Topology Optimization with Explicit Components Considering Stress Constraints
Abstract
:1. Introduction
2. MMC Topology Optimization Framework and Geometrical Description
2.1. MMC Topology Optimization Method
2.2. A New Topology Description Function
3. Problem Formulation
3.1. Problem Statement and Mathematical Formulation
3.2. Global Stress Control
4. Sensitivity Analysis
5. Numerical Solution Aspects
5.1. L-Shaped Beam
5.2. T-Shaped Beam
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SIMP | Solid isotropic material with penalization |
LSM | Level-set method |
ESO | Evolutionary structural optimization |
MMC | Moving morphable components |
MMA | Method of moving asymptotes |
TDF | Topology description function |
References
- Bendsøe, M.P.; Kikuchi, N. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 1988, 71, 197–224. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Sigmund, O. Material interpolation schemes in topology optimization. Arch. Appl. Mech. 1999, 69, 635–654. [Google Scholar] [CrossRef]
- Querin, O.M.; Young, V.; Steven, G.; Xie, Y. Computational efficiency and validation of bi-directional evolutionary structural optimisation. Comput. Methods Appl. Mech. Eng. 2000, 189, 559–573. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, X.; Guo, D. A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 2003, 192, 227–246. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, W.; Zhong, W. Doing topology optimization explicitly and geometrically—A new moving morphable components based framework. J. Appl. Mech. 2014, 81, 081009. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, W.; Zhou, J.; Li, D.; Guo, X. Structural topology optimization through explicit boundary evolution. J. Appl. Mech. 2017, 84, 011011. [Google Scholar] [CrossRef]
- Li, Z.; Xu, H.; Zhang, S. A Comprehensive Review of Explicit Topology Optimization Based on Moving Morphable Components (MMC) Method. Arch. Comput. Methods Eng. 2024, 31, 1–30. [Google Scholar] [CrossRef]
- Ruichao, L.; Shikai, J.; Ying, L.; Dengbao, X.; Yang, C. A Hybrid Topology Optimization Method Of Simp And Mmc Considering Precise Control Of Minimum Size. Chin. J. Theor. Appl. Mech. 2022, 54, 3524–3537. [Google Scholar]
- Zhang, J.; Liao, J.; Liu, E. Topology optimization method based on SIMP-MMC for structure size precise control. J. Mech. Strength 2022, 44, 102–110. [Google Scholar]
- Cheng, G.; Jiang, Z. Study on topology optimization with stress constraints. Eng. Optim. 1992, 20, 129–148. [Google Scholar] [CrossRef]
- Cheng, G.D.; Guo, X. ε-relaxed approach in structural topology optimization. Struct. Optim. 1997, 13, 258–266. [Google Scholar] [CrossRef]
- Rozvany, G.; Sobieszczanski-Sobieski, J. New optimality criteria methods: Forcing uniqueness of the adjoint strains by corner-rounding at constraint intersections. Struct. Optim. 1992, 4, 244–246. [Google Scholar] [CrossRef]
- Kreisselmeier, G.; Steinhauser, R. Systematic control design by optimizing a vector performance index. In Computer Aided Design of Control Systems; Elsevier: Amsterdam, The Netherlands, 1980; pp. 113–117. [Google Scholar]
- Duysinx, P.; Sigmund, O. New developments in handling stress constraints in optimal material distribution. In Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, USA, 2–4 September 1998; p. 4906. [Google Scholar]
- Yang, D.; Liu, H.; Zhang, W.; Li, S. Stress-constrained topology optimization based on maximum stress measures. Comput. Struct. 2018, 198, 23–39. [Google Scholar] [CrossRef]
- Senhora, F.V.; Giraldo-Londono, O.; Menezes, I.F.; Paulino, G.H. Topology optimization with local stress constraints: A stress aggregation-free approach. Struct. Multidiscip. Optim. 2020, 62, 1639–1668. [Google Scholar] [CrossRef]
- Zhai, X.; Chen, F.; Wu, J. Alternating optimization of design and stress for stress-constrained topology optimization. Struct. Multidiscip. Optim. 2021, 64, 2323–2342. [Google Scholar] [CrossRef]
- da Silva, G.A.; Aage, N.; Beck, A.T.; Sigmund, O. Local versus global stress constraint strategies in topology optimization: A comparative study. Int. J. Numer. Methods Eng. 2021, 122, 6003–6036. [Google Scholar] [CrossRef]
- Zhang, S.; Gain, A.L.; Norato, J.A. Stress-based topology optimization with discrete geometric components. Comput. Methods Appl. Mech. Eng. 2017, 325, 1–21. [Google Scholar] [CrossRef]
- Zhang, W.; Li, D.; Zhou, J.; Du, Z.; Li, B.; Guo, X. A moving morphable void (MMV)-based explicit approach for topology optimization considering stress constraints. Comput. Methods Appl. Mech. Eng. 2018, 334, 381–413. [Google Scholar] [CrossRef]
- Rostami, P.; Marzbanrad, J. Stress-limited topology optimization with local volume constraint using moving morphable components. Arch. Appl. Mech. 2021, 91, 2345–2367. [Google Scholar] [CrossRef]
- Deng, J.; Chen, W. Design for structural flexibility using connected morphable components based topology optimization. Sci. China Technol. Sci. 2016, 59, 839–851. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, W.; Zhang, J.; Yuan, J. Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 2016, 310, 711–748. [Google Scholar] [CrossRef]
- Zheng, R.; Kim, C. An enhanced topology optimization approach based on the combined MMC and NURBS-curve boundaries. Int. J. Precis. Eng. Manuf. 2020, 21, 1529–1538. [Google Scholar] [CrossRef]
- Wang, L.; Shi, D.; Zhang, B.; Li, G.; Liu, P. Real-time topology optimization based on deep learning for moving morphable components. Autom. Constr. 2022, 142, 104492. [Google Scholar] [CrossRef]
- Li, Z.; Hu, X.; Chen, W. Moving morphable curved components framework of topology optimization based on the concept of time series. Struct. Multidiscip. Optim. 2023, 66, 19. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, J.; Zhang, J.; Guo, X. A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Struct. Multidiscip. Optim. 2016, 53, 1243–1260. [Google Scholar] [CrossRef]
- Ni, B.; Elishakoff, I.; Jiang, C.; Fu, C.; Han, X. Generalization of the super ellipsoid concept and its application in mechanics. Appl. Math. Model. 2016, 40, 9427–9444. [Google Scholar] [CrossRef]
- Zhang, W.; Li, D.; Yuan, J.; Song, J.; Guo, X. A new three-dimensional topology optimization method based on moving morphable components (MMCs). Comput. Mech. 2017, 59, 647–665. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, K.; Wang, M.Y. A new approach for simultaneous shape and topology optimization based on dynamic implicit surface function. Control Cybern. 2005, 34, 255–282. [Google Scholar]
- Shannon, T.; Robinson, T.; Murphy, A.; Armstrong, C. Generalized Bezier components and successive component refinement using moving morphable components. Struct. Multidiscip. Optim. 2022, 65, 193. [Google Scholar] [CrossRef]
- Verbart, A.; Langelaar, M.; Keulen, F.v. A unified aggregation and relaxation approach for stress-constrained topology optimization. Struct. Multidiscip. Optim. 2017, 55, 663–679. [Google Scholar] [CrossRef]
- Cui, T.; Sun, Z.; Liu, C.; Li, L.; Cui, R.; Guo, X. Topology optimization of plate structures using plate element-based moving morphable component (MMC) approach. Acta Mech. Sin. 2020, 36, 412–421. [Google Scholar] [CrossRef]
- Du, Z.; Cui, T.; Liu, C.; Zhang, W.; Guo, Y.; Guo, X. An efficient and easy-to-extend Matlab code of the Moving Morphable Component (MMC) method for three-dimensional topology optimization. Struct. Multidiscip. Optim. 2022, 65, 158. [Google Scholar] [CrossRef]
- Svanberg, K. The method of moving asymptotes—A new method for structural optimization. Int. J. Numer. Methods Eng. 1987, 24, 359–373. [Google Scholar] [CrossRef]
- Zhang, W.S.; Guo, X.; Wang, M.Y.; Wei, P. Optimal topology design of continuum structures with stress concentration alleviation via level set method. Int. J. Numer. Methods Eng. 2013, 93, 942–959. [Google Scholar] [CrossRef]
- Manual, A.S.U. Abaqus 6.11. 2012, Volume 89. v6. Available online: http://130.149.89.49:2080/v2016/index.html (accessed on 17 July 2024).
- Jiang, X.; Wang, H.; Li, Y.; Mo, K. Machine learning based parameter tuning strategy for MMC based topology optimization. Adv. Eng. Softw. 2020, 149, 102841. [Google Scholar] [CrossRef]
epsimin | raa0 | albefa | asyinit | asyincr | asydecr |
---|---|---|---|---|---|
0.01 | 0.4 | 0.1 | 0.8 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Li, Z.; Wei, Y.; Yang, K. Topology Optimization with Explicit Components Considering Stress Constraints. Appl. Sci. 2024, 14, 7171. https://doi.org/10.3390/app14167171
Ma Y, Li Z, Wei Y, Yang K. Topology Optimization with Explicit Components Considering Stress Constraints. Applied Sciences. 2024; 14(16):7171. https://doi.org/10.3390/app14167171
Chicago/Turabian StyleMa, Yubao, Zhiguo Li, Yuxuan Wei, and Kai Yang. 2024. "Topology Optimization with Explicit Components Considering Stress Constraints" Applied Sciences 14, no. 16: 7171. https://doi.org/10.3390/app14167171
APA StyleMa, Y., Li, Z., Wei, Y., & Yang, K. (2024). Topology Optimization with Explicit Components Considering Stress Constraints. Applied Sciences, 14(16), 7171. https://doi.org/10.3390/app14167171