Fuzzy Logic Theory and Spatiotemporal Modeling of the Fungus Phakopsora pachyrhizi Based on Differential Equations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Classical Model of the Equation
- the effective diffusion coefficient in the medium;
- the velocity field in the middle;
- the total decay coefficient in the medium;
- is the source term.
- 1.
- Non-homogeneous von Neumann-type for pollutant entry (in red), being a given function and ;
- 2.
- Homogeneous von Neumann-type for frontier without loss of pollutants (in blue), being .
2.2. Variational Formulation
- u and its first and second derivatives are continuous;
- v and its first derivatives are continuous.
2.2.1. Spatial Discretization
2.2.2. Temporal Discretization
2.2.3. Domain Discretization
- 1.
- Create a mesh in , defining which geometric figure is used for the finite elements;
- 2.
- Determine the degree of the approximation polynomials (which act on each element).
3. Results
3.1. Obtaining the Terms of the Equation
3.1.1. Diffusion
3.1.2. Transport
3.1.3. Decay
3.1.4. Source
3.2. Maps
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dallagnol, A. Anti-Rust Consortium. In I Brazilian Workshop on Asian Rust; Juliatti, F.C., Polizel, A.C., Hamawaki, O.T., Eds.; EDUFU: Uberlândia, Brazil, 2005; pp. 11–20. [Google Scholar]
- Zambolim, L. Integrated Management of Asian Soybean Rust. In Asian Soybean Rust; Zambolim, L., Ed.; UFV, DFP: Viçosa, Brazil, 2006; pp. 73–98. [Google Scholar]
- Yorinori, J.T. Aggressive, Asian rust requires integrated management. Agric. Vis. 2006, 5, 96–99. [Google Scholar]
- Pan, Z.; Li, X.; Yang, X.B.; Andrade, D.; Xue, L.; Mckinney, N. Prediction of plant diseases through modelling and monitoring airborne pathogen dispersal. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2010, 5, 1–9. [Google Scholar] [CrossRef]
- Mccartney, H.A.; Fitt, B.D.L.; West, J.S. Dispersal of foliar plant pathogens: Mechanisms, gradients and spatial patterns. In The Epidemiology of Plant Diseases; Cooke, B.M., Gareth Jones, D.G., Kaye, B., Eds.; Springer: New York, NY, USA, 2006; pp. 168–169. [Google Scholar]
- Missio, M. EDP Models Integrated with Fuzzy Logic and Probabilistic Methods in the Treatment of Uncertainties: An Application to Foot-and-Mouth Disease in Cattle. Ph.D. Thesis, State University of Campinas, Campinas, Brazil, 2008. [Google Scholar]
- Wolmuth, L.D. Modeling and Simulation of the Evolutionary Behavior of Pollutants in Large-Scale Aquatic Bodies. Master’s Thesis, State University of Campinas, Campinas, Brazil, 2009. [Google Scholar]
- Krindges, A.; Meyer, J.F.C.A. Modeling and computational simulation of pollutant dispersion in Lake Manso-MT, using the diffusion-advection equation. BioMat 2011, 21, 193–208. (In Portuguese) [Google Scholar]
- Meyer, J.F.C.A.; Diniz, G.L. Pollutant dispersion in wetland systems: Mathematical modelling and numerical simulation. Ecol. Model. 2007, 200, 360–370. [Google Scholar] [CrossRef]
- National Supply Company. Grain Harvest Bulletin: CONAB. Available online: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos (accessed on 24 May 2024).
- Krindges, A. Modeling and Computational Simulation of a Three-Dimensional Diffusion-Advection Problem Using Navier-STOKES. Ph.D. Thesis, State University of Campinas, Campinas, Brazil, 2011. [Google Scholar]
- Diniz, G.L. Dispersion of Pollutants in an Air-Water System: Modeling, Approach and Applications. Ph.D. Thesis, State University of Campinas, Campinas, Brazil, 2003. [Google Scholar]
- Inforzato, N.F. Dispersion of Pollutants in an Air-Water System: Mathematical Modeling, Numerical Approximation and Computer Simulation. Ph.D. Thesis, State University of Campinas, Campinas, Brazil, 2008. [Google Scholar]
- Poletti, E.C.C. Pollutant Dispersion in a Reservoir System: Mathematical Modeling and Computational Simulation Using Numerical Approximation and Fuzzy Sets. Ph.D. Thesis, State University of Campinas, Campinas, Brazil, 2009. [Google Scholar]
- Okubo, A.; Levin, S.A. Diffusion and Ecological Problems: Modern Perspectives, 2nd ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Vásquez, J.C.S. Evolutionary Behavior of Production Water Discharge Resulting from Offshore Activity. Ph.D. Thesis, State University of Campinas, Campinas, Brazil, 2005. [Google Scholar]
- Edelstein-Keshet, L. Mathematical Models in Biology; Random-House: New York, NY, USA, 1988. [Google Scholar]
- Marchuk, G.I. Mathematical Models in Environmental Problems; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Boyce, W.E.; Diprima, R.C. Elementary Differential Equations and Boundary Value Problems, 9th ed.; LTC: Rio de Janeiro, Brazil, 2014. [Google Scholar]
- Poletti, E.C.C.; Meyer, J.F.C.A. Dispersion of Pollutants in a Reservoir System: Mathematical Modeling via Fuzzy Logic and Numerical Approximation. BioMat 2009, 19, 57–68. (In Portuguese) [Google Scholar]
- Carvalho, M.S.; Valério, J.V. Introduction to the Finite Element Method: Application in Fluid Dynamics; SBMAC: São Carlos, Brazil, 2012. [Google Scholar]
- Krindges, A. Finite Element Discontinuous Galerkin Method for Elliptic Equations. Master’s Thesis, Federal University of Santa Catarina, Florianópolis, Brazil, 2004. [Google Scholar]
- Melching, J.S.; Bromfield, K.R.; Kingsolver, C.H. Infection, Colonization, and Uredospore Production on Wayne Soybean by Four Cultures of Phakopsora pachyrhizi, the Cause of Soybean Rust. Phytopathology 1979, 69, 1262–1265. [Google Scholar] [CrossRef]
- Alves, S.A.M.; Furtado, G.Q.; Bergamin Filho, A. Influence of climatic conditions on soybean rust. In Asian Soybean Rust; Zambolim, L., Ed.; UFV, DFP: Viçosa, Brazil, 2006; pp. 37–60. [Google Scholar]
- Bonde, M.R.; Berner, D.K.; Nester, S.E.; Frederick, R.D. Effects of Temperature on Urediniospore Germination, Germ Tube Growth, and Initiation of Infection in Soybean by Phakopsora Isolates. Phytopathology 2007, 8, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, W.T.; Silva, M.A.A.; Igarashi, S.; Saab, O.J.G.A.; de França, J.A. Duration and percentage of leaf wetness determined by row spacing and influence on Asian soybean rust. Summa Phytopathol. 2014, 2, 123–127. (In Portuguese) [Google Scholar] [CrossRef]
- Alves, M.C.; Pozza, E.A.; Carvalho, L.G.; Sanches, L. Fuzzy logic system modeling soybean rust monocyclic process. In Soybean Physiology and Biochemistry; El-Shemy, H., Ed.; IntechOpen: London, UK, 2011; pp. 63–82. [Google Scholar]
- Silva, L.H.C.P.; Campos, H.D.; Silva, J.R.C.; Ribeiro, G.C.; Neves, D.L. Asian Rust in Goiás: Chemical control and alternative hosts. In I Brazilian Workshop on Asian Rust; Juliatti, F.C., Polizel, A.C., Hamawaki, O.T., Eds.; EDUFU: Uberlândia, Brazil, 2005; pp. 135–180. [Google Scholar]
- Andrade, P.J.M.; Andrade, D.F.A.A. Chemical Control of Asian Soybean Rust. In Asian Soybean Rust; Zambolim, L., Ed.; UFV, DFP: Viçosa, Brazil, 2006; pp. 61–72. [Google Scholar]
- Mamdani, E.H. Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. Comput. 1977, 12, 1182–1191. [Google Scholar] [CrossRef]
- Mato Grosso. Law No. 12160, of 20 June 2023. Available online: https://legislacao.mt.gov.br (accessed on 24 May 2024).
- Zagui, N.L.S.; Krindges, A.; Lotufo, A.D.P.; Minussi, C.R. Spatio-Temporal Modeling and Simulation of Asian Soybean Rust Based on Fuzzy System. Sensors 2022, 22, 668. [Google Scholar] [CrossRef] [PubMed]
- Altieri, M.A. Agroecology: Scientific Bases for Sustainable Agriculture, 4th ed.; Nordan-Comunidad: Montevideo, Uruguai, 1999. [Google Scholar]
Intensity | Value (km2/h) |
---|---|
Moderate | 0.11 |
0.15 | |
0.30 | |
High | 0.50 |
|
Parameter | Value | Unit of Measurement |
---|---|---|
0.02 | week | |
100.8 | /week | |
spore/(km/week) | ||
f | spore/(/week) |
City | Record | Average | Max |
---|---|---|---|
Sapezal | 13 December 2018 | 118,538 | 291,443 |
Jaciara | 18 December 2018 | 261,927 | 345,987 |
Tangará da Serra | 26 December 2018 | 5664 | 13,479 |
Campo Novo do Parecis | 27 December 2018 | 93,246 | 230,093 |
Querência | 28 December 2018 | 645,929 | 844,275 |
Campo Verde | 28 December 2018 | 605,664 | 1,023,302 |
Comodoro | 3 January 2019 | 292,909 | 386,616 |
Gaúcha do Norte | 8 January 2019 | 251,319 | 311,625 |
Ipiranga do Norte | 10 January 2019 | 5606 | 70,725 |
Campos de Júlio | 14 January 2019 | 198,609 | 283,814 |
Sorriso | 15 January 2019 | 668,136 | 899,254 |
Lucas do Rio Verde | 18 January 2019 | 1,253,994 | 1,340,409 |
Primavera do Leste | 21 January 2019 | 287,791 | 534,270 |
Nova Mutum | 22 January 2019 | 504,006 | 540,787 |
Feliz Natal | 22 January 2019 | 1888 | 13,077 |
Itiquira | 28 January 2019 | 1883 | 12,397 |
Rosário Oeste | 22 February 2019 | 295,360 | 352,821 |
Sinop | 15 March 2019 | 412,856 | 866,666 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longo Sartor Zagui, N.; Krindges, A.; Minussi, C.R.; Cecconello, M.d.S. Fuzzy Logic Theory and Spatiotemporal Modeling of the Fungus Phakopsora pachyrhizi Based on Differential Equations. Appl. Sci. 2024, 14, 7082. https://doi.org/10.3390/app14167082
Longo Sartor Zagui N, Krindges A, Minussi CR, Cecconello MdS. Fuzzy Logic Theory and Spatiotemporal Modeling of the Fungus Phakopsora pachyrhizi Based on Differential Equations. Applied Sciences. 2024; 14(16):7082. https://doi.org/10.3390/app14167082
Chicago/Turabian StyleLongo Sartor Zagui, Nayara, Andre Krindges, Carlos Roberto Minussi, and Moiseis dos Santos Cecconello. 2024. "Fuzzy Logic Theory and Spatiotemporal Modeling of the Fungus Phakopsora pachyrhizi Based on Differential Equations" Applied Sciences 14, no. 16: 7082. https://doi.org/10.3390/app14167082
APA StyleLongo Sartor Zagui, N., Krindges, A., Minussi, C. R., & Cecconello, M. d. S. (2024). Fuzzy Logic Theory and Spatiotemporal Modeling of the Fungus Phakopsora pachyrhizi Based on Differential Equations. Applied Sciences, 14(16), 7082. https://doi.org/10.3390/app14167082