Methods for Reducing Ring Artifacts in Tomographic Images Using Wavelet Decomposition and Averaging Techniques
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kyriakou, Y.; Prell, D.; Kalender, W.A. Ring artifact correction for high-resolution micro CT. Phys. Med. Biol. 2009, 54, N385–N391. [Google Scholar] [CrossRef] [PubMed]
- Anas, E.M.; Kim, J.G.; Lee, S.Y.; Hasan, K. Comparison of ring artifact removal methods using flat panel detector based CT images. Biomed. Eng. Online 2011, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Kalender, W.A.; Kyriakou, Y. Flat-detector computed tomography (FD-CT). Eur. Radiol. 2007, 17, 2767–2779. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Baek, J.; Hwang, D. Ring artifact correction using detector line-ratios in computed tomography. Opt. Express 2014, 22, 13380–13392. [Google Scholar] [CrossRef]
- Çimen, T.; Düzgün, S.; Akyüz, İ.E.; Topçuoğlu, H.S. The effect of cone beam computerized tomography voxel size and the presence of root filling on the assessment of middle mesial canals in mandibular molar teeth. Clin. Oral Investig. 2024, 28, 394. [Google Scholar] [CrossRef] [PubMed]
- Hiller, J.; Hornberger, P. Measurement accuracy in X-ray computed tomography metrology: Toward a systematic analysis of interference effects in tomographic imaging. Precis. Eng. 2016, 45, 18–32. [Google Scholar] [CrossRef]
- Pauwels, R.; Stamatakis, H.; Bosmans, H.; Bogaerts, R.; Jacobs, R.; Horner, K.; Tsiklakis, K. Quantification of metal artifacts on cone beam computed tomography images. Clin. Oral Implant. Res. 2013, 24, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Kwan, A.L.; Seibert, J.A.; Boone, J.M. An improved method for flat-field correction of flat panel X-ray detector. Med. Phys. 2006, 33, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Lifton, J.; Liu, T. Ring artefact reduction via multi-point piecewise linear flat field correction for X-ray computed tomography. Opt. Express 2019, 27, 3217–3228. [Google Scholar] [CrossRef]
- Rivers, M. Tutorial Introduction to X-ray Computed Microtomography Data Processing. Available online: https://www.mcs.anl.gov/research/projects/X-ray-cmt/rivers/tutorial.html (accessed on 7 December 2023).
- Munch, B.; Trtik, P.; Marone, F.; Stampanoni, M. Stripe and ring artifact removal with combined wavelet—Fourier filtering. Opt. Express 2009, 17, 8567–8591. [Google Scholar] [CrossRef]
- Tang, X.; Ning, R.; Yu, R.; Conover, D. Cone beam volume CT image artifacts caused by defective cells in x-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm. Med. Phys. 2001, 28, 812–825. [Google Scholar] [CrossRef] [PubMed]
- Sijbers, J.; Postnov, A. Reduction of ring artefacts in high resolution micro-CT reconstructions. Phys. Med. Biol. 2004, 49, N247. [Google Scholar] [CrossRef] [PubMed]
- Selim, M.; Rashed, E.A.; Atiea, M.A.; Kudo, H. Sparsity-based method for ring artifact elimination in computed tomography. PLoS ONE 2022, 17, e0268410. [Google Scholar] [CrossRef] [PubMed]
- Anas, E.M.A.; Lee, S.Y.; Hasan, M.K. Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram. Phys. Med. Biol. 2010, 55, 6911. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Ye, Y.; Wang, G. Katsevich-type algorithims for variable radius spiral cone-beam CT. In Proceedings of the Developments in X-Ray Tomography IV, Bellingham, WA, USA, 26 October 2004; pp. 550–557. [Google Scholar]
- Biguri, A.; Dosanjh, M.; Hancock, S.; Soleimani, M. TIGRE: A MATLAB-GPU toolbox for CBCT image reconstruction. Biomed. Phys. Eng. Express 2016, 2, 055010. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Lee, G.; Gommers, R.; Waselewski, F.; Wohlfahrt, K.; O’Leary, A. PyWavelets: A Python package for wavelet analysis. J. Open Source Softw. 2019, 4, 1237. [Google Scholar] [CrossRef]
- Quinn, A.; Lopes-Dos-Santos, V.; Dupret, D.; Nobre, A.; Woolrich, M. EMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Python. J. Open Source Softw. 2021, 6, 2977. [Google Scholar] [CrossRef]
- Lipowicz, P.; Dardzińska-Głębocka, A.; Borowska, M.; Biguri, A. Comparison of Analytical and Iterative Algorithms for Reconstruction of Microtomographic Phantom Images and Rat Mandibular Scans. In Information Technology in Biomedicine, Proceedings of the 9th International Conference, Kamień Śląski, Poland, 20–22 June 2022; Springer Nature: Cham, Switzerland, 2022; pp. 107–118. [Google Scholar]
- Mallat, S.; Hwang, W.L. Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 1992, 38, 617–643. [Google Scholar] [CrossRef]
- Toufik, B.; Mokhtar, N. The wavelet transform for image processing applications. Adv. Wavelet Theory Their Appl. Eng. Phys. Technol. 2012, 17, 395–422. [Google Scholar]
- Boin, M.; Haibel, A. Compensation of ring artefacts in synchrotron tomographic images. Opt. Express 2006, 14, 12071–12075. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Deering, R.; Kaiser, J.F. The use of a masking signal to improve empirical mode decomposition. In Proceedings of the (ICASSP ‘05) IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, Philadelphia, PA, USA, 23–23 March 2005; Volume 484, pp. iv/485–iv/488. [Google Scholar]
- Asamoah, D.; Ofori, E.; Opoku, S.; Danso, J. Measuring the performance of image contrast enhancement technique. Int. J. Comput. Appl. 2018, 181, 6–13. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, Pacific Grove, CA, USA, 9–12 November 2003; pp. 1398–1402. [Google Scholar]
Authors (year) | Methods | Data | Results |
---|---|---|---|
Selim et al. (2022) [14] | Sparsity-based method, during iterative reconstruction algorithms | Real data and simulations | 0.9682 (SSIM) |
Sijbers et al. (2004) [13] | Post-reconstruction filtration method | Real data | Only visulal results, no quantitative data |
Tang et al. (2001) [12] | Wawelet analysis pre-reconstruction method | Callibration cells | Only visulal results, no quantitative data |
Kim et al. (2014) [4] | Pre-reconstruction method of calculating the ratio of adjacent detector elements in the projection data, termed the line ratio | Sheep–Logan phantom and human organs models | 7.13 × 10−7 (MSE) for Sheep-Logan phantom |
Abu et al. (2011) [2] | Comparison five ring artifact removal methods: Modified Wavelet (MWPN) [12], Wavelet-Fourier (WF) method [11], Ring corrections using homogeneity test (RCHT) [13], Ring correction in polar coordinate (RCP) [1], and Strength based ring correction (SBRC) method [15] | Head Phantom and real data | quantitative data for head Phantom (MSSIM): MWPN—0.97 WF—0.81 RCHT—0.82 RCP—0.77 SBRC—0.98 |
PSNR (dB) | MSE | SSIM | MS-SSIM | |
---|---|---|---|---|
No Filtration 20% noise | 21.99288 | 0.07074 | 0.37611 | 0.60218 |
Filtered 20% noise | 27.09104 | 0.02187 | 0.80090 | 0.82214 |
No Filtration 10% noise | 27.08707 | 0.02189 | 0.47612 | 0.76688 |
Filtered 10% noise | 29.35344 | 0.01299 | 0.80226 | 0.82219 |
No Filtration 5% noise | 34.59004 | 0.00389 | 0.61120 | 0.80143 |
Filtered 5% noise | 27.08509 | 0.02190 | 0.80265 | 0.82261 |
No Filtration 2% noise | 37.74795 | 0.00188 | 0.79428 | 0.88367 |
Filtered 2% noise | 27.09303 | 0.02186 | 0.80534 | 0.82340 |
Noise-free reconstruction | 38.61433 | 0.00154 | 0.92164 | 0.98685 |
Wavelets Type | PSNR (dB) | RMSE | SSIM | MS-SSIM |
---|---|---|---|---|
Haar | 29.0471 | 0.1477 | 0.8031 | 0.8231 |
“Discrete” Meyer | 28.9729 | 0.1502 | 0.6140 | 0.7211 |
Coiflets 1 | 29.0710 | 0.1469 | 0.7898 | 0.8155 |
Coiflets 5 | 29.0279 | 0.1483 | 0.6337 | 0.7244 |
Coiflets 10 | 29.,0420 | 0.1479 | 0.6533 | 0.7484 |
Coiflets 15 | 29.0320 | 0.1482 | 0.6434 | 0.7320 |
Biorthogonal 1.5 | 29.0743 | 0.1468 | 0.6708 | 0.7485 |
Biorthogonal 2.2 | 29.0660 | 0.1470 | 0.7631 | 0.8052 |
Biorthogonal 2.8 | 29.0713 | 0.1469 | 0.6531 | 0.7320 |
Biorthogonal 3.1 | 29.0513 | 0.1475 | 0.7833 | 0.8125 |
Biorthogonal 3.9 | 29.0886 | 0.1463 | 0.6601 | 0.7470 |
Biorthogonal 4.4 | 29.1073 | 0.1457 | 0.7111 | 0.7823 |
Biorthogonal 5.5 | 29.0492 | 0.1476 | 0.6543 | 0.7451 |
Biorthogonal 6.8 | 29.0364 | 0.1481 | 0.6295 | 0.7083 |
Daubechies 2 | 29.0415 | 0.1479 | 0.7700 | 0.8080 |
Daubechies 10 | 29.0353 | 0.1481 | 0.6633 | 0.7551 |
Daubechies 20 | 29.0182 | 0.1487 | 0.6293 | 0.7366 |
Daubechies 30 | 28.9943 | 0.1495 | 0.6604 | 0.7428 |
Symlets 4 | 29.0808 | 0.1465 | 0.7276 | 0.7685 |
Symlets 8 | 29.0652 | 0.1471 | 0.6702 | 0.7565 |
Symlets 12 | 29.0140 | 0.1488 | 0.6183 | 0.7119 |
Symlets 16 | 29.0317 | 0.1482 | 0.6243 | 0.7255 |
Symlets 20 | 29.0633 | 0.1471 | 0.6309 | 0.7397 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipowicz, P.; Borowska, M.; Dardzińska-Głębocka, A. Methods for Reducing Ring Artifacts in Tomographic Images Using Wavelet Decomposition and Averaging Techniques. Appl. Sci. 2024, 14, 7292. https://doi.org/10.3390/app14167292
Lipowicz P, Borowska M, Dardzińska-Głębocka A. Methods for Reducing Ring Artifacts in Tomographic Images Using Wavelet Decomposition and Averaging Techniques. Applied Sciences. 2024; 14(16):7292. https://doi.org/10.3390/app14167292
Chicago/Turabian StyleLipowicz, Paweł, Marta Borowska, and Agnieszka Dardzińska-Głębocka. 2024. "Methods for Reducing Ring Artifacts in Tomographic Images Using Wavelet Decomposition and Averaging Techniques" Applied Sciences 14, no. 16: 7292. https://doi.org/10.3390/app14167292
APA StyleLipowicz, P., Borowska, M., & Dardzińska-Głębocka, A. (2024). Methods for Reducing Ring Artifacts in Tomographic Images Using Wavelet Decomposition and Averaging Techniques. Applied Sciences, 14(16), 7292. https://doi.org/10.3390/app14167292