The Influence of AR on Purchase Intentions of Cultural Heritage Products: The TAM and Flow-Based Study
Abstract
:1. Introduction
2. Theoretical Foundations
2.1. The Technology Acceptance Model
2.2. Flow Theory
3. Hypothesis Development and Research Model
3.1. User-Perceived Factors
3.1.1. Immersion
3.1.2. Interactivity
3.1.3. Aesthetic Quality
3.2. Technology Acceptance Factors and Psychological Experience Factor for Users
3.2.1. Perceived Ease of Use
3.2.2. Perceived Usefulness
3.2.3. Flow Experience
3.2.4. Consumer Purchase Intention
3.2.5. Research Model
4. Methodology
4.1. Questionnaire Design
4.2. Data Collection and General Demographics
4.3. Research Methodology
5. Results
5.1. Measurement Model
5.2. Structural Equation Modeling and Hypothesis Verification
6. Discussion and Implications
6.1. Discussion and Conclusions
6.2. Implications
6.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Mean | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Gender | 1.41 | 0.49 | - | |||||||||||
2. Age | 2.55 | 1.26 | 0.008 | - | ||||||||||
3. EDU | 2.68 | 1.02 | 0.082 * | 0.005 | - | |||||||||
4. Number | 2.15 | 0.97 | 0.018 | −0.022 | −0.052 | - | ||||||||
5. Channels | 2.39 | 1.22 | −0.043 | −0.006 | 0.028 | −0.002 | - | |||||||
6. IM | 3.60 | 1.06 | 0.037 | 0.076 | 0.028 | −0.014 | −0.053 | 0.813 | ||||||
7. IN | 3.60 | 1.06 | 0.052 | 0.076 | 0.004 | 0.007 | −0.034 | 0.451 ** | 0.850 | |||||
8. AQ | 3.53 | 1.01 | −0.054 | 0.040 | −0.026 | −0.034 | 0.012 | 0.373 ** | 0.439 ** | 0.824 | ||||
9. PU | 3.75 | 0.89 | 0.061 | 0.020 | 0.030 | −0.019 | −0.003 | 0.261 ** | 0.208 ** | 0.191 ** | 0.806 | |||
10. PEU | 3.59 | 0.98 | −0.011 | −0.007 | 0.060 | −0.012 | −0.016 | 0.292 ** | 0.329 ** | 0.303 ** | 0.312 ** | 0.802 | ||
11. FE | 3.71 | 0.92 | −0.013 | 0.000 | 0.082 * | −0.028 | −0.070 | 0.326 ** | 0.349 ** | 0.318 ** | 0.322 ** | 0.321 ** | 0.868 | |
12. CPI | 3.60 | 0.99 | 0.001 | 0.047 | −0.040 | −0.085 * | −0.046 | 0.252 ** | 0.229 ** | 0.176 ** | 0.224 ** | 0.278 ** | 0.271 ** | 0.800 |
References
- Dargan, S.; Bansal, S.; Kumar, M.; Mittal, A.; Kumar, K. Augmented reality: A comprehensive review. Arch. Comput. Methods Eng. 2023, 30, 1057–1080. [Google Scholar] [CrossRef]
- Azuma, R.T. A survey of augmented reality. Presence Teleoperators Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Faust, F.; Roepke, G.; Catecati, T.; Araujo, F.; Ferreira, M.G.G.; Albertazzi, D. Use of augmented reality in the usability evaluation of products. Work 2012, 41 (Suppl. S1), 1164–1167. [Google Scholar] [CrossRef]
- Cranmer, E.E.; Tom Dieck, M.C.; Jung, T. The role of augmented reality for sustainable development: Evidence from cultural heritage tourism. Tour. Manag. Perspect. 2023, 49, 101196. [Google Scholar] [CrossRef]
- Naik, M.K.P.; Bhardwaj, P. Barriers for the adoption of augmented reality business model in the Indian handloom industry. Oper. Manag. Res. 2024, 17, 1–17. [Google Scholar] [CrossRef]
- Yim, M.Y.C.; Chu, S.C.; Sauer, P.L. Is augmented reality technology an effective tool for e-commerce? An interactivity and vividness perspective. J. Interact. Mark. 2017, 39, 89–103. [Google Scholar] [CrossRef]
- Pine, B.J.; James, H. Gilmore. The Experience Economy; Harvard Business Press: Boston, MA, USA, 2011. [Google Scholar]
- Chung, N.; Lee, H.; Kim, J.Y.; Koo, C. The role of augmented reality for experience-influenced environments: The case of cultural heritage tourism in Korea. J. Travel Res. 2018, 57, 627–643. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, X.; Guo, X.; Jolibert, A. Consumer purchase intention of intangible cultural heritage product (ICHP): Effects of cultural identity, consumer knowledge and manufacture type. Asia Pac. J. Mark. Logist. 2023, 35, 726–744. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M. The evolving self: A psychology for the third millennium. J. Leis. Res. 1995, 27, 300. [Google Scholar]
- Ajzen, I. Understanding Attitudes and Predictiing Social Behavior; Englewood Cliffs: Bergen County, NJ, USA, 1980. [Google Scholar]
- Ajzen, I. From intentions to actions: A theory of planned behavior. In Action Control: From Cognition to Behavior; Springer: Berlin/Heidelberg, Germany, 1985; pp. 11–39. [Google Scholar]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef]
- Wang, S.; Chen, S.; Nah, K. Exploring the Mechanisms Influencing Users’ Willingness to Pay for Green Real Estate Projects in Asia Based on Technology Acceptance Modeling Theory. Buildings 2024, 14, 349. [Google Scholar] [CrossRef]
- Czikszentmihalyi, M. Flow: The Psychology of Optimal Experience; Harper & Row: New York, NY, USA, 1990. [Google Scholar]
- Nakamura, J.; Csikszentmihalyi, M. The concept of flow. In Handbook of Positive Psychology; Springer: Berlin/Heidelberg, Germany, 2002; Volume 89, p. 105. [Google Scholar]
- Csikszentmihalyi, M. Beyond Boredom and Anxiety; Jossey-Bass: Hoboken, NJ, USA, 2000. [Google Scholar]
- Csikszentmihalyi, M.; Csikszentmihalyi, M.; Abuhamdeh, S.; Nakamura, J. Flow and the foundations of positive psychology. In The Collected Works of Mihaly Csikszentmihalyi; Springer: Dordrecht, The Netherlands, 2014; pp. 227–238. [Google Scholar]
- Javornik, A. ‘It’s an illusion, but it looks real!’Consumer affective, cognitive and behavioural responses to augmented reality applications. J. Mark. Manag. 2016, 32, 987–1011. [Google Scholar] [CrossRef]
- Barhorst, J.B.; McLean, G.; Shah, E.; Mack, R. Blending the real world and the virtual world: Exploring the role of flow in augmented reality experiences. J. Bus. Res. 2021, 122, 423–436. [Google Scholar] [CrossRef]
- Raptis, G.E.; Fidas, C.; Avouris, N. Effects of mixed-reality on players’ behaviour and immersion in a cultural tourism game: A cognitive processing perspective. Int. J. Hum.-Comput. Stud. 2018, 114, 69–79. [Google Scholar] [CrossRef]
- Weibel, D.; Wissmath, B. Immersion in computer games: The role of spatial presence and flow. Int. J. Comput. Games Technol. 2011, 2011, 282345. [Google Scholar] [CrossRef]
- Javornik, A. Augmented reality: Research agenda for studying the impact of its media characteristics on consumer behaviour. J. Retail. Consum. Serv. 2016, 30, 252–261. [Google Scholar] [CrossRef]
- Jennett, C.; Cox, A.L.; Cairns, P.; Dhoparee, S.; Epps, A.; Tijs, T.; Walton, A. Measuring and defining the experience of immersion in games. Int. J. Hum.-Comput. Stud. 2008, 66, 641–661. [Google Scholar] [CrossRef]
- Lister, M.; Dovey, J.; Giddings, S.; Grant, I.; Kelly, K. New Media: A Critical Introduction; Routledge: Oxfordshire, UK, 2008. [Google Scholar]
- Song, J.H.; Zinkhan, G.M. Determinants of perceived web site interactivity. J. Mark. 2008, 72, 99–113. [Google Scholar] [CrossRef]
- Billinghurst, M.; Kato, H. Collaborative augmented reality. Commun. ACM 2002, 45, 64–70. [Google Scholar] [CrossRef]
- Downes, E.J.; McMillan, S.J. Defining interactivity: A qualitative identification of key dimensions. New Media Soc. 2000, 2, 157–179. [Google Scholar] [CrossRef]
- Ariely, D. Controlling the information flow: Effects on consumers’ decision making and preferences. J. Consum. Res. 2000, 27, 233–248. [Google Scholar] [CrossRef]
- Van Noort, G.; Voorveld, H.A.; Van Reijmersdal, E.A. Interactivity in brand web sites: Cognitive, affective, and behavioral responses explained by consumers’ online flow experience. J. Interact. Mark. 2012, 26, 223–234. [Google Scholar] [CrossRef]
- Hoffman, D.L.; Novak, T.P. Flow online: Lessons learned and future prospects. J. Interact. Mark. 2009, 23, 23–34. [Google Scholar] [CrossRef]
- Papagiannis, H. Working towards defining an aesthetics of augmented reality: A Medium Transition. Convergence 2014, 20, 33–40. [Google Scholar] [CrossRef]
- Hoffman, D.L.; Novak, T.P. Marketing in hypermedia computer-mediated environments: Conceptual foundations. J. Mark. 1996, 60, 50–68. [Google Scholar] [CrossRef]
- Huang, T.L.; Liao, S. A model of acceptance of augmented-reality interactive technology: The moderating role of cognitive innovativeness. Electron. Commer. Res. 2015, 15, 269–295. [Google Scholar] [CrossRef]
- Hausman, A.V.; Siekpe, J.S. The effect of web interface features on consumer online purchase intentions. J. Bus. Res. 2009, 62, 5–13. [Google Scholar] [CrossRef]
- Gao, L.; Bai, X. Online consumer behaviour and its relationship to website atmospheric induced flow: Insights into online travel agencies in China. J. Retail. Consum. Serv. 2014, 21, 653–665. [Google Scholar] [CrossRef]
- Jeon, H.; Ok, C.; Choi, J. Destination marketing organization website visitors’ flow experience: An application of Plog’s model of personality. J. Travel Tour. Mark. 2018, 35, 397–409. [Google Scholar] [CrossRef]
- Mellet, E.; Tzourio, N.; Crivello, F.; Joliot, M.; Denis, M.; Mazoyer, B. Functional anatomy of spatial mental imagery generated from verbal instructions. J. Neurosci. 1996, 16, 6504–6512. [Google Scholar] [CrossRef]
- Carlson, J.; O’Cass, A. Creating commercially compelling website-service encounters: An examination of the effect of website-service interface performance components on flow experiences. Electron. Mark. 2011, 21, 237–253. [Google Scholar] [CrossRef]
- Ha, Y.; Lennon, S.J. Online visual merchandising (VMD) cues and consumer pleasure and arousal: Purchasing versus browsing situation. Psychol. Mark. 2010, 27, 141–165. [Google Scholar] [CrossRef]
- Dacko, S.G. Enabling smart retail settings via mobile augmented reality shopping apps. Technol. Forecast. Soc. Chang. 2017, 124, 243–256. [Google Scholar] [CrossRef]
- Rese, A.; Baier, D.; Geyer-Schulz, A.; Schreiber, S. How augmented reality apps are accepted by consumers: A comparative analysis using scales and opinions. Technol. Forecast. Soc. Chang. 2017, 124, 306–319. [Google Scholar] [CrossRef]
- Kim, J.; Forsythe, S. Adoption of virtual try-on technology for online apparel shopping. J. Interact. Mark. 2008, 22, 45–59. [Google Scholar] [CrossRef]
- Nikhashemi, S.R.; Knight, H.H.; Nusair, K.; Liat, C.B. Augmented reality in smart retailing: A (n)(A) Symmetric Approach to continuous intention to use retail brands’ mobile AR apps. J. Retail. Consum. Serv. 2021, 60, 102464. [Google Scholar] [CrossRef]
- Kim, Y.J.; Han, J. Why smartphone advertising attracts customers: A model of Web advertising, flow, and personalization. Comput. Hum. Behav. 2014, 33, 256–269. [Google Scholar] [CrossRef]
- Shin, D. How does immersion work in augmented reality games? A user-centric view of immersion and engagement. Inform. Commun. Soc. 2019, 22, 1212–1229. [Google Scholar]
- Wang, S.; Nah, K. Exploring Sustainable Learning Intentions of Employees Using Online Learning Modules of Office Apps Based on User Experience Factors: Using the Adapted UTAUT Model. Appl. Sci. 2024, 14, 4746. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychol. Bull. 1977, 84, 888. [Google Scholar] [CrossRef]
- Wu, J.J.; Chang, Y.S. Towards understanding members’ interactivity, trust, and flow in online travel community. Ind. Manag. Data Syst. 2005, 105, 937–954. [Google Scholar] [CrossRef]
- Kerlinger, F.N. Foundations of Behavioral Research; Holt, Rinehart and Winston: New York, NY, USA, 1966. [Google Scholar]
- Kim, J.; Forsythe, S. Sensory enabling technology acceptance model (SE-TAM): A multiple-group structural model comparison. Psychol. Mark. 2008, 25, 901–922. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, C.A. Consumer behavior in an augmented reality environment: Exploring the effects of flow via augmented realism and technology fluidity. Telemat. Inform. 2022, 71, 101833. [Google Scholar] [CrossRef]
- Armstrong, J.S.; Overton, T.S. Estimating nonresponse bias in mail surveys. J. Mark. Res. 1977, 14, 396–402. [Google Scholar] [CrossRef]
- Byrne, B.M. Structural Equation Modeling with Mplus: Basic Concepts, Applications, and Programming; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Thiele, K.O. Mirror, mirror on the wall: A comparative evaluation of composite-based structural equation modeling methods. J. Acad. Mark. Sci. 2017, 45, 616–632. [Google Scholar] [CrossRef]
- Raykov, T.; Marcoulides, G.A. A method for comparing completely standardized solutions in multiple groups. Struct. Equ. Model. 2000, 7, 292–308. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2023. [Google Scholar]
- Schumacker, R.E.; Lomax, R.G. A Beginner’s Guide to Structural Equation Modeling; Psychology Press: London, UK, 2004. [Google Scholar]
- Bentler, P.M.; Bonett, D.G. Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 1980, 88, 588. [Google Scholar] [CrossRef]
- Rönkkö, M.; Cho, E. An updated guideline for assessing discriminant validity. Organ. Res. Methods 2022, 25, 6–14. [Google Scholar] [CrossRef]
- Hair Jr, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. An Introduction to Structural Equation Modeling. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook; Springer Nature: London, UK, 2021; pp. 1–29. [Google Scholar]
- Hair, J.F. Multivariate Data Analysis; Kennesaw State University: Kennesaw, GA, USA, 2009. [Google Scholar]
- Daassi, M.; Debbabi, S. Intention to reuse AR-based apps: The combined role of the sense of immersion, product presence and perceived realism. Inf. Manag. 2021, 58, 103453. [Google Scholar] [CrossRef]
- Childers, T.L.; Carr, C.L.; Peck, J.; Carson, S. Hedonic and utilitarian motivations for online retail shopping behavior. J. Retail. 2001, 77, 511–535. [Google Scholar] [CrossRef]
- Park, M.; Yoo, J. Effects of perceived interactivity of augmented reality on consumer responses: A mental imagery perspective. J. Retail. Consum. Serv. 2020, 52, 101912. [Google Scholar] [CrossRef]
- Chung, N.; Han, H.; Joun, Y. Tourists’ intention to visit a destination: The role of augmented reality (AR) application for a heritage site. Comput. Hum. Behav. 2015, 50, 588–599. [Google Scholar] [CrossRef]
- Hsu, C.L.; Lu, H.P. Why do people play on-line games? An extended TAM with social influences and flow experience. Inf. Manag. 2004, 41, 853–868. [Google Scholar] [CrossRef]
- Schuemie, M.J.; Van Der Straaten, P.; Krijn, M.; Van Der Mast, C.A. Research on presence in virtual reality: A survey. Cyberpsychol. Behav. 2001, 4, 183–201. [Google Scholar] [CrossRef]
Measure | Reference | Scale Items | |
---|---|---|---|
Immersion (IM) | Jennett et al. [25] | IM1 | I feel like I really empathize with AR’s presentation of the cultural heritage product |
IM2 | I was fully engrossed in the AR technology experience | ||
IM3 | I didn’t even realize I was using any AR devices and controls | ||
IM4 | For my shopping experience, it felt like only a short time had passed | ||
Interactivity (IN) | Yim et al. [6] Song and Zinkhan [27] | IN1 | I have some control over what I want to see in the AR |
IN2 | I can control what I want to see in the AR | ||
IN3 | I can control the pace of interaction with AR | ||
IN4 | AR was able to respond quickly to my specific needs | ||
Aesthetic Quality (AQ) | Huang and Liao [35] | AQ1 | The AR presentation of the cultural heritage product is visually appealing |
AQ2 | The way AR displays cultural heritage products is beautiful | ||
AQ3 | I like the AR visualization of the cultural heritage product | ||
AQ4 | I thought it was an interesting way to learn about cultural heritage products through AR displays | ||
Perceived Ease of Use (PEU) | Kim and Forsythe [52] Chen and Lin [53] | PEU1 | I have access to the cultural heritage product I need at my fingertips through AR |
PEU2 | AR puts cultural heritage product into the form I want it to take | ||
PEU3 | I can use AR to browse content features that provide tips, information and fun | ||
PEU4 | AR gives me the freedom to transition from one product category to the next | ||
Perceived Usefulness (PU) | Kim and Forsythe [52] | PU1 | AR saves me time buying cultural heritage products |
PU2 | AR has improved the quality of my search for purchasing cultural heritage products | ||
PU3 | AR allows me to virtually experience cultural heritage products faster! | ||
PU4 | AR enables me to clearly understand and remember the historical background and design ideas of cultural heritage products | ||
Flow Experience (FE) | Hoffman and Novak [32] Yim et al. [6] | FE1 | All my attention was drawn to the cultural heritage product on the AR display |
FE2 | AR’s cultural heritage product piqued my curiosity | ||
FE3 | AR technology has awakened my intrinsic interest in cultural heritage products | ||
FE4 | I felt like time flew by during the experience | ||
Consumer Purchase Intention (CPI) | Chen and Lin [53] | CPI1 | I would like to recommend cultural heritage shopping places or websites that use AR to others |
CPI2 | I found the cultural heritage shopping experience with AR to be enjoyable | ||
CPI3 | I plan to visit a shopping center or website that uses AR when I need to purchase a cultural heritage product in the future | ||
CPI4 | I would like to experience AR again to learn more about other cultural heritage products |
Item | Variable | Frequency | Percentage |
---|---|---|---|
Gender | Male | 356 | 59.0% |
Female | 247 | 41.0% | |
Age | 18–29 | 151 | 25.0% |
30–39 | 169 | 28.0% | |
40–49 | 139 | 23.1% | |
50–59 | 90 | 14.9% | |
60 years and over | 54 | 9.0% | |
Educational background | High school diploma | 61 | 10.1% |
Bachelor’s degree | 235 | 39.0% | |
Master’s degree | 169 | 28.0% | |
Doctor’s degree | 114 | 18.9% | |
Other | 24 | 4.0% | |
Number of cultural heritage products purchased after experiencing AR | Less than 3 times | 181 | 30.0% |
3–6 times | 217 | 36.0% | |
7–10 times | 139 | 23.1% | |
More than 10 times | 66 | 10.9% | |
Places where cultural heritage products are most often purchased after an AR experience | Museums | 218 | 36.2% |
Cultural heritage tourism area | 96 | 15.9% | |
Antique stores or auctions | 127 | 21.1% | |
Online cultural heritage store | 162 | 26.9% |
Total Variance Explained | ||||||
---|---|---|---|---|---|---|
Initial Eigenvalues % of | Extraction Sums of Squared Loadings % of | |||||
Component | Total | Variance | Cumulative % | Total | Variance | Cumulative % |
1 | 8.567 | 30.597 | 30.597 | 8.567 | 30.597 | 30.597 |
2 | 2.900 | 40.953 | 40.953 | 2.900 | 10.356 | 40.953 |
3 | 2.334 | 49.289 | 49.289 | 2.334 | 8.337 | 49.289 |
4 | 2.114 | 56.839 | 56.839 | 2.114 | 7.549 | 56.839 |
5 | 2.207 | 64.078 | 64.078 | 2.027 | 7.240 | 64.078 |
6 | 1.813 | 70.555 | 70.555 | 1.813 | 6.477 | 70.555 |
7 | 1.623 | 76.351 | 76.351 | 1.623 | 5.796 | 76.351 |
Variable | Item | Factor Loading | CR | AVE | Cronbach’s Alpha |
---|---|---|---|---|---|
Immersion (IM) | IM1 | 0.884 | 0.886 | 0.662 | 0.886 |
IM2 | 0.840 | ||||
IM3 | 0.744 | ||||
IM4 | 0.778 | ||||
Interactivity (IN) | IN1 | 0.786 | 0.912 | 0.722 | 0.911 |
IN2 | 0.888 | ||||
IN3 | 0.896 | ||||
IN4 | 0.823 | ||||
Aesthetic quality (AQ) | AQ1 | 0.757 | 0.894 | 0.680 | 0.893 |
AQ2 | 0.893 | ||||
AQ3 | 0.816 | ||||
AQ4 | 0.826 | ||||
Perceived ease of use (PEU) | PEU1 | 0.796 | 0.881 | 0.649 | 0.879 |
PEU2 | 0.794 | ||||
PEU3 | 0.781 | ||||
PEU4 | 0.850 | ||||
Perceived usefulness (PU) | PU1 | 0.844 | 0.878 | 0.643 | 0.876 |
PU2 | 0.791 | ||||
PU3 | 0.778 | ||||
PU4 | 0.792 | ||||
Flow experience (FE) | FE1 | 0.818 | 0.925 | 0.754 | 0.917 |
FE2 | 0.880 | ||||
FE3 | 0.909 | ||||
FE4 | 0.864 | ||||
Consumer purchase intention (CPI) | CPI1 | 0.814 | 0.877 | 0.640 | 0.875 |
CPI2 | 0.777 | ||||
CPI3 | 0.829 | ||||
CPI4 | 0.779 |
Measurement Indicators | CMIN | DF | CMIN/DF | SRMR | TLI | CFI | RMSEA |
---|---|---|---|---|---|---|---|
Measured value | - | - | <3 | <0.08 | >0.9 | >0.9 | <0.08 |
Reference standard | 501.402 | 329 | 1.524 | 0.043 | 0.982 | 0.984 | 0.03 |
Measurement Indicators | CMIN | DF | CMIN/DF | SRMR | TLI | CFI | RMSEA |
---|---|---|---|---|---|---|---|
Measured value | - | - | <3 | <0.08 | >0.9 | >0.9 | <0.08 |
Reference standard | 534.886 | 333 | 1.606 | 0.057 | 0.979 | 0.981 | 0.032 |
Hypothesis | Path | STD. Estimate | S.E. | C.R. | p-Value | Result | ||
---|---|---|---|---|---|---|---|---|
H1a | IM | → | PU | 0.171 | 0.039 | 3.170 | 0.002 | Supported |
H1b | IM | → | PEU | 0.149 | 0.043 | 2.833 | 0.005 | Supported |
H1c | IM | → | FE | 0.150 | 0.042 | 2.998 | 0.003 | Supported |
H2a | IN | → | PU | 0.021 | 0.045 | 0.380 | 0.704 | Not supported |
H2b | IN | → | PEU | 0.206 | 0.050 | 3.818 | *** | Supported |
H2c | IN | → | FE | 0.155 | 0.050 | 3.010 | 0.003 | Supported |
H3a | AQ | → | PU | 0.023 | 0.050 | 0.444 | 0.657 | Not supported |
H3b | AQ | → | PEU | 0.175 | 0.056 | 3.413 | *** | Supported |
H3c | AQ | → | FE | 0.135 | 0.055 | 2.752 | 0.006 | Supported |
H4 | PEU | → | PU | 0.299 | 0.044 | 5.992 | *** | Supported |
H5 | PEU | → | FE | 0.219 | 0.048 | 4.785 | *** | Supported |
H6 | PU | → | CPI | 0.121 | 0.053 | 2.520 | 0.012 | Supported |
H7 | PEU | → | CPI | 0.209 | 0.051 | 4.044 | *** | Supported |
H8 | FE | → | CPI | 0.183 | 0.044 | 3.897 | *** | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Sun, W.; Liu, J.; Nah, K.; Yan, W.; Tan, S. The Influence of AR on Purchase Intentions of Cultural Heritage Products: The TAM and Flow-Based Study. Appl. Sci. 2024, 14, 7169. https://doi.org/10.3390/app14167169
Wang S, Sun W, Liu J, Nah K, Yan W, Tan S. The Influence of AR on Purchase Intentions of Cultural Heritage Products: The TAM and Flow-Based Study. Applied Sciences. 2024; 14(16):7169. https://doi.org/10.3390/app14167169
Chicago/Turabian StyleWang, Siqin, Weiqi Sun, Jing Liu, Ken Nah, Wenjun Yan, and Suqin Tan. 2024. "The Influence of AR on Purchase Intentions of Cultural Heritage Products: The TAM and Flow-Based Study" Applied Sciences 14, no. 16: 7169. https://doi.org/10.3390/app14167169
APA StyleWang, S., Sun, W., Liu, J., Nah, K., Yan, W., & Tan, S. (2024). The Influence of AR on Purchase Intentions of Cultural Heritage Products: The TAM and Flow-Based Study. Applied Sciences, 14(16), 7169. https://doi.org/10.3390/app14167169