0.041 autumn 0.121 winter | 523.5 ± 301.1 581 ± 305.4 | [47] | |
43.6 (12–89) | 0.6 | * | 4595 ± 3410 | [48] |
36.5–74.6 | 0.64 | * | 1963 ± 616 | [49] |
63.57–84.43 | 0.500 | 497.7–1736.5 | [62] | |
20.72–76.5 | −0.233 FB −0.221 CB | 129–5035 (FB + CB) | [63] | |
43–93 | −0.7410 | * | 36.7–268.04 | [64] |
53.96–92.8 35.43–88.79 34.83–89.29 | 0.05 pre-COVID-19 −0.10 during COVID-19 −0.20 post-COVID-19 | 782 602 529 | [65] | |
55.6–85 | −0.416* TB −0.273 MB | 33–664 63–815 | [68] | |
8.5–59 | −0.720 | * | 101–3800 | [69] |
46.7–60.7 | −0.006 | 111–536 | [70] | |
Solar radiation, W/m2 | ||||
461.1 ± 246.5 145.4 ± 118.5 | −0.329 spring −0.603 winter | * * | 355 (80–1124) 65 (4–265) | [4] |
1.5–12.3 UVindex | >0.05 | 35–116 | [43] | |
358–596 | 0.49 | 1963 ± 616 | [49] | |
2.9771–16.7346 | −0.489 | 497.7–1736.5 | [62] | |
230–840 | 0.673 | * | 101–3800 | [69] |
Wind speed, m/s | ||||
2.58 ± 1.44 4.00 ± 1.75 | −0.040 spring −0.102 winter | 355 (80–1124) 65 (4–265) | [4] | |
3.7 (0–6) | >0.05 | 570 ± 313 | [24] | |
1.9–3.3 | 0.009 | 35–116 | [43] | |
15–25 (knots) >25 (knots) <10 (knots) 10–15 (knots) 15–25 (knots) >25 (knots) <10 (knots) | city city city city island island island | <0.0001 <0.001 | 924 2069 469 868 38 135 36 | [45] |
1.24–2.42 | 0.06 | 1963 ± 616 | [49] | |
0.6–3.11 0.53–3.34 0.42–3.34 | −0.06 pre-COVID-19 0.05 during COVID-19 −0.07 post-COVID-19 | 782 602 529 | [65] | |
0.08 | 14–2999 | [66] | ||
2.3–5.4 | −0.030 TB −0.017 MB | 33–664 63–815 | [68] | |
2.38–4.86 | 0.659 | * | 101–3800 | [69] |
Rainfall, mm | ||||
0–8.48 | 0.42 | * | 1963 ± 616 | [49] |
1.5–4.3 | −0.385 | 101–3800 | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brągoszewska, E.; Mainka, A. Bacterial Aerosol in Ambient Air—A Review Study. Appl. Sci. 2024, 14, 8250. https://doi.org/10.3390/app14188250
Brągoszewska E, Mainka A. Bacterial Aerosol in Ambient Air—A Review Study. Applied Sciences. 2024; 14(18):8250. https://doi.org/10.3390/app14188250
Chicago/Turabian StyleBrągoszewska, Ewa, and Anna Mainka. 2024. "Bacterial Aerosol in Ambient Air—A Review Study" Applied Sciences 14, no. 18: 8250. https://doi.org/10.3390/app14188250
APA StyleBrągoszewska, E., & Mainka, A. (2024). Bacterial Aerosol in Ambient Air—A Review Study. Applied Sciences, 14(18), 8250. https://doi.org/10.3390/app14188250