Linguistic Interval-Valued Spherical Fuzzy Soft Set and Its Application in Decision Making
Abstract
:1. Introduction
- (1)
- LIVSFSS is proposed for the first time by combining the linguistic interval-valued spherical fuzzy set with the soft set, and its basic concepts, operations and properties are discussed.
- (2)
- In order to solve MADM problems and consider the influence of the parameter weight, the linguistic weighted choice value and the linguistic soft weighted overall choice value are redefined by analyzing other models. Then the MADM algorithm and parameter reduction algorithm are proposed.
- (3)
- We apply the MADM algorithm and parameter reduction algorithm to examples and compare them with some existing algorithms to illustrate their rationality and effectiveness.
2. Preliminaries
2.1. Linguistic Interval-Valued Spherical Fuzzy Set
- (1)
- order relation: , if ;
- (2)
- negation operator: , where ;
- (3)
- maximization operator: , if ;
- (4)
- minimization operator: , if
- (1)
- ;
- (2)
- ;
- (3)
- ;
- (4)
- ;
- (5)
- .
2.2. Fuzzy Soft Set
3. Linguistic Interval-Valued Spherical Fuzzy Soft Set
3.1. Basic Concept of LIVSFSS
- (1)
- ;
- (2)
- , is a linguistic interval-valued spherical fuzzy subset of .
- (1)
- is a linguistic interval-valued spherical fuzzy soft subset of ;
- (2)
- is a linguistic interval-valued spherical fuzzy soft subset of .
3.2. Operations on LIVSFSS
- (1)
- Transitive law: If and , then ;
- (2)
- Commutative law: and ;
- (3)
- Idempotent law: and ;
- (4)
- Associative law: and ;
- (5)
- Distributive law: and ;
- (6)
- Absorption law: and ;
- (7)
- De Morgan’s law: and .
- (1)
- Associative law: and ;
- (2)
- Distributive law: and ;
- (3)
- De Morgan’s law: and .
- (2). Suppose , where , . Then we have . And suppose , , .
- (3). Suppose , where , . Then we have . According to Definition 15, , .
- (1)
- ;
- (2)
- ;
- (3)
- ;
- (4)
- ;
- (5)
- .
- (1)
- ;
- (2)
- ;
- (3)
- ;
- (4)
- ;
- (5)
- .
- (1)
- ;
- (2)
- ;
- (3)
- .
4. Application of Linguistic Interval-Valued Spherical Fuzzy Soft Set
4.1. Multi-Attribute Decision Making
Algorithm 1: MADM algorithm based on LIVSFSS |
. by Formula (19). by Formula (20). . as the best choice candidate. |
4.2. Parameter Reduction
Algorithm 2: PRAKC |
Step1: Input an Step2: by Formula (19). Step3: by Formula (20). Step4: . . candidates. |
4.3. Comparative Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Pawlak, Z. Rough sets. Int. J. Comput. Inf. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Gau, W.L.; Buehrer, D.J. Vague sets. IEEE Trans. Syst. Man Cybern. 1993, 23, 610–614. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.T.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 349–363. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 2014, 22, 958–965. [Google Scholar] [CrossRef]
- Cuong, B.C.; Kreinovich, V. Picture fuzzy sets. J. Comput. Sci. Cybern. 2014, 30, 409–420. [Google Scholar]
- Gündoğdu, F.K.; Kahraman, C. Spherical fuzzy sets and spherical fuzzy TOPSIS method. J. Intell. Fuzzy Syst. 2019, 36, 337–352. [Google Scholar] [CrossRef]
- Gul, M.; Ak, M.F. A modified failure modes and effects analysis using interval-valued spherical fuzzy extension of TOPSIS method: Case study in a marble manufacturing facility. Soft. Comput. 2021, 25, 6157–6178. [Google Scholar] [CrossRef]
- Duleba, S.; Gundogdu, F.K.; Moslem, S. Interval-valued spherical fuzzy analytic hierarchy process method to evaluate public transportation development. Informatica 2021, 32, 661–686. [Google Scholar] [CrossRef]
- Ünver, M.; Olgun, M.; Türkarslan, E. Cosine and cotangent similarity measures based on Choquet integral for spherical fuzzy sets and applications to pattern recognition. J. Comput. Cogn. Eng. 2022, 1, 21–31. [Google Scholar]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-III. Inf. Sci. 1975, 8, 43–80. [Google Scholar] [CrossRef]
- Herrera, F.; Herrera, V.E.; Verdegay, J.L. A model of monsensus in group decision making under linguistic assessments. Fuzzy Sets Syst. 1996, 78, 73–87. [Google Scholar] [CrossRef]
- Xu, Z. On generalized induced linguistic aggregation operators. Int. J. Gen. Syst. 2006, 35, 17–28. [Google Scholar] [CrossRef]
- Ünver, M.; Türkarslan, E.; Ye, J.; Olgun, M. Linguistic single and interval-valued hybrid intuitionistic fuzzy multi-sets and applications to multi-criteria group decision making. J. Mult. Valued Log. Soft Comput. 2023, 41, 1–20. [Google Scholar]
- Liu, Y.; Zhang, Y.; Cui, X.; Zou, L. Linguistic Interval-Valued Spherical Fuzzy Sets and Related Properties. In Proceedings of the CAAI International Conference on Artificial Intelligence, Beijing, China, 17–28 August 2022. [Google Scholar]
- Gurmani, S.; Chen, H.; Bai, Y. Multi-attribute group decision-making model for selecting the most suitable construction company using the linguistic interval-valued T-spherical fuzzy TOPSIS method. Appl. Intell. 2023, 53, 11768–11785. [Google Scholar] [CrossRef]
- Molodtsov, D. Soft set theory—First results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef]
- Han, B.; Li, Y.; Geng, S. 0-1 Linear programming methods for optimal normal and pseudo parameter reductions of soft sets. Appl. Soft Comput. 2017, 54, 467–484. [Google Scholar] [CrossRef]
- Ma, X.; Qin, H. Soft Set Based Parameter Value Reduction for Decision Making Application. IEEE Access 2019, 7, 35499–35511. [Google Scholar] [CrossRef]
- Jacob, D.; Fudzee, M.; Salamat, M.; Yanto, I.; Abawajy, J. Soft Set Theory Based Decision Support System for Mining Electronic Government Dataset. Int. J. Data Warehous. Min. 2020, 16, 39–62. [Google Scholar]
- Maji, P.K.; Biswas, R.; Roy, A.R. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602. [Google Scholar]
- Yang, X.; Lin, T.; Yang, J.; Li, Y.; Yu, D. Combination of interval-valued fuzzy set and soft set. Comput. Math. Appl. 2009, 58, 521–527. [Google Scholar] [CrossRef]
- Fathima, P.A.P.; John, S.J.; Babitha, K.V.; Garg, H. Spherical fuzzy soft sets and its applications in decision-making problems. J. Intell. Fuzzy Syst. 2019, 37, 8237–8250. [Google Scholar]
- Liu, Y.; Alcantud, J.C.R.; Rodríguez, R.M.; Qin, K.; Martínez, L. Intertemporal Hesitant Fuzzy Soft Sets: Application to Group Decision Making. J. Intell. Fuzzy Syst. 2020, 22, 619–635. [Google Scholar] [CrossRef]
- Ahmed, D.; Dai, B.; Khalil, A. Possibility Fermatean fuzzy soft set and its application in decision-making. J. Intell. Fuzzy Syst. 2023, 44, 1265–1574. [Google Scholar] [CrossRef]
- Khan, M.; Kuman, P.; Liu, P.; Kuman, W. Another view on generalized interval-valued intuitionistic fuzzy soft set and its applications in decision support system. J. Intell. Fuzzy Syst. 2020, 38, 4327–4341. [Google Scholar] [CrossRef]
- Cheng, C.; Cao, Z.; Xiao, F. A generalized belief interval-valued soft set with applications in decision making. Soft Comput. 2020, 24, 9339–9350. [Google Scholar] [CrossRef]
- Khan, A.; Kumam, P.; Ashraf, S.; Kumam, W. Generalized picture fuzzy soft set and their application in decision support systems. Symmetry 2019, 11, 415. [Google Scholar] [CrossRef]
- Akram, M.; Ali, G.; Peng, X.; Zain-ul-Abidin, M. Hybrid group decision-making technique under spherical fuzzy N-soft expert sets. Artif. Intell. Rev. 2022, 55, 4117–4163. [Google Scholar] [CrossRef]
- Ma, X.; Qin, H.; Abawajy, J. Interval-valued intuitionistic fuzzy soft sets based decision making and parameter reduction. IEEE Trans Fuzzy Syst. 2020, 30, 357–369. [Google Scholar] [CrossRef]
- Ma, X.; Fei, Q.; Qin, H.; Li, H.; Chen, W. A new efficient decision making algorithm based on interval-valued fuzzy soft set. Appl. Intell. 2021, 51, 3226–3240. [Google Scholar] [CrossRef]
- Jan, N.; Gwak, J.; Pamucar, D. A robust hybrid decision making model for Human-Computer interaction in the environment of Bipolar complex picture fuzzy soft Sets. Inf. Sci. 2023, 3645, 119163. [Google Scholar] [CrossRef]
- Karaaslan, F.; Karamaz, F. Hesitant fuzzy parameterized hesitant fuzzy soft sets and their applications in decision-making. Inf. Sci. 2022, 99, 1868–1889. [Google Scholar] [CrossRef]
- Ma, X.; Qin, H. A new parameter reduction algorithm for interval-valued fuzzy soft sets based on Pearson’s product moment coefficient. Appl. Intell. 2020, 50, 3718–3730. [Google Scholar] [CrossRef]
- Qin, H.; Gu, C.; Ma, X.; Wei, W.; Wang, Y. S-Score Table-Based Parameter-Reduction Approach for Fuzzy Soft Sets. Symmetry 2022, 14, 1719. [Google Scholar] [CrossRef]
- Khan, A.; Zhu, Y. New algorithms for parameter reduction of intuitionistic fuzzy soft sets. Comput. Appl. Math. 2020, 39, 232. [Google Scholar] [CrossRef]
- Xue, B.; Qin, K. Properties of Triple I Reasoning Method Based on Fuzzy Soft Set. Comput. Sci. 2018, 45, 215–219. [Google Scholar]
- Qin, K.; Yang, J.; Liu, Z. A fuzzy soft set based approximate reasoning method. J. Intell. Fuzzy Syst. 2017, 32, 831–839. [Google Scholar] [CrossRef]
- Biswas, B.; Ghosh, S.; Bhattacharyya, S.; Platos, J.; Snasel, V.; Clakrabarti, A. Chest X-ray enhancement to interpret pneumonia malformation based on fuzzy soft set and Dempster-Shafer theory of evidence. Appl. Soft Comput. 2020, 86, 105889. [Google Scholar] [CrossRef]
) | [4.214,4.562] | 8.776 | |||
( | [3.637,3.931] | 7.568 | |||
[3.955,4.111] | 8.066 | ||||
[4.040,4.164] | 8.204 |
[2.981,3.174] | 6.155 | |||
( | [2.405,2.543] | 4.948 | ||
( | [2.465,2.524] | 4.989 | ||
[2.707,2.776] | 5.483 |
Algorithms | KDCRU | RPR |
---|---|---|
KOCPR | keep the decision result of the top choices | |
KTTCPR | keep the decision result of the top three choices | |
SPR | keep the decision result of all objects choices | |
PRAKC | keep the decision result of the top choices, | , we can obtain , we can obtain , we can obtain , we can obtain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, T.; Yang, Z.; Wang, Y.; Zheng, H.; Zou, L.; Martínez, L. Linguistic Interval-Valued Spherical Fuzzy Soft Set and Its Application in Decision Making. Appl. Sci. 2024, 14, 973. https://doi.org/10.3390/app14030973
Hou T, Yang Z, Wang Y, Zheng H, Zou L, Martínez L. Linguistic Interval-Valued Spherical Fuzzy Soft Set and Its Application in Decision Making. Applied Sciences. 2024; 14(3):973. https://doi.org/10.3390/app14030973
Chicago/Turabian StyleHou, Tie, Zheng Yang, Yanling Wang, Hongliang Zheng, Li Zou, and Luis Martínez. 2024. "Linguistic Interval-Valued Spherical Fuzzy Soft Set and Its Application in Decision Making" Applied Sciences 14, no. 3: 973. https://doi.org/10.3390/app14030973
APA StyleHou, T., Yang, Z., Wang, Y., Zheng, H., Zou, L., & Martínez, L. (2024). Linguistic Interval-Valued Spherical Fuzzy Soft Set and Its Application in Decision Making. Applied Sciences, 14(3), 973. https://doi.org/10.3390/app14030973