Testing the Efficacy of Indirect Methods on Characterization of Sedimentary Basins by Correlation of Direct Data and Geophysical Techniques
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geological Context
2.2. Local Geological Data
3. Geophysical Survey
3.1. Seismic Reflection Transect
3.2. Time-Domain Electromagnetic (TDEM) Survey
3.3. Magnetic Survey
4. Results and Discussion
4.1. Seismic Reflection Survey
4.2. Time-Domain Electromagnetic (TDEM) Method
4.3. Magnetic Prospecting
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics; Cambridge University Press: Cambridge, UK, 1990; p. 770. [Google Scholar]
- Martínez-Moreno, F.J.; Galindo-Zaldívar, J.; Pedrera, A.; Teixido, T.; Ruano, P.; Peña, J.A.; González-Castillo, L.; Ruiz-Constán, A.; López-Chicano, M.; Martín-Rosales, W. Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain). J. Appl. Geophys. 2014, 107, 149–162. [Google Scholar] [CrossRef]
- Rey, J.; Martínez, J.; Mendoza, R.; Sandoval, S.; Tarasov, V.; Kaminsky, K.; Hidalgo, M.C.; Morales, K. Geophysical characterization of aquifers in southeast Spain using ERT, TDEM, and vertical seismic reflection. Appl. Sci. 2020, 10, 7365. [Google Scholar] [CrossRef]
- Mendoza, M.; Rey, J.; Martínez, J.; Hidalgo, M.C.; Sandoval, S. Geophysical characterisation of geologic features with mining implications from ERT, TDEM and seismic reflection (Mining District of Linares-La Carolina, Spain). Ore Geol. Rev. 2021, 139, 104581. [Google Scholar] [CrossRef]
- Carrasco, J.; Carrasco, P.; Porras, D.; Martín, I. Drone Magnetic and Time Domain Electromagnetic Exploration in Metamorphic Formations: Tool for the Identification of Strategic Sites for Aquifer Exploitation. Appl. Sci. 2023, 13, 10949. [Google Scholar] [CrossRef]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics; John Wiley and Sons Ltd.: London, UK, 2011; p. 796. [Google Scholar]
- Radwan, A.A.; Nabawy, B.S.; Shihata, M.; Leila, M. Seismic interpretation, reservoir characterization, gas origin and entrapment of the Miocene-Pliocene Mangaa C sandstone, Karewa Gas Field, North Taranaki Basin New Zealand. Mar. Pet. Geol. 2021, 135, 105420. [Google Scholar] [CrossRef]
- Olutoki, J.O.; Siddiqui, N.A.; Haque, A.-E.; Akinyemi, O.D.; Mohammed, H.S.; Bashir, Y.; El-Ghali, M.A.K. Integrated analysis of wireline logs analysis, seismic interpretation, and machine learning for reservoir characterisation: Insights from the late Eocene McKee Formation, onshore Taranaki Basin, New Zealand. J. King Saud Univ. -Sci. 2024, 36, 103221. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, W.; Wang, J.; Zhang, G.; Zhou, Z.; Han, R. Basin-scale structure control of Carlin-style gold deposits in central Southwestern Guizhou, China: Insights from seismic reflection profiles and gravity data. Ore Geol. Rev. 2017, 91, 444–462. [Google Scholar] [CrossRef]
- Jenkins, A.P.; Torvela, T. Basin analysis using seismic interpretation as a tool to examine the extent of a basin ore ‘play’. Ore Geol. Rev. 2020, 125, 103698. [Google Scholar] [CrossRef]
- Nabighian, N.M. Electromagnetic Method in Applied Geophysics; Society of Exploration Geophysics: Tulsa, OK, USA, 1988; p. 971. [Google Scholar]
- McNeill, J.D. Principles and Application of Time Domain Electromagnetic Techniques for Resistivity Sounding; Technical Note TN-27; Geonics Ltd.: Toronto, ON, Canada, 1994; Available online: http://www.geonics.com/pdfs/technicalnotes/tn27.pdf (accessed on 10 April 2023).
- Danielsen, J.E.; Auken, E.; Jorgensen, F.; Sondergaard, V.; Sorensen, K. The application of the transient electromagnetic method in hydrogeophysical survey. J. Appl. Geophys. 2003, 53, 181–198. [Google Scholar] [CrossRef]
- Kafri, U.; Goldman, M. Are the lower subaquifers of the Mediterranean coastal aquifer of Israel blocked to seawater intrusion? Results of a TDEM (time domain electromagnetic) study. Isr. J. Earth Sci. 2006, 55, 55–68. [Google Scholar] [CrossRef]
- Farag, K.S.I.; Howari, F.M.; Abdelmalik, K.W. Imaging of Hydrothermal Altered Zones in Wadi Al-Bana, in Southern Yemen, Using Very Low Frequency–Electromagnetic and Remote Sensing Data. Arab. J. Geosci. 2019, 12, 554. [Google Scholar] [CrossRef]
- Zhu, Z.; Shan, Z.; Pang, Y.; Wang, W.; Chen, M.; Li, G.; Sun, H.; Revil, A. The transient electromagnetic (TEM) method reveals the role of tectonic faults in seawater intrusion at Zhoushan islands (Hangzhou Bay, China). Eng. Geol. 2024, 330, 107425. [Google Scholar] [CrossRef]
- Hallbauer-Zadorozhnaya, V.Y.; Stettler, E. Time Domain Electromagnetic Sounding to delineate hydrocarbon Contamination of Ground Water. In Symposium on the Application of Geophysics to Engineering and Environmental Problems; Environmental & Engineering Geophysical Society: Denver, TX, USA, 2009; pp. 241–251. [Google Scholar]
- Sridhar, M.; Markandeyulu, A.; Chaturvedi, A.K. Mapping subtrappean sediments and delineating structure with the aid of heliborne time domain electromagnetics: Case study from Kaladgi Basin, Karnataka. J. Appl. Geophys. 2017, 136, 9–18. [Google Scholar] [CrossRef]
- Bense, V.F.; Person, M.A. Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resour. Res. 2006, 42, 1–18. [Google Scholar] [CrossRef]
- Blakely, R. Potencial Theory in Gravity and Magnetic Applications; Cambridge University Press: Cambridge, UK, 1995; p. 441. [Google Scholar]
- Abdelazeem, M.; Gobashy, M.M. A solution to unexploded ordnance detection problem from its magnetic anomaly using Kaczmarz regularization. Interpretation 2016, 4, 61–69. [Google Scholar] [CrossRef]
- Abedi, M.; Fournier, D.; Devriese, S.; Oldenburg, D.W. Integrated inversion of airborne geophysics over a structural geological unit: A case study for delineation of a porphyry copper zone in Iran. J. Appl. Geophys. 2018, 152, 188–202. [Google Scholar] [CrossRef]
- Benítez, M.E.; Prezzi, C.; Benallivián Justiniano, C.A.; Verdecchia, S.O.; De Martino, F.J.; Carlini, M.; Lanfranchini, M.E. Ground magnetic survey and 3D geophysical model of ultrabasic rocks from the Martín García Complex (Buenos Aires, Argentina). J. S. Am. Earth Sci. 2023, 121, 104117. [Google Scholar] [CrossRef]
- Eldougdoug, A.; Abdelazeem, M.; Gobashy, M.; Abdelwahed, M.; Abd El-Rahman, Y.; Abdelhalim, A.; Said, S. Exploring gold mineralization in altered ultramafic rocks in south Abu Marawat, Eastern Desert, Egypt. Abstr. Sci. Rep. 2023, 13, 7293. [Google Scholar] [CrossRef]
- Aminu, M.B.; Adiat, K.A.N.; Akinlalu, A.A.; Olomo, K.O.; Owolabi, T.O.; Aliyu, E.O. A review on the applications of airborne geophysical and remote sensing datasets in epithermal gold mineralisation mapping. Geosyst. Geoenviron. 2024, 3, 100284. [Google Scholar] [CrossRef]
- Okiwelu, A.A.; Obianwu, V.I.; Eze Ohara, E.; Ude, I.A. Magnetic anomaly patterns, fault-block tectonism and hydrocarbon related structural features in the Niger Delta basin. IOSR J. Appl. Geol. Geophys. (IOSR-JAGG) 2014, 2, 31–46. [Google Scholar]
- Nabighian, M.N.; Grauch, V.J.S.; Hansen, R.O.; LaFehr, T.R.; Li, Y.; Peirce, J.W.; Phillips, J.D.; Ruder, M.E. The historical development of the magnetic method in exploration. Geophysics 2005, 70, 33ND–61ND. [Google Scholar] [CrossRef]
- Alva-Valdivia, L.M.; Guerrero-Díaz, P.; Urrutia-Fucugauchia, J.; Agarwal, A.; Caballero-Miranda, C.I. Rock-magnetism and magnetic anomaly modelling of Las Truchas, case study. J. S. Am. Earth Sci. 2020, 97, 102409. [Google Scholar] [CrossRef]
- Akinlalu, A.A.; Adelusi, A.O.; Olayanju, G.M.; Adaiat, K.N.; Omosuyi, G.O. Aeromagnetic mapping of basement structures and mineralization characterization of Ilesa Schist Belt, Southwestern Nigeria. J. Afr. Earth Sci. 2018, 138, 383–391. [Google Scholar] [CrossRef]
- Bouzekraoui, M.; Es-Sabbar, B.; Karaoui, B.; Essalhi, M.; Saadi, M. Structural analysis, tectonic fracturing modeling, and kinematic evolution along the South Atlas Fault at the northern border of the Tinghir-Errachidia-Boudenib basin (Pre-African Trough, Morocco). J. Afr. Earth Sci. 2024, 212, 105193. [Google Scholar] [CrossRef]
- Castelló, R.; Orviz, F. Mapa Geológico de España 1:50.000, Hoja nº 884 (La Carolina); Instituto Geológico y Minero de España: Madrid, Spain, 1976. [Google Scholar]
- Larrea, F.J.; Carracedo, M.; Ortega Cuesta, L.; Gil Ibarguchi, J.I. El Plutón de Linares (Jaén): Cartografía, petrología y geoquímica. Cuad. Lab. Xeológico Laxe Coruña 1994, 19, 335–346. [Google Scholar]
- Martín Parra, L.; Matas, J.; Roldán, F.J.; Martín-Serrano, A. Mapa Geológico y Memoria Explicativa de la hoja 70 (Linares), Escala 1:200.000; Instituto Geológico y Minero de España: Madrid, Spain, 2015. [Google Scholar]
- I.T.G.E. Atlas Hidrogeológico de la Provincial de Jaén; Diputación Provincial de Jaén: Jaén, Spain, 1997; p. 260. [Google Scholar]
- I.G.M.E. Exploración Geológico-Minera de la Fosa Tectónica de Bailén (Jaén); Sismica de reflexión; Ministerio de Industria y Energía: Madrid, Spain, 1983; p. 64.
- AIE-2 Instruments. Available online: http://zond-geo.com/english/services/equipment/aie-2-instruments/ (accessed on 1 August 2024).
- GEM Systems. Available online: https://www.gemsys.ca/ultra-high-sensitivity-potassium/ (accessed on 1 August 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rey, J.; Mendoza, R.; Hidalgo, M.C.; Marinho, B. Testing the Efficacy of Indirect Methods on Characterization of Sedimentary Basins by Correlation of Direct Data and Geophysical Techniques. Appl. Sci. 2024, 14, 7308. https://doi.org/10.3390/app14167308
Rey J, Mendoza R, Hidalgo MC, Marinho B. Testing the Efficacy of Indirect Methods on Characterization of Sedimentary Basins by Correlation of Direct Data and Geophysical Techniques. Applied Sciences. 2024; 14(16):7308. https://doi.org/10.3390/app14167308
Chicago/Turabian StyleRey, Javier, Rosendo Mendoza, M. Carmen Hidalgo, and Bruna Marinho. 2024. "Testing the Efficacy of Indirect Methods on Characterization of Sedimentary Basins by Correlation of Direct Data and Geophysical Techniques" Applied Sciences 14, no. 16: 7308. https://doi.org/10.3390/app14167308
APA StyleRey, J., Mendoza, R., Hidalgo, M. C., & Marinho, B. (2024). Testing the Efficacy of Indirect Methods on Characterization of Sedimentary Basins by Correlation of Direct Data and Geophysical Techniques. Applied Sciences, 14(16), 7308. https://doi.org/10.3390/app14167308