Tensile Specimen Circular Grid Pattern and AI-Based Strain Calculation Method
Abstract
:1. Introduction
1.1. Research Background
1.2. Literature Review
1.3. Motivation and Novelty
2. Theoretical Background
2.1. Material Test
2.2. DIC Measurement Method
2.3. Image Preprocessing
2.4. AI Training Model
3. Circular Grid Pattern
3.1. Circular Grid Pattern Shape
3.2. Pattern Formation Method
4. Image Data and Training Procedure
4.1. Image Data Generation Method
4.2. AI Training Procedure
5. Results and Discussion
5.1. AI Training Results
5.2. Strain According to Resolution
5.3. Discussion and Contributions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trzepiecinski, T.; Najm, S.M. Current trends in metallic materials for body panels and structural members used in the automotive industry. Materials 2024, 17, 590. [Google Scholar] [CrossRef] [PubMed]
- Wiebenga, J.H.; Atzema, E.H.; An, Y.G.; Vegter, H.; van den Boogaard, A.H. Effect of material scatter on the plastic behavior and stretchability in sheet metal forming. J. Mater. Process. Technol. 2014, 214, 238–252. [Google Scholar] [CrossRef]
- Banergee, D.K.; Iadicola, M.A.; Creuziger, A. Understanding deformation behavior in uniaxial tensile tests of steel specimens at varying strain rates. J. Res. Natl. Institute of Stand. Technol. 2021, 126, 126050. [Google Scholar] [CrossRef]
- Schwarzkopf, E.A. Overview and comparison of noncontacting and traditional contacting extensometers. In Evaluation of Existing and New Sensor Technologies for Fatigue, Fracture, and Mechanical Testing; Kang, J., McKeighan, P.C., Dahlberg, G., Kemmerer, R., Eds.; 100 Barr Harbor Drive, PO Box C700; ASTM International: West Conshohocken, PA, USA, 2022. [Google Scholar] [CrossRef]
- He, X.; Zhou, R.; Liu, Z.; Chen, S.Y.K.; Li, L. Review of research progress and development trend of digital image correlation. Multidiscip. Model Mater. Struct. 2024, 20, 81–114. [Google Scholar] [CrossRef]
- Peters, W.H.; Ranson, W.F. Digital imaging techniques in experimental stress analysis. Opt. Eng. 1982, 21, 427–431. [Google Scholar] [CrossRef]
- Peters, W.H.; Ranson, W.F.; Sutton, M.A.; Chu, T.C.; Anderson, J. Application of digital correlation methods to rigid body mechanics. Opt. Eng. 1983, 22, 738–742. [Google Scholar] [CrossRef]
- Zhang, S.; Mao, S.; Arola, D.; Zhang, D. Characterization of the strain-life fatigue properties of thin sheet metal using an optical extensometer. Opt. Lasers. Eng. 2014, 60, 44–48. [Google Scholar] [CrossRef]
- Gavrilenkov, S.I. Method of simulating temperature effect on sensitivity of strain gauge force sensor in non-uniform temperature field. In AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2019. [Google Scholar] [CrossRef]
- Yoshihara, H.; Yoshinobu, M. Effects of specimen configuration and measurement method of strain on the sharacterization of tensile properties of paper. J. Wood. Sci. 2014, 60, 287–293. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, X.; Yan, F.; Zeng, Z. Non-Contact extensometer deformation detection via deep learning and edge feature analysis. In Design Studies and Intelligence Engineering; IOS Press: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Ko, M.; Lee, T. Performance Characteristics of Sensor Part in Extensometer Using Strain Gauge. Trans. Korean Soc. Mech. Eng. A 2019, 43, 201–208. [Google Scholar] [CrossRef]
- Tabin, J.; Prącik, M. Methods for identifying dynamic parameters of clip-on extensometer–specimen structure in tensile tests. Measurement 2015, 63, 176–186. [Google Scholar] [CrossRef]
- Tabin, J. Strain measurement by means of clip-on extensometers during discontinuous plastic flow at 4 K. Cryogenics 2022, 123, 103451. [Google Scholar] [CrossRef]
- Nie, X.; Song, B.; Loeffler, C.M. A novel splitting-beam laser extensometer technique for kolsky tension bar experiment. J. Dyn. Behav. Mater. 2015, 1, 70–74. [Google Scholar] [CrossRef]
- Kersemans, M.; Allaer, K.; Paepegem, W.V.; Abeele, K.V.D.; Pyl, L.; Zastavnik, F.; Sol, H.; Degrieck, J. A novel ultrasonic strain gauge for single-sided measurement of a local 3D strain field. Exp. Mech. 2014, 54, 1673–1685. [Google Scholar] [CrossRef]
- Li, D.; Cheng, B.; Xiang, S.; Zhou, H. Integrative measurement method for tensile test based on DIC using modified second-order shape function. Measurement 2024, 226, 114098. [Google Scholar] [CrossRef]
- Bulava, J.; Hargas, L.; Koniar, D. Contactless Material Tensil Testing Using a High-Resolution camera. Computation 2022, 10, 121. [Google Scholar] [CrossRef]
- Kim, S.J.; Min, H.G.; Park, J.H.; Kang, D.J. Application of deep learning method for time reduction and precision improvement in displacement measurement during in-situ SEM tensile test. Measurement 2024, in press. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, D. Machine learning and feature representation approaches to predict stress-strain curves of additively manufactured metamaterials with varying structure and process parameters. Mater. Des. 2024, 241, 112932. [Google Scholar] [CrossRef]
- Shim, Y.B.; Lee, I.Y.; Park, Y.B. Predicting the material behavior of recycled composites: Experimental analysis and deep learning hybrid approach. Compos. Sci. Technol. 2024, 249, 110464. [Google Scholar] [CrossRef]
- Karathanasopoulos, N.; Hadjidoukas, P. Deep learning based automated fracture identification in material characterization experiments. Adv. Eng. Inform. 2024, 60, 102402. [Google Scholar] [CrossRef]
- Castro, L.D.C.; Scabini, L.; Ribas, L.C.; Bruno, O.M.; Oliveira, O.N., Jr. Machine learning and image processing to monitor strain and tensile forces with mechanochromic sensors. Expert Syst. Appl. 2023, 212, 118792. [Google Scholar] [CrossRef]
- Yang, R.; Li, Y.; Zeng, D.; Guo, P. Deep DIC: Deep learning-based digital image correlation for end-to-end displacement and strain measurement. J. Mater. Process Technol. 2022, 302, 117474. [Google Scholar] [CrossRef]
- Lee, S. Analysis of tensile testing errors in metal thin film using the DIC method. Trans. Korean Soc. Mech. Eng. A 2020, 44, 513–518. [Google Scholar] [CrossRef]
- Kim, M.; Gu, B.; Hong, S. Determination of post-necking stress-strain relationship for zirconium low-oxidation based on actual cross-section measurements by DIC. J. Mech. Sci. Technol. 2020, 34, 4211–4217. [Google Scholar] [CrossRef]
- Hsu, Q.C. Comparison of different analysis models to measure plastic strains on sheet metal forming parts by digital image processing. Int. J. Mach. Tools Manuf. 2003, 43, 515–521. [Google Scholar] [CrossRef]
- Ibrahim, J.S.; Prasad, M.J.N.V.; Narasimhan, P.S.K. Effects of foil thickness to grain size (t/d) ratio and prestraining on tensile response, Microformability and Crystallographic texture of ultra-low carbon steel thin foils. Met. Mater. Int. 2024, 30, 348–359. [Google Scholar] [CrossRef]
- Wankhede, P.; Narayanaswamy, N.G.; Kurra, S.; Priyadarshini, A. A portable device for single point strain analysis in sheet metal forming processes. HardwareX 2022, 12, e00371. [Google Scholar] [CrossRef] [PubMed]
- Joshi, O.S. Binary image processing for computation of connected components, image holes and Euler number using graph theory. In Proceedings of the 2018 International Conference on Advances in Communication and Computing Technology (ICACCT), Sangamner, India, 8–9 February 2018; pp. 230–234. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part II 14. Springer International Publishing: Bael, Switzerland, 2016; pp. 391–407. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2015; pp. 770–778. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017. [Google Scholar] [CrossRef]
- KS B 0801: 2022; Test Pieces for Tensile Test for Metallic Materials. Korean Agency for Technology and Standards: Seoul, Republic of Korea, 2022.
Model Name | VGG16 | VGG19 | ResNet50 | MobileNet |
---|---|---|---|---|
R2 | 0.978 | 0.974 | 0.9614 | 0.904 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, S.; Hyun, D.; Hong, S. Tensile Specimen Circular Grid Pattern and AI-Based Strain Calculation Method. Appl. Sci. 2024, 14, 7330. https://doi.org/10.3390/app14167330
Yi S, Hyun D, Hong S. Tensile Specimen Circular Grid Pattern and AI-Based Strain Calculation Method. Applied Sciences. 2024; 14(16):7330. https://doi.org/10.3390/app14167330
Chicago/Turabian StyleYi, Sarang, Daeil Hyun, and Seokmoo Hong. 2024. "Tensile Specimen Circular Grid Pattern and AI-Based Strain Calculation Method" Applied Sciences 14, no. 16: 7330. https://doi.org/10.3390/app14167330
APA StyleYi, S., Hyun, D., & Hong, S. (2024). Tensile Specimen Circular Grid Pattern and AI-Based Strain Calculation Method. Applied Sciences, 14(16), 7330. https://doi.org/10.3390/app14167330