CSEM Optimization Using the Correspondence Principle
Abstract
:1. Introduction
2. Methodology
2.1. Csem Forward Modeling
2.2. Gradient Calculation for CSEM Inversion
2.3. Adjoint Source
2.4. Gradient Preconditioning
2.5. Model Regularization
2.6. Steepest Descent and Momentum Methods
3. Numerical Experiments
3.1. Gradient Calculation
3.2. Inversion Results
3.2.1. Model with Two Resistors
3.2.2. MARE Model
3.2.3. Marlim Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Constable, S. Ten years of marine CSEM for hydrocarbon exploration. Geophysics 2010, 75, 75A67–75A81. [Google Scholar] [CrossRef]
- Menezes, P.T.L.; Ferreira, S.M.; Correa, J.L.; Menor, E.N. Twenty Years of CSEM Exploration in the Brazilian Continental Margin. Minerals 2023, 13, 870. [Google Scholar] [CrossRef]
- Buonora, M.; Correa, J.; Martins, L.; Menezes, P.; Pinho, E.; Crepaldi, J.; Ribas, M.; Ferreira, S.; Freitas, R. mCSEM data interpretation for hydrocarbon exploration: A fast interpretation workflow for drilling decision. Interpretation 2014, 2, SH1–SH11. [Google Scholar] [CrossRef]
- Menezes, P.T.L.; Correa, J.L.; Alvim, L.M.; Viana, A.R.; Sansonowski, R.C. Time-Lapse CSEM Monitoring: Correlating the Anomalous Transverse Resistance with SoPhiH Maps. Energies 2021, 14, 7159. [Google Scholar] [CrossRef]
- Ettayebi, M.; Wang, S.; Landrø, M. Time-Lapse 3D CSEM for Reservoir Monitoring Based on Rock Physics Simulation of the Wisting Oil Field Offshore Norway. Sensors 2023, 23, 7197. [Google Scholar] [CrossRef]
- Alumbaugh, D.L.; Newman, G.A.; Prevost, L.; Shadid, J.N. Three-dimensional wideband electromagnetic modeling on massively parallel computers. Radio Sci. 1996, 31, 1–23. [Google Scholar] [CrossRef]
- da Piedade, A.A.; Régis, C.; Nunes, C.M.B.; da Silva, H.F. Computational cost comparison between nodal and vector finite elements in the modeling of controlled source electromagnetic data using a direct solver. Comput. Geosci. 2021, 156, 104901. [Google Scholar] [CrossRef]
- Crepaldi, J.L.S.; Buonora, M.P.P.; Figueiredo, I. Fast marine CSEM inversion in the CMP domain using analytical derivatives. Geophysics 2011, 76, F303–F313. [Google Scholar] [CrossRef]
- Hansen, K.; Panzner, M.; Shantsev, D.; Mittet, R. TTI inversion of marine CSEM data. In SEG Technical Program Expanded Abstracts 2016; Society of Exploration Geophysicists: Houston, TX, USA, 2016; pp. 1014–1018. [Google Scholar]
- Meju, M.A.; Mackie, R.L.; Miorelli, F.; Saleh, A.S.; Miller, R.V. Structurally tailored 3D anisotropic controlled-source electromagnetic resistivity inversion with cross-gradient criterion and simultaneous model calibration. Geophysics 2019, 84, E387–E402. [Google Scholar] [CrossRef]
- Hoversten, G.M.; Mackie, R.L.; Hua, Y. Reexamination of controlled-source electromagnetic inversion at the Lona prospect, Orphan Basin, Canada. Geophysics 2021, 86, E157–E170. [Google Scholar] [CrossRef]
- Cai, H.; Long, Z.; Lin, W.; Li, J.; Lin, P.; Hu, X. 3D multinary inversion of controlled-source electromagnetic data based on the finite-element method with unstructured mesh. Geophysics 2021, 86, E77–E92. [Google Scholar] [CrossRef]
- Mittet, R. High-order finite-difference simulations of marine CSEM surveys using a correspondence principle for wave and diffusion fields FDTD simulation of marine CSEM surveys. Geophysics 2010, 75, F33–F50. [Google Scholar] [CrossRef]
- de Hoop, A.T. A general correspondence principle for time-domain electromagnetic wave and diffusion fields. Geophys. J. Int. 1996, 127, 757–761. [Google Scholar] [CrossRef]
- Plessix, R.E. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys. J. Int. 2006, 167, 495–503. [Google Scholar] [CrossRef]
- Chavent, G. Nonlinear Least Squares for Inverse Problems—Theoretical Foundations and Step-by-Step Guide for Applications; Number 1 in Scientific Computation; Springer: Dordrecht, The Netherlands, 2010; p. 360. [Google Scholar] [CrossRef]
- Valente, A.; Nascimento, D.; Costa, J.C. CSEM inversion using the correspondence principle: The adjoint-state approach. In Proceedings of the 17th International Congress of the Geophysical Society, Online, 8–11 November 2021; Sociedade Brasileira de Geofísica: Rio de Janeiro, Brazil, 2021. [Google Scholar]
- Harlan, W.S. Regularization by model reparameterization. Citeseer 1995.
- Claerbout, J.F.; Fomel, S. Image Estimation by Example: Geophysical Soundings Image Construction—Multidimensional Autoregression; Stanford University: Stanford, CA, USA, 2003. [Google Scholar]
- Kochenderfer, M.J.; Wheeler, T.A. Algorithms for Optimization; Massachusetts Institute of Technology: Cambridge, MA, USA, 2019. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Zhu, C.; Byrd, R.H.; Lu, P.; Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. (Toms) 1997, 23, 550–560. [Google Scholar] [CrossRef]
- Nguyen, A.K.; Nordskag, J.I.; Wiik, T.; Bjørke, A.K.; Boman, L.; Pedersen, O.M.; Ribaudo, J.; Mittet, R. Comparing large-scale 3D Gauss–Newton and BFGS CSEM inversions. In SEG Technical Program Expanded Abstracts 2016; Society of Exploration Geophysicists: Houston, TX, USA, 2016; pp. 872–877. [Google Scholar]
- Plessix, R.E.; Mulder, W. Resistivity imaging with controlled-source electromagnetic data: Depth and data weighting. Inverse Probl. 2008, 24, 034012. [Google Scholar] [CrossRef]
- Menke, W. Geophysical Data Analysis: Discrete Inverse Theory; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Shin, C.; Jang, S.; Min, D.J. Improved amplitude preservation for prestack depth migration by inverse scattering theory. Geophys. Prospect. 2001, 49, 592–606. [Google Scholar] [CrossRef]
- Plessix, R.; van der Sman, P. 3D CSEM modeling and inversion in complex geologic settings. In SEG Technical Program Expanded Abstracts 2007; Society of Exploration Geophysicists: Houston, TX, USA, 2007; pp. 589–593. [Google Scholar] [CrossRef]
- Chave, A.D.; Constable, S.C.; Edwards, R.N. Electrical Exploration Methods for the Seafloor. In Electomagnetic Methods in Applied Geophysics, Vol. 2, Application; Nabighian, M.N., Ed.; SEG: Houston, TX, USA, 1987; Volume 2, Investigations in Geophysics, Chapter 12; pp. 931–966. [Google Scholar]
- Hale, D. My Favorite Ten-Line Computer Program. 2012. Available online: https://inside.mines.edu/~dhale/notebook.html (accessed on 30 May 2021).
- Liu, L.; Yang, B.; Zhang, Y.; Xu, Y.; Peng, Z.; Wang, F. Solving Electromagnetic Inverse Problem Using Adaptive Gradient Descent Algorithm. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5902415. [Google Scholar] [CrossRef]
- Støren, T.; Zach, J.; Maaø, F. Gradient calculations for 3D inversion of CSEM data using a fast finite-difference time-domain modelling code. In Proceedings of the 70th EAGE Conference and Exhibition incorporating SPE EUROPEC 2008, Rome, Italy, 9–12 June 2008. [Google Scholar]
- Key, K. MARE2DEM: A 2-D inversion code for controlled-source electromagnetic and magnetotelluric data. Geophys. J. Int. 2016, 207, 571–588. [Google Scholar] [CrossRef]
- Carvalho, B.R.; Menezes, P.T.L. Marlim R3D: A realistic model for CSEM simulations-phase I: Model building. Braz. J. Geol. 2017, 47, 633–644. [Google Scholar] [CrossRef]
- Key, K.; Ovall, J. A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling. Geophys. J. Int. 2011, 186, 137–154. [Google Scholar] [CrossRef]
- Correa, J.L.; Menezes, P.T.L. MR3D: A realistic model for CSEM simulations—Phase II: The CSEM dataset. In SEG Technical Program Expanded Abstracts 2018; SEG: Houston, TX, USA, 2018; pp. 959–963. [Google Scholar] [CrossRef]
- Yang, P. 3D fictitious wave domain CSEM inversion by adjoint source estimation. Comput. Geosci. 2023, 180, 105441. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valente, A.; Nascimento, D.; Costa, J. CSEM Optimization Using the Correspondence Principle. Appl. Sci. 2024, 14, 8846. https://doi.org/10.3390/app14198846
Valente A, Nascimento D, Costa J. CSEM Optimization Using the Correspondence Principle. Applied Sciences. 2024; 14(19):8846. https://doi.org/10.3390/app14198846
Chicago/Turabian StyleValente, Adriany, Deivid Nascimento, and Jessé Costa. 2024. "CSEM Optimization Using the Correspondence Principle" Applied Sciences 14, no. 19: 8846. https://doi.org/10.3390/app14198846
APA StyleValente, A., Nascimento, D., & Costa, J. (2024). CSEM Optimization Using the Correspondence Principle. Applied Sciences, 14(19), 8846. https://doi.org/10.3390/app14198846