A Literature Review of Adhesive Systems in Dentistry: Key Components and Their Clinical Applications
Abstract
:1. Introduction
2. Enamel and Dentin—An Overview
3. Histology of Enamel and Dentin Structures
4. Effect of Dentin Structure on Resin–Dentin Bonding
Role of the Smear Layer in Dentin Bonding
- -
- The full elimination of the smear layer with H3PO4 before bonding in an ER approach (smear layer-removal approach) [74].
- -
- The application of bonding agents that can enter beyond the smear layer (various acidic primers are used), while integrating it following a SE approach (smear layer-modified approach) [80].
5. Resin–Dentin Bonding
5.1. Resin Adhesive Application
- -
- Restoration of traumatic and carious lesions of classes I, II, III, IV, V, and VI.
- -
- Repair existing restorations (amalgam, composite, crown).
- -
- Bonding fractured fragments of anterior teeth.
- -
- Sealing of cracks.
- -
- Sealing pits and fissures.
- -
- Desensitization of exposed root surfaces.
- -
- Bonding of ceramic restorations (all-ceramic crowns, inlays, onlays, veneers).
- -
- Improved retention of porcelain fused to metal crowns.
- -
- Bonding of molded or prefabricated metal and fiber posts.
- -
- Reinforcing fragile endodontically treated roots internally.
- -
- Bonding of orthodontic brackets.
- -
5.2. Mechanism of Adhesion
- Physical adhesion includes:
- Chemical adhesion includes:
- Covalent bonding that includes sharing electrons between two molecules. It is a strong bond that liberates considerable amounts of energy. A covalent bond is existent in all organic compounds.
- Ionic bonding that includes a transfer of electrons from an atom to another, like the ion exchange adhesion mechanism observed in glass ionomer cements.
- Mechanical adhesion includes:
- A diffusion of a material into another at a microscopic level. For instance, in composite resins the bonding includes the diffusion of resin into the enamel and the dentin substrates and the establishment of RTs [101].
5.3. Factors Influencing Adhesion
5.3.1. Wetting
5.3.2. Substrate Variations
5.3.3. Dentin Humidity
5.3.4. Configuration-Factor
5.3.5. Age of the Patient (Sclerotic Dentin)
6. Resin Adhesive Systems
6.1. Composition of the Adhesive Systems
6.1.1. Acidic Components
- Type I of etched enamel: privileged demineralization of the enamel prism core while keeping the prism periphery intact. The matching tags in this case are cone-shaped.
- Type II of etched enamel: the inter prismatic enamel is removed preferentially, leaving the prism cores intact. The matching enamel tags are cup-shaped.
6.1.2. Cross-Linking and Functional Monomers
- Cross-linking monomers
- -
- Acrylates (–CH2–CH=COO–): compounds characterized by double bonds that exhibit higher reactivity than methacrylates, causing problems in shelf-life and biocompatibility, and containing an ester group [48].
- -
- Methacrylates (–CH2–C(CH3)=CH2): compounds containing acrylates (double bonds), methyl group (–CH3), and ester group (Example: UDMA, Ethylene glycol dimethylacrylate, TEGDMA, or Bis-GMA) [167].
- -
- Methacrylamides: compounds composed of a methacrylate group and an amide group (R1–CO–NH–R2) instead of an ester group [48].
- B.
- Spacer
- C.
- Functional monomers
- Pentamethacryloyloxyethylcyclohexaphosphazene monofluoride (Dentsply company): Monomer with five methacrylate-alkyl chains and a fluoride as a functional group [48].
- N-phenylglycine glycidyl methacrylate and N-tolylglycine glycidyl methacrylate: Monomer with tertiary aromatic amine group [48].
- Dimethylaminoethyl methacrylate (DMAEMA): Monomer with tertiary amine group [169].
- Methacryloyloxydodecylpyridinium bromide (MDPB): Monomer patented by Kuraray company with antibacterial agent and a methacrylate group. This molecule is hydrophobic when compared to other hydrophilic functional monomers [170].
- N-methacryloyl-5-aminosalicylic acid: Monomer patented by Kuraray company and presented in adhesive systems with a salicylic group (desensitizing outcome) [48].
- MA: Monomer rarely used in adhesives due to its risk of allergic reactions [48].
- Methyl methacrylate (MMA): Old monomer rarely used in adhesive formulation like MA monomer [48].
- 4-META: Monomer with hydrophobic aromatic group, functional hydrophilic carboxyl groups, and demineralization assets. The adhesion capacity of 4-META has been well defined in the literature and depends on the interaction between the substrate and the carboxyl groups that substitutes P ions with Ca ions in HAp [17,33]. The resulting 4-META-Ca presents a low chemical stability [17,33,48]. This procedure is followed by the superficial dissolution of HAp due to the attack of hydronium ions resulting from the water protonation reaction with 4-META. After extracting Ca, P, and hydroxyl ions from the apatite surface, the solution turns out to be acidic, leading to the formation of dicalcium phosphate dihydrate precipitate [48]. Previous analysis showed that 4-META-Ca solubilized quicker than 10-MDP–Ca, which leads to decreased molecular stability [34]. This discovery supports the “Adhesion-Decalcification concept” (AD concept), which stipulates that the lower the solubility of Ca salt in the acidic molecule, the stronger and more stable the adhesion with the HAp substrate [17,34].
- 4-MET: 4-META + water = 4-MET: Two carboxylic groups attached to aromatic groups with methacrylate group as polymerizable group [48].
- 4-acryloyloxyethyl trimellitate anhydride: Patented by Shofu company (Kyoto, Japan), two carboxylic groups linked to aromatic groups similar to 4-MET except the presence of acrylate group instead of methacrylate group [48].
- 11-methacryloyloxy-1,1’-undecanedicarboxylic acid: Monomer patented by Tokuyama company (Tokyo, Japan); information regarding this monomer in the literature is quite sparse, 10 carbon atoms comparable to 10-MDP, with a hydrophobic spacer [48].
- Phenyl-P: Monomer with monohydrogen phosphate group [48].
- HEMA-P: Monomer with methacrylated H3PO4–HEMA esters group [48].
- HEMA: Monomer with low molecular weight (small size) and often utilized in several adhesive systems [171,172]. This hydrophilic monomer is frequently included in the formulation of adhesives because of its solvent like nature. It consists of a mixture of hydrophilic and hydrophobic polymers. Hydrophilic monomers are usually transported in a water-soluble solvent (acetone, ethanol, water) to encourage an adequate flow and a penetration in the hydrophilic dentin (to influence the strength of the resulting bonding), while hydrophobic monomers promote the chemical bond with resin layer [17,172,173]. This increases stability and helps in preserving hydrophobic and hydrophilic monomers in the mixture by reducing phase separation in the presence of water [174]. Adhesives lacking HEMA monomer might have issues related to phase separation [175]. Although HEMA has numerous positive attributes, it also has drawbacks. HEMA, both in the unpolymerized and polymerized state, certainly absorbs water from the underlying dentin through osmosis and from the outer oral environment [174]. Once polymerized, it can swell, discolor, and contribute to the hydrolysis of the adhesive interface (water blisters become entrapped in the adhesive layer) [48]. Finally, HEMA has been correlated with biocompatibility concerns, as it has been assigned rather substantial allergic potential, and even contributes to probable genotoxicity [176]. All in all, the most notable disadvantages of HEMA are as follow: low polymerization capacity, low mechanical strength, high water sorption, and critical biocompatibility in terms of allergic reaction. When the HEMA concentration declines beneath a critical level, phase separation will happen between the adhesive monomers and water, and a strong air-stream is needed to eliminate the water-containing droplets from the adhesives [177]. High amounts of HEMA might lessen the mechanical characteristics of the resulting polymer [178]. This will result in flexible polymers with inferior qualities. PolyHEMA is basically a flexible porous polymer (‘gel’). As such, high concentrations of HEMA in an adhesive may have deteriorating effects on the mechanical properties of the resulting polymer. HEMA also reduces the vapor pressure of water, and probably also of alcohol [48,178]. High amounts may therefore hinder good solvent evaporation from adhesive solutions. Like all methacrylates, HEMA is vulnerable to hydrolysis, especially at basic pH, but also at acidic pH [178]. Uncured HEMA also has the ability to lower the vapor pressure of water and can make evaporation more difficult through the air-drying stage [48]. The ideal HEMA concentration to obtain higher BSs in primer/adhesive is between 30–40% [179], and 5–25 wt% in single-bottle adhesives [17], though this can depend on the specific adhesive formulation. Despite its effectiveness, the use of HEMA remains controversial. Some studies have shown no significant differences between the clinical performances of HEMA-based and HEMA-free adhesive systems [180,181]. While other findings revealed clinically significant difference between HEMA and HEMA-free adhesive systems [182,183]. In current adhesives, manufacturers strive to significantly lower the HEMA contents or even substitute HEMA with other monomers such as methacrylamide monomer [33]. To conclude, it may be stated that in very favorable conditions, the presence or absence of HEMA monomer might not influence the clinical behavior of adhesive systems. However, it is critical to have a thorough understanding of the advantages and limitations of HEMA to make informed decisions and select the best adhesive system based on the clinical situation.
- 10-MDP: This monomer was patented by Kuraray (Kuraray Noritake, Tokyo, Japan) and introduced in 1981 (following ‘CSE’ Technical Information from Kuraray Noritake). 10-MDP is used in many UAs including All-Bond Universal (Bisco, Inc., Schaumburg, IL, USA), Adhese Universal (Ivoclar Vivadent, Schaan, Liechtenstein), G-Premio Bond (GC, Tokyo, Japan), Futurabond U (Voco, Cuxhaven, Germany), Clearfil Universal Bond (Kuraray Noritake, Tokyo, Japan), and Scotchbond Universal (3M ESPE, St. Paul, MN, USA) [184]. In addition, 10-MDP is a major constituent of SE adhesive systems, with a dihydrogen phosphate group qualified to bond the tooth substrate, long carbonyl chains that render this monomer hydrophobic, and a methacrylate group on the other side capable of bonding to methacrylate-based materials [185]. 10-MDP outperformed the other functional monomers studied in terms of chemical bonding potential. This monomer was documented to self-assemble into “nano-layering”, a process focused on the deposition of 10-MDP–Ca salts with low solubility in order to obtain an optimum hybridization [186,187]. Each nano-layering involves two sublayers of parallel 10-MDP monomers placed in reverse direction. This monomer’s methacrylate group is pointed inwards, allowing mutual co-polymerization among two contrasting monomers. Its functional P group is oriented outwards, collecting Ca released from dentin structure [184,185,188] (Figure 13).
- 16.
- GPDM: In 1949, Oskar Hagger invented the first adhesive technique by combining GPDM in a liquid cavity sealer with a chemically cured resin-based restorative substance (Sevriton®) [201]. GPDM is a monomer with two methacrylate groups linked by a short carbon spacer to one P acidic functional group. Due to the presence of two polymerizable methacrylate groups, GPDM can promote better polymer formation than 4-META, 10-MDP, and HEMA [17]. The hydrophilicity of GPDM aids in adhesive infiltration into the demineralized dentin due to having similar characteristics to HEMA monomer [13]. GPDM also enhances the interaction between the bonding agents and HAp, comparable in function to 4-META which forms an unstable GPDM–Ca salt. GPDM behaves in a decalcification route, but unlike 10-MDP, it does not expose collagen, but rather promotes the creation of a thick HL with exposed collagen. However, the variances in chemical bonding do not eliminate the actual bonding effectiveness of adhesive systems comprising GPDM [13,17]. The interaction between GPDM and the co-monomers should be further assessed to gain a better understanding of the positive outcomes with regards to bonding durability of adhesive systems containing this monomer [17,33].
- 17.
- PENTA-P: This monomer is characterized by P ester monomers containing carbon=carbon double bonds and a P group [-OP(=O)(OH)2]. When compared to 10-MDP functional monomer, the chain of PENTA is shorter. PENTA has five vinyl groups compared to one in 10-MDP monomer, and these four additional vinyl groups make PENTA more resilient to hydrolytic degradation [51,202,203]. Thus, when hydrolysis occurs and eliminates one vinyl group from the main structure of the monomer, four vinyl groups will still be present for the conservation of the P group. Accordingly, copolymerization to other monomers and adhesion to tooth structure happen at the same time [189,202]. This finding could be elucidated by a previous study which demonstrated that PENTA incorporated into the formulation of the adhesive Prime & Bond Elect (Dentsply Caulk, Milford, DE, USA) had more stability than 10-MDP, as the BS is maintained even at the end of its shelf-life. This is explained by the sustained connection between the four vinyl groups and the P group [202,204] (Figure 14).
6.1.3. Solvents
6.1.4. Other Components
6.2. Etch-and-Rinse Adhesive Strategy
- -
- Application of a solution or gel, usually H3PO4 (with a pH of 0.1 to 0.4), for a period of 15–30 s on the enamel and a maximum of 15 s on the dentin (a duration longer than 15 s will cause “over-etching”) [33,267]. Etching agents are mostly colored gels (thickened by means of silica microparticles) that regulate the application and ensure that all the gel is rinsed off the tooth substrate [15].
- -
- Copious rinsing (15 s and more) using an air/water spray to remove the residues that result from the chemical reaction between the acid and the minerals. However, the surface must remain moist in order to prevent collagen collapse. This is done using a dry applicator, absorbent paper points, or air that removes any excess humidity [9,10,266].
- -
- Once the dentin is moist, the application of a hydrophilic primer solution on enamel and dentin in several layers will be necessary to infiltrate the exposed collagen network, followed by a slight air pump for 5 s to eliminate the solvent (depending on the solvent). Thus, the dentin will exhibit a glossy appearance [9,10].
- -
- Application of adhesive resin on enamel and dentin, followed by the elimination of excess adhesive by a dry micro-brush. Afterwards, polymerization is done according to the manufacturer’s recommendation. Thus, the HL is formed by the resin infiltrated surface layer on dentin and enamel. The purpose of the ideal hybridization for these adhesives is to gain high BSs [9], typically in the range of 20 MPa for both enamel and dentin substrates [262].
6.3. Self-Etch Adhesive Strategy
- -
- Type I adhesives, which are self-etching primer and adhesive systems such as CSE (Kuraray Noritake Dental, Tokyo, Japan), Prelude SE (Danville Materials, San Ramon, CA, USA), and Ultradent Peak SE (Ultradent Products Inc, South Jordan, UT, USA). These adhesives have liquid components including a self-etching primer and an adhesive resin, which are applied separately to the tooth and are generally compatible with self-cured composites.
- -
- Type II adhesive systems such as All-Bond SE (Bisco, Inc., Schaumburg, IL, USA), Brush&Bond (Parkell, Edgewood, NY, USA), Futurabond NR (VOCO America, Inc., Cuspis, CA, USA), Touch&Bond (Parkell, Edgewood, NY, USA), Adper Prompt L Pop (3M ESPE, St. Paul, MN, USA), and Xeno III (DENTSPLY Caulk, Milford, DE, USA). They use a self-etching primer and adhesive that are mixed together prior to placement and are not compatible with self-cured composites [9,15,33].
6.4. Universal Adhesives
- -
- UAs integrate the primer and the adhesive resin, each with a distinct purpose, in a single application step [15].
- -
- UAs generally contain less resin and more solvent compared to systems with separate primer and adhesive components. This formulation can impact the adhesive layer’s thickness and its properties. The increased solvent content aids in better wetting and penetration of the adhesive into the tooth structure, but it may also lead to thinner adhesive layers after evaporation and curing, which could be prone to suboptimal polymerization [9,290].
- -
- UA’s film thickness is usually less than 10 µm, influenced by air blowing pressure and time. This thin layer can result in suboptimal polymerization due to polymerization-inhibition by oxygen, suboptimal adhesive interface stabilization, and reduced ability to absorb stress from the restorative composite [33]. Both excessively thin and overly thick adhesive resin films can negatively impact BS, emphasizing the need for an optimal film thickness to ensure effective adhesion and durability [291].
- -
- -
- UAs absorb much more water and have lower hydrolytic resistance [294].
- Advantages:
- -
- Suitable for ER and SE adhesives, as well as SEE, making them highly versatile [9].
- -
- -
- Application of this class of adhesives in SE mode with a scrubbing technique enhances the BS to enamel substrate [325].
- -
- -
- Suitable for a wider range of restorative procedures [172].
- -
- Used as zirconia primers [172].
- -
- -
- Patient and operator factors may have a greater impact on restoration longevity than the adhesive used. When using UAs in clinical settings, isolation with a rubber dam is recommended, and moisture control is crucial. However, the reduced number of steps and the associated time savings may also be considered important advantages [124,324,329].
- Disadvantages:
- -
- -
- -
- When H3PO4 is used to etch dentin, they do not effectively seal the margins [333].
- -
- UAs, like traditional SE I adhesives, can act as permeable membranes following polymerization. This allows fluids to pass through the adhesive layer and degrade the resin–dentin contact via hydrolysis [9].
- -
- Solvent evaporation time must be extended to prevent water entrapment and NL [334].
- -
- The addition of silane to the adhesive solution does not increase BS to glass-matrix ceramics. Thus, a separate silane solution must be employed for better adhesion to glass-matrix ceramics [312].
7. Clinical Applications of Dental Adhesion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Alkattan, R. Adhesion to enamel and dentine: An update. Prim. Dent. J. 2023, 12, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.V.; de Almeida Neves, A.; Mine, A.; Coutinho, E.; Van Landuyt, K.; De Munck, J.; Van Meerbeek, B. Current aspects on bonding effectiveness and stability in adhesive dentistry. Aust. Dent. J. 2011, 56, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Perdigão, J. Current perspectives on dental adhesion: (1) Dentin adhesion—Not there yet. Jpn. Dent. Sci. Rev. 2020, 56, 190–207. [Google Scholar] [CrossRef] [PubMed]
- Breschi, L.; Maravic, T.; Cunha, S.R.; Comba, A.; Cadenaro, M.; Tjäderhane, L.; Pashley, D.H.; Tay, F.R.; Mazzoni, A. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications. Dent. Mater. 2018, 34, 78–96. [Google Scholar] [CrossRef]
- Paken, G.; Çömlekoğlu, M.E.; Sonugelen, M. Detection of the hybrid layer biodegradation initiation factor with a scanning electron microscope. Microsc. Res. Tech. 2021, 84, 2166–2175. [Google Scholar] [CrossRef]
- Takamizawa, T.; Imai, A.; Hirokane, E.; Tsujimoto, A.; Barkmeier, W.W.; Erickson, R.L.; Latta, M.A.; Miyazaki, M. SEM observation of novel characteristic of the dentin bond interfaces of universal adhesives. Dent. Mater. 2019, 35, 1791–1804. [Google Scholar] [CrossRef]
- Bourgi, R.; Hardan, L.; Rivera-Gonzaga, A.; Cuevas-Suárez, C.E. Effect of warm-air stream for solvent evaporation on bond strength of adhesive systems: A systematic review and meta-analysis of in vitro studies. Int. J. Adhes. Adhes. 2021, 105, 102794. [Google Scholar] [CrossRef]
- Frassetto, A.; Breschi, L.; Turco, G.; Marchesi, G.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; Cadenaro, M. Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability—A literature review. Dent. Mater. 2016, 32, e41–e53. [Google Scholar] [CrossRef]
- Sofan, E.; Sofan, A.; Palaia, G.; Tenore, G.; Romeo, U.; Migliau, G. Classification review of dental adhesive systems: From the IV generation to the universal type. Ann. Stomatol. 2017, 8, 1–17. [Google Scholar] [CrossRef]
- Pashley, D.H.; Tay, F.R.; Breschi, L.; Tjäderhane, L.; Carvalho, R.M.; Carrilho, M.; Tezvergil-Mutluay, A. State of the art etch-and-rinse adhesives. Dent. Mater. 2011, 27, 1–16. [Google Scholar] [CrossRef]
- Moszner, N.; Hirt, T. New polymer-chemical developments in clinical dental polymer materials: Enamel-dentin adhesives and restorative composites. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 4369–4402. [Google Scholar] [CrossRef]
- Vermelho, P.M.; Reis, A.F.; Ambrosano, G.M.; Giannini, M. Adhesion of multimode adhesives to enamel and dentin after one year of water storage. Clin. Oral Investig. 2017, 21, 1707–1715. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Hayakawa, S.; Okihara, T.; Yoshida, Y.; Van Meerbeek, B. Chemical interaction of glycero-phosphate dimethacrylate (GPDM) with hydroxyapatite and dentin. Dent. Mater. 2018, 34, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, B.; Yoshihara, K.; Yoshida, Y.; Mine, A.; De Munck, J.; Van Landuyt, K.L. State of the art of self-etch adhesives. Dent. Mater. 2011, 27, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Arandi, N.Z. The Classification and Selection of Adhesive Agents; an Overview for the General Dentist. Clin. Cosmet. Investig. Dent. 2023, 15, 165–180. [Google Scholar] [CrossRef]
- Araújo-Neto, V.G.; Garcia, I.M.; de Souza Balbinot, G.; Collares, F.M.; Giannini, M. Influence of titanium dioxide nanotubes with alkyl ammonium alkyl bromide on the physicochemical properties and adhesion of experimental adhesive resins to dentin. Int. J. Adhes. Adhes. 2024, 132, 103718. [Google Scholar] [CrossRef]
- Dressano, D.; Salvador, M.V.; Oliveira, M.T.; Marchi, G.M.; Fronza, B.M.; Hadis, M.; Palin, W.M.; Lima, A.F. Chemistry of novel and contemporary resin-based dental adhesives. J. Mech. Behav. Biomed. Mater. 2020, 110, 103875. [Google Scholar] [CrossRef]
- Yiu, C.K.; Pashley, E.L.; Hiraishi, N.; King, N.M.; Goracci, C.; Ferrari, M.; Carvalho, R.M.; Pashley, D.H.; Tay, F.R. Solvent and water retention in dental adhesive blends after evaporation. Biomaterials 2005, 26, 6863–6872. [Google Scholar] [CrossRef]
- Al-Salamony, H.; Naguib, E.A.; Hamza, C.S.; Younis, S.H. The Effect of Warm Air Solvent Evaporation on Microtensile Bond Strength of Two Different Self-Etch Adhesives to Dentin (In Vitro Study). Sylwan 2020, 164, 479. [Google Scholar]
- Ferreira, J.C.; Pires, P.T.; Azevedo, A.F.; Oliveira, S.A.; Melo, P.R.; Silva, M.J. Influence of solvents and composition of etch-and-rinse and self-etch adhesive systems on the nanoleakage within the hybrid layer. J. Contemp. Dent. Pract. 2013, 14, 691–699. [Google Scholar] [CrossRef]
- Chimeli, T.B.; D’Alpino, P.H.; Pereira, P.N.; Hilgert, L.A.; Di Hipólito, V.; Garcia, F.C. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems. J. Appl. Oral Sci. 2014, 22, 294–301. [Google Scholar] [CrossRef] [PubMed]
- El-Askary, F.S.; Van Noort, R. Effect of air-drying pressure and distance on microtensile bond strength of a self-etching adhesive. J. Adhes. Dent. 2011, 13, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Cadenaro, M.; Maravic, T.; Comba, A.; Mazzoni, A.; Fanfoni, L.; Hilton, T.; Ferracane, J.; Breschi, L. The role of polymerization in adhesive dentistry. Dent. Mater. 2019, 35, e1–e22. [Google Scholar] [CrossRef]
- Klein-Junior, C.A.; Sobieray, K.; Zimmer, R.; Portella, F.F.; Reston, E.G.; Marinowic, D.; Hosaka, K. Effect of heat treatment on cytotoxicity and polymerization of universal adhesives. Dent. Mater. J. 2020, 39, 970–975. [Google Scholar] [CrossRef]
- Hardan, L.; Bourgi, R.; Kharouf, N.; Mancino, D.; Zarow, M.; Jakubowicz, N.; Haikel, Y.; Cuevas-Suárez, C.E. Bond Strength of Universal Adhesives to Dentin: A Systematic Review and Meta-Analysis. Polymers 2021, 13, 814. [Google Scholar] [CrossRef]
- Ekambaram, M.; Yiu, C.K.Y.; Matinlinna, J.P. An overview of solvents in resin-dentin bonding. Int. J. Adhes. Adhes. 2015, 57, 22–33. [Google Scholar] [CrossRef]
- Carvalho, C.N.; Lanza, M.D.S.; Dourado, L.G.; Carvalho, E.M.; Bauer, J. Impact of Solvent Evaporation and Curing Protocol on Degree of Conversion of Etch-and-Rinse and Multimode Adhesives Systems. Int. J. Dent. 2019, 2019, 5496784. [Google Scholar] [CrossRef]
- Moritake, N.; Takamizawa, T.; Ishii, R.; Tsujimoto, A.; Barkmeier, W.W.; Latta, M.A.; Miyazaki, M. Effect of Active Application on Bond Durability of Universal Adhesives. Oper. Dent. 2019, 44, 188–199. [Google Scholar] [CrossRef]
- Jang, J.H.; Jeon, B.K.; Mo, S.Y.; Park, M.; Choi, D.; Choi, K.K.; Kim, D.S. Effect of various agitation methods on adhesive layer formation of HEMA-free universal dentin adhesive. Dent. Mater. J. 2019, 38, 101–106. [Google Scholar] [CrossRef]
- Perdigão, J.; Araujo, E.; Ramos, R.Q.; Gomes, G.; Pizzolotto, L. Adhesive dentistry: Current concepts and clinical considerations. J. Esthet. Restor. Dent. 2021, 33, 51–68. [Google Scholar] [CrossRef]
- Chowdhury, A.F.M.A.; Saikaew, P.; Alam, A.; Sun, J.; Carvalho, R.M.; Sano, H. Effects of Double Application of Contemporary Self-Etch Adhesives on Their Bonding Performance to Dentin with Clinically Relevant Smear Layers. J. Adhes. Dent. 2019, 21, 59–66. [Google Scholar] [CrossRef]
- Ito, S.; Tay, F.R.; Hashimoto, M.; Yoshiyama, M.; Saito, T.; Brackett, W.W.; Waller, J.L.; Pashley, D.H. Effects of multiple coatings of two all-in-one adhesives on dentin bonding. J. Adhes. Dent. 2005, 7, 133–141. [Google Scholar]
- Van Meerbeek, B.; Yoshihara, K.; Van Landuyt, K.; Yoshida, Y.; Peumans, M. From Buonocore’s Pioneering Acid-Etch Technique to Self-Adhering Restoratives. A Status Perspective of Rapidly Advancing Dental Adhesive Technology. J. Adhes. Dent. 2020, 22, 7–34. [Google Scholar] [PubMed]
- Yoshida, Y.; Nagakane, K.; Fukuda, R.; Nakayama, Y.; Okazaki, M.; Shintani, H.; Inoue, S.; Tagawa, Y.; Suzuki, K.; De Munck, J.; et al. Comparative study on adhesive performance of functional monomers. J. Dent. Res. 2004, 83, 454–458. [Google Scholar] [CrossRef]
- Zheng, H.; Shi, Y.; Bi, L.; Zhang, Z.; Zhou, Z.; Shao, C.; Cui, D.; Cheng, X.; Tang, R.; Pan, H.; et al. Dual Functions of MDP Monomer with De- and Remineralizing Ability. J. Dent. Res. 2022, 101, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Yoshida, Y.; Hayakawa, S.; Nagaoka, N.; Irie, M.; Ogawa, T.; Van Landuyt, K.L.; Osaka, A.; Suzuki, K.; Minagi, S.; et al. Nanolayering of phosphoric acid ester monomer on enamel and dentin. Acta Biomater. 2011, 7, 3187–3195. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Barbosa, I.; Araújo-Pierote, J.J.; Rodrigues de Menezes, L.; Trazzi-Prieto, L.; Frazão-Câmara, J.V.; Sgarbosa de Araújo-Matuda, L.; Marchi, G.M.; Maffei Sartini-Paulillo, L.A.; Pimenta de Araujo, C.T. Effect of Alternative Solvent Evaporation Techniques on Mechanical Properties of Primer-Adhesive Mixtures. Acta Odontol. Latinoam. 2020, 33, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Ogura, Y.; Shimizu, Y.; Shiratsuchi, K.; Tsujimoto, A.; Takamizawa, T.; Ando, S.; Miyazaki, M. Effect of warm air-drying on dentin bond strength of single-step self-etch adhesives. Dent. Mater. J. 2012, 31, 507–513. [Google Scholar] [CrossRef]
- Marsiglio, A.A.; Almeida, J.C.; Hilgert, L.A.; D’Alpino, P.H.; Garcia, F.C. Bonding to dentin as a function of air-stream temperatures for solvent evaporation. Braz. Oral Res. 2012, 26, 280–287. [Google Scholar] [CrossRef]
- Bourgi, R.; Kharouf, N.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Kharma, K.; Moussa, F.H.; Metlej, M.; Haikel, Y.; Hardan, L. Warm Air Delivery in Adhesive Application: Effect on Bonding Performance and Morphological Outcomes. Biomimetics 2024, 9, 194. [Google Scholar] [CrossRef]
- Nagarkar, S.; Theis-Mahon, N.; Perdigão, J. Universal dental adhesives: Current status, laboratory testing, and clinical performance. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Shibata, Y.; Manabe, A.; Miyazaki, T. Mineralization potential of polarized dental enamel. PLoS ONE 2009, 4, e5986. [Google Scholar] [CrossRef]
- Ahmed, G.M.; Abouauf, E.A.; AbuBakr, N.; Dörfer, C.E.; El-Sayed, K.F. Tissue engineering approaches for enamel, dentin, and pulp regeneration: An update. Stem Cells Int. 2020, 2020, 5734539. [Google Scholar] [CrossRef]
- Purk, J.H. Morphologic and structural analysis of material-tissue interfaces relevant to dental reconstruction. In Material-Tissue Interfacial Phenomena; Woodhead Publishing: Sawston, UK, 2017; pp. 205–229. [Google Scholar]
- Bedran-Russo, A.; Leme-Kraus, A.A.; Vidal, C.M.P.; Teixeira, E.C. An Overview of Dental Adhesive Systems and the Dynamic Tooth-Adhesive Interface. Dent. Clin. N. Am. 2017, 61, 713–731. [Google Scholar] [CrossRef]
- Desoutter, A.; Felbacq, D.; Gergely, C.; Varga, B.; Bonnet, L.; Etienne, P.; Vialla, R.; Cuisinier, F.; Salehi, H.; Rousseau, E.; et al. Properties of dentin, enamel and their junction, studied with Brillouin scattering and compared to Raman microscopy. Arch. Oral Biol. 2023, 152, 105733. [Google Scholar] [CrossRef] [PubMed]
- Sui, T.; Dluhoš, J.; Li, T.; Zeng, K.; Cernescu, A.; Landini, G.; Korsunsky, A.M. Structure-Function Correlative Microscopy of Peritubular and Intertubular Dentine. Materials 2018, 11, 1493. [Google Scholar] [CrossRef]
- Van Landuyt, K.L.; Snauwaert, J.; De Munck, J.; Peumans, M.; Yoshida, Y.; Poitevin, A.; Coutinho, E.; Suzuki, K.; Lambrechts, P.; Van Meerbeek, B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007, 28, 3757–3785. [Google Scholar] [CrossRef]
- Moszner, N.; Salz, U.; Zimmermann, J. Chemical aspects of self-etching enamel-dentin adhesives: A systematic review. Dent. Mater. 2005, 21, 895–910. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wang, Y. Chemical composition and structure of peritubular and intertubular human dentine revisited. Arch. Oral Biol. 2012, 57, 383–391. [Google Scholar] [CrossRef]
- Yoshihara, K.; Yoshida, Y.; Nagaoka, N.; Hayakawa, S.; Okihara, T.; De Munck, J.; Maruo, Y.; Nishigawa, G.; Minagi, S.; Osaka, A.; et al. Adhesive interfacial interaction affected by different carbon-chain monomers. Dent. Mater. 2013, 29, 888–897. [Google Scholar] [CrossRef]
- Chiba, A.; Zhou, J.; Nakajima, M.; Tan, J.; Tagami, J.; Scheffel, D.L.; Hebling, J.; Agee, K.A.; Breschi, L.; Grégoire, G.; et al. The effects of ethanol on the size-exclusion characteristics of type I dentin collagen to adhesive resin monomers. Acta Biomater. 2016, 33, 235–241. [Google Scholar] [CrossRef]
- Marshall, G.W., Jr.; Marshall, S.J.; Kinney, J.H.; Balooch, M. The dentin substrate: Structure and properties related to bonding. J. Dent. 1997, 25, 441–458. [Google Scholar] [CrossRef]
- Masarwa, N.; Mohamed, A.; Abou-Rabii, I.; Abu Zaghlan, R.; Steier, L. Longevity of Self-etch Dentin Bonding Adhesives Compared to Etch-and-rinse Dentin Bonding Adhesives: A Systematic Review. J. Evid. Based Dent. Pract. 2016, 16, 96–106. [Google Scholar] [CrossRef]
- Nakabayashi, N.; Kojima, K.; Masuhara, E. The promotion of adhesion by the infiltration of monomers into tooth substrates. J. Biomed. Mater. Res. 1982, 16, 265–273. [Google Scholar] [CrossRef]
- Delgado, A.H.S.; Da Costa, M.B.; Polido, M.C.; Azul, A.M.; Sauro, S. Collagen-depletion strategies in dentin as alternatives to the hybrid layer concept and their effect on bond strength: A systematic review. Sci. Rep. 2022, 12, 13028. [Google Scholar] [CrossRef] [PubMed]
- Simmer, J.P.; Hu, J.C.-C. Dental enamel formation and its impact on clinical dentistry. J. Dent. Educ. 2001, 65, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Wilmers, J.; Bargmann, S. Nature’s design solutions in dental enamel: Uniting high strength and extreme damage resistance. Acta Biomater. 2020, 107, 1–24. [Google Scholar] [CrossRef]
- Akasapu, A.; Hegde, U.; Murthy, P.S. Enamel surface morphology: An ultrastructural comparative study of anterior and posterior permanent teeth. J. Microsc. Ultrastruct. 2018, 6, 160–164. [Google Scholar] [CrossRef]
- Tjäderhane, L.; Nascimento, F.D.; Breschi, L.; Mazzoni, A.; Tersariol, I.L.; Geraldeli, S.; Tezvergil-Mutluay, A.; Carrilho, M.R.; Carvalho, R.M.; Tay, F.R.; et al. Optimizing dentin bond durability: Control of collagen degradation by matrix metalloproteinases and cysteine cathepsins. Dent. Mater. 2013, 29, 116–135. [Google Scholar] [CrossRef] [PubMed]
- Mouw, J.K.; Ou, G.; Weaver, V.M. Extracellular matrix assembly: A multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 2014, 15, 771–785. [Google Scholar] [CrossRef]
- Mazzoni, A.; Breschi, L.; Carrilho, M.; Nascimento, F.D.; Orsini, G.; Ruggeri Jr, A.; Gobbi, P.; Manzoli, L.; Tay, F.R.; Pashley, D.H.; et al. A review of the nature, role, and function of dentin non-collagenous proteins. Part II: Enzymes, serum proteins, and growth factors. Endod. Top. 2009, 21, 19–40. [Google Scholar] [CrossRef]
- Lodish, H.; Berk, A.; Zipursky, S.L. Collagen: The Fibrous Proteins of the Matrix. In Molecular Cell Biology; W.H. Freeman & Co. Ltd.: New York, NY, USA, 2000. [Google Scholar]
- Bella, J.; Brodsky, B.; Berman, H.M. Hydration structure of a collagen peptide. Structure 1995, 3, 893–906. [Google Scholar] [CrossRef]
- Toroian, D.; Lim, J.E.; Price, P.A. The size exclusion characteristics of type I collagen: Implications for the role of noncollagenous bone constituents in mineralization. J. Biol. Chem. 2007, 282, 22437–22447. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, N.; Pashley, D.H. Hybridization Of Dental Hard Tissues; Quintessence Publishing: Batavia, IL, USA, 1998. [Google Scholar]
- Tjäderhane, L. Dentin bonding: Can we make it last? Oper. Dent. 2015, 40, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Vaidyanathan, T.K.; Vaidyanathan, J. Recent advances in the theory and mechanism of adhesive resin bonding to dentin: A critical review. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 88, 558–578. [Google Scholar] [CrossRef]
- Salz, U.; Zimmermann, J.; Zeuner, F.; Moszner, N. Hydrolytic stability of self-etching adhesive systems. J. Adhes. Dent. 2005, 7, 107–116. [Google Scholar]
- Illev, G.; Hardan, L.; Kassis, C.; Bourgi, R.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Mancino, D.; Haikel, Y.; Kharouf, N. Shelf life and storage conditions of universal adhesives: A literature review. Polymers 2021, 13, 2708. [Google Scholar] [CrossRef] [PubMed]
- Spencer, P.; Ye, Q.; Park, J.; Topp, E.M.; Misra, A.; Marangos, O.; Wang, Y.; Bohaty, B.S.; Singh, V.; Sene, F.; et al. Adhesive/dentin interface: The weak link in the composite restoration. Ann. Biomed. Eng. 2010, 38, 1989–2003. [Google Scholar] [CrossRef]
- Bertassoni, L.E.; Orgel, J.P.; Antipova, O.; Swain, M.V. The dentin organic matrix–limitations of restorative dentistry hidden on the nanometer scale. Acta Biomater. 2012, 8, 2419–2433. [Google Scholar] [CrossRef]
- Xu, Q.; Torres, J.E.; Hakim, M.; Babiak, P.M.; Pal, P.; Battistoni, C.M.; Nguyen, M.; Panitch, A.; Solorio, L.; Liu, J.C. Collagen-and hyaluronic acid-based hydrogels and their biomedical applications. Mater. Sci. Eng. R Rep. 2021, 146, 100641. [Google Scholar] [CrossRef]
- Saikaew, P.; Sattabanasuk, V.; Harnirattisai, C.; Chowdhury, A.F.; Carvalho, R.; Sano, H. Role of the smear layer in adhesive dentistry and the clinical applications to improve bonding performance. Jpn. Dent. Sci. Rev. 2022, 58, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.F.M.A.; Islam, R.; Alam, A.; Matsumoto, M.; Yamauti, M.; Carvalho, R.M.; Sano, H. Variable Smear Layer and Adhesive Application: The Pursuit of Clinical Relevance in Bond Strength Testing. Int. J. Mol. Sci. 2019, 20, 5381. [Google Scholar] [CrossRef] [PubMed]
- Eick, J.D.; Wilko, R.A.; Anderson, C.H.; Sorensen, S.E. Scanning electron microscopy of cut tooth surfaces and identification of debris by use of the electron microprobe. J. Dent. Res. 1970, 49, 1359–1368. [Google Scholar] [CrossRef]
- Zheng, S. Effect of different smear layers on the bonding performance and durability of four adhesive systems. Chin. J. Tissue Eng. Res. 2020, 24, 517–523. [Google Scholar]
- Pashley, D.H.; Livingston, M.J.; Greenhill, J.D. Regional resistances to fluid flow in human dentine in vitro. Arch. Oral Biol. 1978, 23, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Terry, D.; Trajtenberg, C.; Blatz, M.; Leinfelder, K. A Review of Dental Tissue Microstructure, Biomodification, and Adhesion. Funct. Esthet. Restor. Dent. 2008, 2, 10–17. [Google Scholar]
- Saikaew, P.; Matsumoto, M.; Sattabanasuk, V.; Harnirattisai, C.; Carvalho, R.M.; Sano, H. Ultra-morphological characteristics of dentin surfaces after different preparations and treatments. Eur. J. Oral Sci. 2020, 128, 246–254. [Google Scholar] [CrossRef]
- Eick, J.D.; Cobb, C.M.; Chappell, R.P.; Spencer, P.; Robinson, S.J. The dentinal surface: Its influence on dentinal adhesion. Part I. Quintessence Int. 1991, 22, 967–977. [Google Scholar]
- Łukomska-Szymańska, M.; Sokołowski, J.; Łapińska, B. Current views on adhesive bonding systems. J. Stomatol. 2017, 70, 384–393. [Google Scholar]
- Retief, D.H.; Denys, F.R. Adhesion to enamel and dentin. Am. J. Dent. 1989, 2, 133–144. [Google Scholar]
- Eick, J.D. Smear layer—Materials surface. Proc. Finn. Dent. Soc. 1992, 88 (Suppl. S1), 225–242. [Google Scholar] [PubMed]
- Perinka, L.; Sano, H.; Hosoda, H. Dentin thickness, hardness, and Ca-concentration vs bond strength of dentin adhesives. Dent. Mater. 1992, 8, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, I.; Nakabayashi, N.; Pashley, D.H. Bonding to ground dentin by a Phenyl-P self-etching primer. J. Dent. Res. 1994, 73, 1212–1220. [Google Scholar] [CrossRef]
- Sano, H.; Shono, T.; Sonoda, H.; Takatsu, T.; Ciucchi, B.; Carvalho, R.; Pashley, D.H. Relationship between surface area for adhesion and tensile bond strength—Evaluation of a micro-tensile bond test. Dent. Mater. 1994, 10, 236–240. [Google Scholar] [CrossRef]
- Saikaew, P.; Chowdhury, A.F.; Fukuyama, M.; Kakuda, S.; Carvalho, R.M.; Sano, H. The effect of dentin surface preparation and reduced application time of adhesive on bonding strength. J. Dent. 2016, 47, 63–70. [Google Scholar] [CrossRef]
- Oliveira, S.S.; Pugach, M.K.; Hilton, J.F.; Watanabe, L.G.; Marshall, S.J.; Marshall, G.W., Jr. The influence of the dentin smear layer on adhesion: A self-etching primer vs. a total-etch system. Dent. Mater. 2003, 19, 758–767. [Google Scholar] [CrossRef]
- Suyama, Y.; Lührs, A.K.; De Munck, J.; Mine, A.; Poitevin, A.; Yamada, T.; Van Meerbeek, B.; Cardoso, M.V. Potential smear layer interference with bonding of self-etching adhesives to dentin. J. Adhes. Dent. 2013, 15, 317–324. [Google Scholar]
- Van Landuyt, K.L.; Mine, A.; De Munck, J.; Jaecques, S.; Peumans, M.; Lambrechts, P.; Van Meerbeek, B. Are one-step adhesives easier to use and better performing? Multifactorial assessment of contemporary one-step self-etching adhesives. J. Adhes. Dent. 2009, 11, 175–190. [Google Scholar] [PubMed]
- Taschner, M.; Kümmerling, M.; Lohbauer, U.; Breschi, L.; Petschelt, A.; Frankenberger, R. Effect of double-layer application on dentin bond durability of one-step self-etch adhesives. Oper. Dent. 2014, 39, 416–426. [Google Scholar] [CrossRef]
- Erhardt, M.C.; Osorio, R.; Pisani-Proenca, J.; Aguilera, F.S.; Osorio, E.; Breschi, L.; Toledano, M. Effect of double layering and prolonged application time on MTBS of water/ethanol-based self-etch adhesives to dentin. Oper. Dent. 2009, 34, 571–577. [Google Scholar] [CrossRef]
- Sattabanasuk, V.; Vachiramon, V.; Qian, F.; Armstrong, S.R. Resin-dentin bond strength as related to different surface preparation methods. J. Dent. 2007, 35, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, M.G. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J. Dent. Res. 1955, 34, 849–853. [Google Scholar] [CrossRef]
- Mokeem, L.S.; Garcia, I.M.; Balhaddad, A.A.; Cline, K.; Rakovsky, G.; Collares, F.M.; Melo, M.A. Dental Adhesives: State-of-the-Art, Current Perspectives, and Promising Applications. Adhes. Biomed. Appl. 2023, 2, 253–277. [Google Scholar]
- Rizk, S. Principles of Adhesion to Tooth Structure. Biomater. J. 2023, 2, 10–30. [Google Scholar]
- Porto, I.C.; Lôbo, T.D.; Rodrigues, R.F.; Lins, R.B.; da Silva, M.A. Insight into the development of versatile dentin bonding agents to increase the durability of the bonding interface. Front. Dent. Med. 2023, 4, 1127368. [Google Scholar] [CrossRef]
- Christensen, G.J. Bonding to dentin and enamel: Where does it stand in 2005? J. Am. Dent. Assoc. 2005, 136, 1299–1302. [Google Scholar] [CrossRef]
- Scotti, N.; Cavalli, G.; Gagliani, M.; Breschi, L. New adhesives and bonding techniques: Why and when? Int. J. Esthet. Dent. 2017, 12, 524–535. [Google Scholar]
- Alla, R.K. Composite Resins (Tooth Colored Restorative Materials) in Dental Materials Science; Jaypee Brothers Medical Publishers (P) Ltd.: New Delhi, India, 2013; pp. 132–148. [Google Scholar]
- Anusavice, K.J.; Shen, C.; Ralph Rawls, H. Bonding and bonding agents. In Phillip’s Science of Dental Materials, 12th ed.; Elsevier Saunders: Philadelphia, PA, USA, 2012; pp. 258–284. [Google Scholar]
- Latta, M.A.; Barkmeier, W.W. Dental adhesives in contemporary restorative dentistry. Dent. Clin. N. Am. 1998, 42, 567–577. [Google Scholar] [CrossRef]
- Perdigao, J.; Swift, E.J., Jr.; Walter, R. Fundamental concepts of enamel and dentin adhesion. In Sturdevant’s Art and Science of Operative Dentistry, 6th ed.; Heymann, H., Swift, E.J., Jr., Eds.; Elsevier/Mosby: St. Louis, MO, USA, 2012; pp. 114–135. [Google Scholar]
- Anusavice, K.J. Structure of matter and principles of adhesion. In Philip’s Science of Dental Materials, 11th ed.; Saunders: St. Louis, MO, USA, 2003; pp. 21–40. [Google Scholar]
- Anusavice, K.J.; Shen, C.; Rawls, H.R. (Eds.) Phillips’ Science of Dental Materials; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Navyasri, K.; Alla, R.K.; Vineeth, G.; Suresh Sajjan, M.C. An overview of dentin bonding agents. Int. J. Dent. Mater. 2019, 1, 60–67. [Google Scholar] [CrossRef]
- Pazinatto, F.B.; Marquezini, L., Jr.; Atta, M.T. Influence of temperature on the spreading velocity of simplified-step adhesive systems. J. Esthet. Restor. Dent. 2006, 18, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Von Fraunhofer, J. Adhesion and Cohesion. Int. J. Dent. 2012, 2012, 951324. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Leal, J.I.; Osorio, R.; Holgado-Terriza, J.A.; Cabrerizo-Vílchez, M.A.; Toledano, M. Dentin wetting by four adhesive systems. Dent. Mater. 2001, 17, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Hisamatsu, N.; Atsuta, M.; Matsumura, H. Effect of silane primers and unfilled resin bonding agents on repair bond strength of a prosthodontic microfilled composite. J. Oral Rehabil. 2002, 29, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Balkaya, H.; Demirbuğa, S. Evaluation of six different one-step universal adhesive systems in terms of dentin bond strength, adhesive interface characterization, surface tension, contact angle, degree of conversion and solvent evaporation after immediate and delayed use. J. Esthet. Restor. Dent. 2023, 35, 479–492. [Google Scholar] [CrossRef]
- Szalóki, M.; Szabó, Z.; Martos, R.; Csík, A.; Szőllősi, G.J.; Hegedűs, C. The Surface Free Energy of Resin-Based Composite in Context of Wetting Ability of Dental Adhesives. Appl. Sci. 2023, 13, 12061. [Google Scholar] [CrossRef]
- Shamly, M.; Nasim, I. Evaluation of wettability of hesperidin incorporated dentin adhesive-an in vitro study. J. Popul. Ther. Clin. Pharmacol. 2023, 30, 425–432. [Google Scholar]
- Ruyter, I.E. The chemistry of adhesive agents. Oper. Dent. 1992, 5, 32–43. [Google Scholar]
- Van Meerbeek, B.; Lambrechts, P.; Inokoshi, S.; Braem, M.; Vanherle, G. Factors affecting adhesion to mineralized tissues. Oper. Dent. 1992, 5, 111–124. [Google Scholar]
- Pashley, D.H.; Horner, J.A.; Brewer, P.D. Interactions of conditioners on the dentin surface. Oper. Dent. 1992, 5, 137–150. [Google Scholar]
- Schüpbach, P.; Krejci, I.; Lutz, F. Dentin bonding: Effect of tubule orientation on hybrid-layer formation. Eur. J. Oral Sci. 1997, 105, 344–352. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Sano, H.; Burrow, M.F.; Tagami, J.; Pashley, D.H. Effects of dentin depth and cavity configuration on bond strength. J. Dent. Res. 1999, 78, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Finger, W.J. Dentin adhesives: Site of dentin vs. bonding of composite resins. Dent. Mater. 1988, 4, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Schiltz-Taing, M.; Wang, Y.; Suh, B.; Brown, D.; Chen, L. Effect of tubular orientation on the dentin bond strength of acidic self-etch adhesives. Oper. Dent. 2011, 36, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Botelho, M.P.J.; Isolan, C.P.; Schwantz, J.K.; Lopes, M.B.; Moraes, R.R. Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin. J. Appl. Oral Sci. 2017, 25, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Falacho, R.I.; Melo, E.A.; Marques, J.A.; Ramos, J.C.; Guerra, F.; Blatz, M.B. Clinical in-situ evaluation of the effect of rubber dam isolation on bond strength to enamel. J. Esthet. Restor. Dent. 2023, 35, 48–55. [Google Scholar] [CrossRef]
- Dabbagh, S.; Hardan, L.; Kassis, C.; Bourgi, R.; Devoto, W.; Zarow, M.; Jakubowicz, N.; Ghaleb, M.; Kharouf, N.; Dabbagh, M.; et al. Effect of intraoral humidity on dentin bond strength of two universal adhesives: An in vitro preliminary study. Coatings 2022, 12, 712. [Google Scholar] [CrossRef]
- Jacquot, B.; Durand, J.C.; Farge, P.; Valcarcel, J.; Deville de Périère, D.; Cuisinier, F. Influence of temperature and relative humidity on dentin and enamel bonding: A critical review of the literature. Part 1. Laboratory studies. J. Adhes. Dent. 2012, 14, 433–446. [Google Scholar]
- Plasmans, P.J.; Creugers, N.H.; Hermsen, R.J.; Vrijhoef, M.M. Intraoral humidity during operative procedures. J. Dent. 1994, 22, 89–91. [Google Scholar] [CrossRef]
- Choi, A.N.; Lee, J.H.; Son, S.A.; Jung, K.H.; Kwon, Y.H.; Park, J.K. Effect of Dentin Wetness on the Bond Strength of Universal Adhesives. Materials 2017, 10, 1224. [Google Scholar] [CrossRef]
- Moll, K.; Haller, B. Effect of intrinsic and extrinsic moisture on bond strength to dentine. J. Oral Rehabil. 2000, 27, 150–165. [Google Scholar] [CrossRef]
- Paul, S.J.; Leach, M.; Rueggeberg, F.A.; Pashley, D.H. Effect of water content on the physical properties of model dentine primer and bonding resins. J. Dent. 1999, 27, 209–214. [Google Scholar] [CrossRef]
- Plasmans, P.J.; Reukers, E.A.; Vollenbrock-Kuipers, L.; Vollenbrock, H.R. Air humidity: A detrimental factor in dentine adhesion. J. Dent. 1993, 21, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Sinjari, B.; Rexhepi, I.; Santilli, M.; D’addazio, G.; Chiacchiaretta, P.; Di Carlo, P.; Caputi, S. The Impact of COVID-19 Related Lockdown on Dental Practice in Central Italy—Outcomes of A Survey. Int. J. Environ. Res. Public Health 2020, 17, 5780. [Google Scholar] [CrossRef]
- Frankenberger, R.; Van Meerbeek, B. Editorial: Rubber-dam—A blessing not only in the COVID-19 era. J. Adhes. Dent. 2021, 23, 3. [Google Scholar] [PubMed]
- Wang, Y.; Li, C.; Yuan, H.; Wong, M.C.; Zou, J.; Shi, Z.; Zhou, X. Rubber dam isolation for restorative treatment in dental patients. Cochrane Database Syst. Rev. 2016, 9, CD009858. [Google Scholar] [CrossRef]
- Abuzenada, B.M. Attitude of dental students towards the rubber dam use in operative dentistry. J. Pharm. Bioallied. Sci. 2021, 13, 637. [Google Scholar] [CrossRef]
- Dokania, R.; Varshney, S.; Verma, P.; Sahoo, S.K. Cross-Sectional Evaluation of Dentists Knowledge and Awareness towards Rubber Dam Usage in Pediatric Dental Procedures: An Original Study. J. Adv. Med. Dent. Sci. Res. 2019, 7, 121–124. [Google Scholar]
- Nikolaenko, S.A.; Lohbauer, U.; Roggendorf, M.; Petschelt, A.; Dasch, W.; Frankenberger, R. Influence of c-factor and layering technique on microtensile bond strength to dentin. Dent. Mater. 2004, 20, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.V.; Patil, J.P.; Raju, R.C.; Venigalla, B.S.; Jyotsna, S.V.; Bhutani, N. Comparison of Effect of C-Factor on Bond Strength to Human Dentin Using Different Composite Resin Materials. J. Clin. Diagn. Res. 2015, 9, 88–91. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Burrow, M.F.; Tagami, J. The effects of bonding system and light curing method on reducing stress of different C-factor cavities. J. Adhes. Dent. 2001, 3, 177–183. [Google Scholar]
- Marques, M.S.; Kenshima, S.; Muench, A.; Ballester, R.Y.; Rodrigues Filho, L.E. Effect of the C-factor and dentin preparation method in the bond strength of a mild self-etch adhesive. Oper. Dent. 2009, 34, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Sadr, A.; Tagami, J. Effects of C-factor on bond strength to floor and wall dentin. Dent. Mater. J. 2016, 35, 918–922. [Google Scholar] [CrossRef] [PubMed]
- Perdigão, J. Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent. Mater. 2010, 26, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Tay, F.R.; Pashley, D.H. Resin bonding to cervical sclerotic dentin: A review. J. Dent. 2004, 32, 173–196. [Google Scholar] [CrossRef]
- Florescu, A.; Efrem, I.C.; Haidoiu, C.; Hertzog, R.; Bîcleşanu, F.C. Microscopy comparative evaluation of the SE systems adhesion to normal and sclerotic dentin. Rom. J. Morphol. Embryol. 2015, 56, 1051–1056. [Google Scholar]
- Hedge, J. Sclerotic dentin: Clinical implications in restorative dentistry. J. Dent. 2011, 1, 5–6. [Google Scholar]
- Al-Abd Al, M.A.; Al-Badr, R.J.; Abbas, M.S. Modern Adhesive Dentistry: A review of literatures. Med. J. Ahl Al-Bayt Univ. 2023, 2, 6–13. [Google Scholar]
- Cadenaro, M.; Josic, U.; Maravić, T.; Mazzitelli, C.; Marchesi, G.; Mancuso, E.; Breschi, L.; Mazzoni, A. Progress in dental adhesive materials. J. Dent. Res. 2023, 102, 254–262. [Google Scholar] [CrossRef]
- Muñoz, M.A.; Luque, I.; Hass, V.; Reis, A.; Loguercio, A.D.; Bombarda, N.H.C. Immediate bonding properties of universal adhesives to dentine. J. Dent. 2013, 41, 404–411. [Google Scholar] [CrossRef]
- Garg, N.; Garg, A. Textbook of Operative Dentistry; Boydell & Brewer Ltd.: Martlesham, UK, 2010. [Google Scholar]
- Hobson, R.S.; McCabe, J.F. Relationship between enamel etch characteristics and resin-enamel bond strength. Br. Dent. J. 2002, 192, 463–468. [Google Scholar] [CrossRef]
- Barnhart, E.C.; Campbell, P.M.; Noureldin, A.; Julien, K.; Buschang, P.H. The quality of etched enamel in different regions and tooth types and its significance in bonding and the development of white spot lesions. Angle Orthod. 2021, 91, 576–582. [Google Scholar] [CrossRef]
- Kharouf, N.; Reitzer, F.; Ashi, T.; Daras, N.; Haikel, Y.; Mancino, D. Effectiveness of etching with phosphoric acid when associated with rubbing technique. J. Stomatol. 2021, 74, 16–21. [Google Scholar] [CrossRef]
- Talal, A.; Nasim, H.M.; Khan, A.S. Enamel etching and dental adhesives. In Advanced Dental Biomaterials; Woodhead Publishing: Sawston, UK, 2019; pp. 229–253. [Google Scholar]
- Aljifan, M.K.; Alshehri, A.M.; Alharbi, R.M.; Al Alhareth, M.S.; Alharbi, Z.A.; Alamri, S.M.; Alshahrani, N.S.; Alyamani, A.E.; Alzahrani, A.A.; Alqarni, A.A.; et al. An Overview of Dentin Conditioning and Its Effect on Bond Strength. Int. J. Community Med. Public Health 2023, 10, 371–375. [Google Scholar] [CrossRef]
- Kharouf, N.; Mancino, D.; Naji-Amrani, A.; Eid, A.; Haikel, Y.; Hemmerle, J. Effectiveness of Etching by Three Acids on the Morphological and Chemical Features of Dentin Tissue. J. Contemp. Dent. Pract. 2019, 20, 915–919. [Google Scholar] [PubMed]
- Majidinia, S.; Ghavamnasiri, M.; Bagheri, M.; Hajizadeh, H.; Namazikhah, M.S. Effect of different conditioning protocols on the adhesion of a glass ionomer cement to dentin. J. Contemp. Dent. Pract. 2009, 10, 9–16. [Google Scholar] [CrossRef]
- Eliades, G.; Palaghias, G.; Vougiouklakis, G. Effect of acidic conditioners on dentin morphology, molecular composition and collagen conformation in situ. Dent. Mater. 1997, 13, 24–33. [Google Scholar] [CrossRef]
- Atalay, C.; Uslu, A.; Yazici, A.R. Does laser etching have an effect on application mode of a universal adhesive?—A microleakage and scanning electron microscopy evaluation. Microsc. Res. Tech. 2021, 84, 125–132. [Google Scholar] [CrossRef]
- Sulieman, M. An overview of the use of lasers in general dental practice: 2. Laser wavelengths, soft and hard tissue clinical applications. Dent. Update 2005, 32, 286–288. [Google Scholar] [CrossRef]
- Gutknecht, N.; Apel, C.; Schäfer, C.; Lampert, F. Microleakage of composite fillings in Er, Cr: YSGG laser-prepared class II cavities. Lasers Surg. Med. 2001, 28, 371–374. [Google Scholar] [CrossRef]
- Andrade, A.M.; Moura, S.K.; Reis, A.; Loguercio, A.D.; Garcia, E.J.; Grande, R.H. Evaluating resin-enamel bonds by microshear and microtensile bond strength tests: Effects of composite resin. J. Appl. Oral Sci. 2010, 18, 591–598. [Google Scholar] [CrossRef]
- Pires, P.T.; Ferreira, J.C.; Oliveira, S.A.; Azevedo, Á.F.; Dias, W.R.; Melo, P.R. Shear bond strength and SEM morphology evaluation of different dental adhesives to enamel prepared with ER: YAG laser. Contemp. Clin. Dent. 2013, 4, 20–26. [Google Scholar] [CrossRef]
- Üşümez, S.; Orhan, M.; Üşümez, A. Laser etching of enamel for direct bonding with an Er, Cr: YSGG hydrokinetic laser system. Am. J. Orthod. Dentofac. Orthop. 2002, 122, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Labunet, A.; Tonea, A.; Kui, A.; Sava, S. The use of laser energy for etching enamel surfaces in dentistry—A scoping review. Materials 2022, 15, 1988. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, L.H.; Lobo, P.D.; Moriyama, Y.; Watanabe, I.S.; Villaverde, A.B.; Tanaka, C.S.; Moriyama, E.H.; Brugnera, A., Jr. Tensile bond strength and SEM analysis of enamel etched with Er: YAG laser and phosphoric acid: A comparative study in vitro. Braz. Dent. J. 2008, 19, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Salman, S.Q.; Hussein, B.M. Topographical Analysis of Human Enamel after Phosphoric Acid Etching and Er, Cr: YSGG Laser Irradiation. J. Lasers Med. Sci. 2023, 14, e68. [Google Scholar] [CrossRef]
- Odian, G. Principles of Polymerization; Wiley-Interscience: New York, NY, USA, 2004. [Google Scholar]
- Peutzfeldt, A. Resin composites in dentistry: The monomer systems. Eur. J. Oral Sci. 1997, 105, 97–116. [Google Scholar] [CrossRef]
- Nishiyama, N.; Suzuki, K.; Yoshida, H.; Teshima, H.; Nemoto, K. Hydrolytic stability of methacrylamide in acidic aqueous solution. Biomaterials 2004, 25, 965–969. [Google Scholar] [CrossRef]
- Bowen, R.L.; Bennett, P.S.; Groh, R.J.; Farahani, M.; Eichmiller, E.C. New surface-active comonomer for adhesive bonding. J. Dent. Res. 1996, 75, 606–610. [Google Scholar] [CrossRef]
- Imazato, S.; Russell, R.R.; McCabe, J.F. Antibacterial activity of MDPB polymer incorporated in dental resin. J. Dent. 1995, 23, 177–181. [Google Scholar] [CrossRef]
- Tay, F.R.; Pashley, D.H. Have dentin adhesives become too hydrophilic? J. Can. Dent. Assoc. 2003, 69, 726–731. [Google Scholar]
- Alex, G. Universal adhesives: The next evolution in adhesive dentistry? Compend. Contin. Educ. Dent. 2015, 36, 15–40. [Google Scholar] [PubMed]
- Nakabayashi, N.; Takarada, K. Effect of HEMA on bonding to dentin. Dent. Mater. 1992, 8, 125–130. [Google Scholar] [CrossRef]
- Van Landuyt, K.L.; De Munck, J.; Snauwaert, J.; Coutinho, E.; Poitevin, A.; Yoshida, Y.; Inoue, S.; Peumans, M.; Suzuki, K.; Lambrechts, P.V.; et al. Monomer-solvent phase separation in one-step self-etch adhesives. J. Dent. Res. 2005, 84, 183–188. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.S.P.; de Castro, R.F.; Magno, M.B.; Maia, L.C.; Silva, E.; Souza, M.H.D., Jr. Do HEMA-free adhesive systems have better clinical performance than HEMA-containing systems in noncarious cervical lesions? A systematic review and meta-analysis. J. Dent. 2018, 74, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wiertelak-Makała, K.; Szymczak-Pajor, I.; Bociong, K.; Śliwińska, A. Considerations about Cytotoxicity of Resin-Based Composite Dental Materials: A Systematic Review. Int. J. Mol. Sci. 2023, 25, 152. [Google Scholar] [CrossRef]
- Spreafico, D.; Semeraro, S.; Mezzanzanica, D.; Re, D.; Gagliani, M.; Tanaka, T.; Sano, H.; Sidhu, S.K. The Effect of the Air-Blowing Step on the Technique Sensitivity of Four Different Adhesive Systems. J. Dent. 2006, 34, 237–244. [Google Scholar] [CrossRef]
- Van Landuyt, K.L.; Snauwaert, J.; Peumans, M.; De Munck, J.; Lambrechts, P.; Van Meerbeek, B. The Role of HEMA in One-Step Self-Etch Adhesives. Dent. Mater. 2008, 24, 1412–1419. [Google Scholar] [CrossRef]
- Hussain, L.A.; Dickens, S.H.; Bowen, R.L. Shear Bond Strength of Experimental Methacrylated Beta-Cyclodextrin-Based Formulations. Biomaterials 2005, 26, 3973–3979. [Google Scholar] [CrossRef]
- Burrow, M.F.; Tyas, M.J. Comparison of Two All-in-One Adhesives Bonded to Non-Carious Cervical Lesions—Results at 3 Years. Clin. Oral Investig. 2012, 16, 1089–1094. [Google Scholar] [CrossRef]
- Moretto, S.; Russo, E.; Carvalho, R.; De Munck, J.; Van Landuyt, K.; Peumans, M.; Van Meerbeek, B.; Cardoso, M. 3-Year Clinical Effectiveness of One-Step Adhesives in Non-Carious Cervical Lesions. J. Dent. 2013, 41, 675–682. [Google Scholar] [CrossRef]
- Scotti, N.; Comba, A.; Gambino, A.; Manzon, E.; Breschi, L.; Paolino, D.; Pasqualini, D.; Berutti, E. Influence of Operator Experience on Non-Carious Cervical Lesion Restorations: Clinical Evaluation with Different Adhesive Systems. Am. J. Dent. 2016, 29, 33–38. [Google Scholar]
- Hafer, M.; Jentsch, H.; Haak, R.; Schneider, H. A Three-Year Clinical Evaluation of a One-Step Self-Etch and a Two-Step Etch-and-Rinse Adhesive in Non-Carious Cervical Lesions. J. Dent. 2015, 43, 350–361. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Okihara, T.; Kuroboshi, M.; Hayakawa, S.; Maruo, Y.; Nishigawa, G.; De Munck, J.; Yoshida, Y.; Van Meerbeek, B. Functional Monomer Impurity Affects Adhesive Performance. Dent. Mater. 2015, 31, 1493–1501. [Google Scholar] [CrossRef]
- Suh, W.K.; Kim, K.M.; Kwon, J.S. Changes in Adhesive Strength and pH of Dental Universal Adhesive in Accordance with Varying Proportions of 10-MDP. Korean J. Dent. Mater. 2023, 50, 281–292. [Google Scholar] [CrossRef]
- Yoshida, Y.; Yoshihara, K.; Nagaoka, N.; Hayakawa, S.; Torii, Y.; Ogawa, T.; Osaka, A.; Van Meerbeek, B. Self-Assembled Nano-Layering at the Adhesive Interface. J. Dent. Res. 2012, 91, 376–381. [Google Scholar] [CrossRef]
- Yoshihara, K.; Yoshida, Y.; Nagaoka, N.; Fukegawa, D.; Hayakawa, S.; Mine, A.; Nakamura, M.; Minagi, S.; Osaka, A.; Suzuki, K.; et al. Nano-Controlled Molecular Interaction at Adhesive Interfaces for Hard Tissue Reconstruction. Acta Biomater. 2010, 6, 3573–3582. [Google Scholar] [CrossRef]
- Nurrohman, H.; Nakashima, S.; Takagaki, T.; Sadr, A.; Nikaido, T.; Asakawa, Y.; Uo, M.; Marshall, S.J.; Tagami, J. Immobilization of Phosphate Monomers on Collagen Induces Biomimetic Mineralization. BioMed. Mater. Eng. 2015, 25, 89–99. [Google Scholar] [CrossRef]
- Teshima, I. Degradation of 10-Methacryloyloxydecyl Dihydrogen Phosphate. J. Dent. Res. 2010, 89, 1281–1286. [Google Scholar] [CrossRef]
- Wagner, A.; Wendler, M.; Petschelt, A.; Belli, R.; Lohbauer, U. Bonding Performance of Universal Adhesives in Different Etching Modes. J. Dent. 2014, 42, 800–807. [Google Scholar] [CrossRef]
- Muñoz, M.A.; Sezinando, A.; Luque-Martinez, I.; Szesz, A.L.; Reis, A.; Loguercio, A.D.; Bombarda, N.H.; Perdigão, J. Influence of a Hydrophobic Resin Coating on the Bonding Efficacy of Three Universal Adhesives. J. Dent. 2014, 42, 595–602. [Google Scholar] [CrossRef]
- Zhou, J.; Wurihan; Shibata, Y.; Tanaka, R.; Zhang, Z.; Zheng, K.; Li, Q.; Ikeda, S.; Gao, P.; Miyazaki, T. Quantitative/Qualitative Analysis of Adhesive-Dentin Interface in the Presence of 10-Methacryloyloxydecyl Dihydrogen Phosphate. J. Mech. Behav. Biomed. Mater. 2019, 92, 71–78. [Google Scholar] [CrossRef]
- Feitosa, V.P.; Pomacóndor-Hernández, C.; Ogliari, F.A.; Leal, F.; Correr, A.B.; Sauro, S. Chemical Interaction of 10-MDP (Methacryloyloxy- Decyl-Dihydrogen-Phosphate) in Zinc-Doped Self-Etch Adhesives. J. Dent. 2014, 42, 359–365. [Google Scholar] [CrossRef]
- Yaguchi, T. Layering Mechanism of MDP-Ca Salt Produced in Demineralization of Enamel and Dentin Apatite. Dent. Mater. 2017, 33, 23–32. [Google Scholar] [CrossRef]
- Fujita Nakajima, K.; Nikaido, T.; Arita, A.; Hirayama, S.; Nishiyama, N. Demineralization Capacity of Commercial 10-Methacryloyloxydecyl Dihydrogen Phosphate-Based All-in-One Adhesive. Dent. Mater. 2018, 34, 1555–1565. [Google Scholar] [CrossRef]
- Yoshihara, K.; Hayakawa, S.; Nagaoka, N.; Okihara, T.; Yoshida, Y.; Van Meerbeek, B. Etching Efficacy of Self-Etching Functional Monomers. J. Dent. Res. 2018, 97, 1010–1016. [Google Scholar] [CrossRef]
- Putzeys, E.; Duca, R.C.; Coppens, L.; Vanoirbeek, J.; Godderis, L.; Van Meerbeek, B.; Van Landuyt, K.L. In-Vitro Transdentinal Diffusion of Monomers from Adhesives. J. Dent. 2018, 75, 91–97. [Google Scholar] [CrossRef]
- Fehrenbach, J.; Isolan, C.P.; Münchow, E.A. Is the Presence of 10-MDP Associated to Higher Bonding Performance for Self-Etching Adhesive Systems? A Meta-Analysis of In Vitro Studies. Dent. Mater. 2021, 37, 1463–1485. [Google Scholar] [CrossRef]
- Jin, X.; Han, F.; Wang, Q.; Yuan, X.; Zhou, Q.; Xie, H.; Niu, L.; Chen, C. The Roles of 10-Methacryloyloxydecyl Dihydrogen Phosphate and Its Calcium Salt in Preserving the Adhesive-Dentin Hybrid Layer. Dent. Mater. 2022, 38, 1194–1205. [Google Scholar] [CrossRef]
- de Oliveira, R.P.; de Paula, B.L.F.; Alencar, C.M.; Alves, E.B.; Silva, C.M. A Randomized Clinical Study of the Performance of Self-Etching Adhesives Containing HEMA and 10-MDP on Non-Carious Cervical Lesions: A 2-Year Follow-Up Study. J. Dent. 2023, 130, 104407. [Google Scholar] [CrossRef] [PubMed]
- Koike, K.; Takamizawa, T.; Aoki, R.; Shibasaki, S.; Ishii, R.; Sai, K.; Kamimoto, A.; Miyazaki, M. Comparison of Dentin Bond Durability in Different Adhesive Systems Containing Glycerol-Phosphate Dimethacrylate (GPDM) Functional Monomers under Long-Term Water Storage. Int. J. Adhes. Adhes. 2023, 124, 103366. [Google Scholar] [CrossRef]
- Cuevas-Suárez, C.E.; Ramos, T.S.; Rodrigues, S.B.; Collares, F.M.; Zanchi, C.H.; Lund, R.G.; da Silva, A.F.; Piva, E. Impact of Shelf-Life Simulation on Bonding Performance of Universal Adhesive Systems. Dent. Mater. 2019, 35, 204–219. [Google Scholar] [CrossRef] [PubMed]
- Feitosa, V.P.; Sauro, S.; Ogliari, F.A.; Stansbury, J.W.; Carpenter, G.H.; Watson, T.F.; Sinhoreti, M.A.; Correr, A.B. The Role of Spacer Carbon Chain in Acidic Functional Monomers on the Physicochemical Properties of Self-Etch Dental Adhesives. J. Dent. 2014, 42, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Dentsply Sirona. Prime & Bond Active Universal Adhesive; Charlotte, NC, USA. 2016. Available online: https://www.dentsplysirona.com/content/dam/dentsply/pim/manufacturer/Restorative/Direct_Restoration/Adhesives/Universal_Adhesives/PrimeBond_active/PrimeBond%20active_Scientific%20Compendium_EN.pdf (accessed on 27 August 2024).
- Carrilho, E.; Cardoso, M.; Marques Ferreira, M.; Marto, C.M.; Paula, A.; Coelho, A.S. 10-MDP Based Dental Adhesives: Adhesive Interface Characterization and Adhesive Stability—A Systematic Review. Materials 2019, 12, 790. [Google Scholar] [CrossRef]
- Chen, Y.; Tay, F.R.; Lu, Z.; Chen, C.; Qian, M.; Zhang, H.; Tian, F.; Xie, H. Dipentaerythritol Penta-Acrylate Phosphate—An Alternative Phosphate Ester Monomer for Bonding of Methacrylates to Zirconia. Sci. Rep. 2016, 6, 39542. [Google Scholar] [CrossRef]
- Hoshika, S.; Kameyama, A.; Suyama, Y.; De Munck, J.; Sano, H.; Van Meerbeek, B. GPDM- and 10-MDP-based Self-etch Adhesives Bonded to Bur-cut and Uncut Enamel—“Immediate” and “Aged” µTBS. J. Adhes. Dent. 2018, 20, 113–120. [Google Scholar] [PubMed]
- Papadogiannis, D.; Dimitriadi, M.; Zafiropoulou, M.; Gaintantzopoulou, M.D.; Eliades, G. Universal Adhesives: Setting Characteristics and Reactivity with Dentin. Materials 2019, 12, 1720. [Google Scholar] [CrossRef]
- Irmak, Ö.; Baltacıoğlu, İ.H.; Ulusoy, N.; Bağış, Y.H. Solvent Type Influences Bond Strength to Air or Blot-Dried Dentin. BMC Oral Health 2016, 16, 77. [Google Scholar] [CrossRef]
- Nihi, F.M.; Fabre, H.S.; Garcia, G.; Fernandes, K.B.; Ferreira, F.B.; Wang, L. In Vitro Assessment of Solvent Evaporation from Commercial Adhesive Systems Compared to Experimental Systems. Braz. Dent. J. 2009, 20, 396–402. [Google Scholar] [CrossRef]
- Reis, A.F.; Oliveira, M.T.; Giannini, M.; De Goes, M.F.; Rueggeberg, F.A. The Effect of Organic Solvents on One-Bottle Adhesives Bond Strength to Enamel and Dentin. Oper. Dent. 2003, 28, 700–706. [Google Scholar]
- Pashley, D.H.; Carvalho, R.M.; Tay, F.R.; Agee, K.A.; Lee, K.W. Solvation of Dried Dentin Matrix by Water and Other Polar Solvents. Am. J. Dent. 2002, 15, 97–102. [Google Scholar]
- Forman, D.L.; McLeod, R.R.; Shah, P.K.; Stansbury, J.W. Evaporation of Low-Volatility Components in Polymeric Dental Resins. Dent. Mater. 2015, 31, 1090–1099. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.R.; Adhikari, N. An Overview on Common Organic Solvents and Their Toxicity. J. Pharm. Res. Int. 2019, 28, 1–8. [Google Scholar] [CrossRef]
- Reis, A.; Loguercio, A.D. A 36-Month Clinical Evaluation of Ethanol/Water and Acetone-Based Etch-and-Rinse Adhesives in Non-Carious Cervical Lesions. Oper. Dent. 2009, 34, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Elkassas, D.; Taher, H.A.; Elsahn, N.; Hafez, R.; El-Badrawy, W. Effect of the Number of Applications of Acetone-Based Adhesives on Microtensile Bond Strength and the Hybrid Layer. Oper. Dent. 2009, 34, 688–696. [Google Scholar] [CrossRef]
- Miyazaki, M.; Oshida, Y.; Xirouchaki, L. Dentin Bonding System. Part I: Literature Review. Biomed. Mater. Eng. 1996, 6, 15–31. [Google Scholar] [CrossRef]
- Gwinnett, A.J. Chemistry of the Adhesive Bond. In Fundamentals of Operative Dentistry: A Contemporary Approach; Summitt, J.B., Robbins, J.W., Schwartz, R.S., Eds.; Quintessence Publishing Co., Ltd.: Batavia, IL, USA, 2001; pp. 183–200. [Google Scholar]
- Cardoso, P.D.; Lopes, G.C.; Vieira, L.C.; Baratieri, L.N. Effect of Solvent Type on Microtensile Bond Strength of a Total-Etch One-Bottle Adhesive System to Moist or Dry Dentin. Oper. Dent. 2005, 30, 376. [Google Scholar]
- Manso, A.P.; Marquezini Jr, L.; Silva, S.M.; Pashley, D.H.; Tay, F.R.; Carvalho, R.M. Stability of Wet Versus Dry Bonding with Different Solvent-Based Adhesives. Dent. Mater. 2008, 24, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Bourgi, R.; Hardan, L.; Cuevas-Suárez, C.E.; Scavello, F.; Mancino, D.; Kharouf, N.; Haikel, Y. The Use of Warm Air for Solvent Evaporation in Adhesive Dentistry: A Meta-Analysis of In Vitro Studies. J. Funct. Biomater. 2023, 14, 285. [Google Scholar] [CrossRef]
- Simões, D.M.; Basting, R.T.; Amaral, F.L.; Turssi, C.P.; França, F.M. Influence of Chlorhexidine and/or Ethanol Treatment on Bond Strength of an Etch-and-Rinse Adhesive to Dentin: An In Vitro and In Situ Study. Oper. Dent. 2014, 39, 64–71. [Google Scholar] [CrossRef]
- Cadenaro, M.; Breschi, L.; Rueggeberg, F.A.; Suchko, M.; Grodin, E.; Agee, K.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H. Effects of Residual Ethanol on the Rate and Degree of Conversion of Five Experimental Resins. Dent. Mater. 2009, 25, 621–628. [Google Scholar] [CrossRef]
- Ye, Q.; Spencer, P.; Wang, Y.; Misra, A. Relationship of Solvent to the Photopolymerization Process, Properties, and Structure in Model Dentin Adhesives. J. Biomed. Mater. Res. Part A 2007, 80, 342–350. [Google Scholar] [CrossRef]
- Malacarne-Zanon, J.; Pashley, D.H.; Agee, K.A.; Foulger, S.; Alves, M.C.; Breschi, L.; Cadenaro, M.; Garcia, F.P.; Carrilho, M.R. Effects of Ethanol Addition on the Water Sorption/Solubility and Percent Conversion of Comonomers in Model Dental Adhesives. Dent. Mater. 2009, 25, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Massaro, H.; Zambelli, L.F.; Britto, A.A.; Vieira, R.P.; Ligeiro-de-Oliveira, A.P.; Andia, D.C.; Oliveira, M.T.; Lima, A.F. Solvent and HEMA Increase Adhesive Toxicity and Cytokine Release from Dental Pulp Cells. Materials 2019, 12, 2750. [Google Scholar] [CrossRef] [PubMed]
- Yevenes, I.H.; Fuentes, M.V.; Cury, J.A.; Reis, A.; Loguercio, A.D. Chemical Stability of Two Dentin Single-Bottle Adhesives as a Function of Solvent Loss. Rev. Odonto Ciênc. 2008, 23, 220–224. [Google Scholar]
- Grégoire, G.; Sharrock, P.; Delannée, M.; Delisle, M.B. Depletion of Water Molecules During Ethanol Wet-Bonding with Etch and Rinse Dental Adhesives. Mater. Sci. Eng. C 2013, 33, 21–27. [Google Scholar] [CrossRef]
- Agee, K.A.; Prakki, A.; Abu-Haimed, T.; Naguib, G.H.; Nawareg, M.A.; Tezvergil-Mutluay, A.; Scheffel, D.L.; Chen, C.; Jang, S.S.; Hwang, H.; et al. Water Distribution in Dentin Matrices: Bound vs. Unbound Water. Dent. Mater. 2015, 31, 205–216. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Yoshida, Y.; Lambrechts, P.; Vanherle, G.; Duke, E.; Eick, J.; Robinson, S. A TEM Study of Two Water-Based Adhesive Systems Bonded to Dry and Wet Dentin. J. Dent. Res. 1998, 77, 50–59. [Google Scholar] [CrossRef]
- Tay, F.R.; Pashley, D.H. Aggressiveness of Contemporary Self-Etching Systems: I: Depth of Penetration Beyond Dentin Smear Layers. Dent. Mater. 2001, 17, 296–308. [Google Scholar] [CrossRef]
- Tay, F.R.; Gwinnett, J.A.; Wei, S.H. Relation Between Water Content in Acetone/Alcohol-Based Primer and Interfacial Ultrastructure. J. Dent. 1998, 26, 147–156. [Google Scholar] [CrossRef]
- Bossardi, M.; Piva, E.; Isolan, C.P.; Münchow, E.A. One-Year Bonding Performance of One-Bottle Etch-and-Rinse Adhesives to Dentin at Different Moisture Conditions. J. Adhes. Sci. Technol. 2020, 34, 686–694. [Google Scholar] [CrossRef]
- De Oliveira Barros, L.; Apolonio, F.M.; Loguercio, A.D.; Aragao Saboia, V.D. Resin-Dentin Bonds of Etch-and-Rinse Adhesives to Alcohol-Saturated Acid-Etched Dentin. J. Adhes. Dent. 2013, 15, 333–340. [Google Scholar]
- Grégoire, G.; Dabsie, F.; Dieng-Sarr, F.; Akon, B.; Sharrock, P. Solvent Composition of One-Step Self-Etch Adhesives and Dentine Wettability. J. Dent. 2011, 39, 30–39. [Google Scholar] [CrossRef]
- Orellana, N.; Ramírez, R.; Roig, M.; Giner, L.; Mercade, M.; Durán, F.; Herrera, G. Comparative Study of the Microtensile Bond Strength of Three Different Total Etch Adhesives with Different Solvents to Wet and Dry Dentin (In Vitro Test). Acta Odontol. Latinoam. 2009, 22, 47–56. [Google Scholar]
- Al-Nabulsi, M.; Daud, A.; Yiu, C.; Omar, H.; Sauro, S.; Fawzy, A.; Daood, U. Co-Blend Application Mode of Bulk Fill Composite Resin. Materials 2019, 12, 2504. [Google Scholar] [CrossRef] [PubMed]
- Riddick, J.; Bunger, W.B.; Sakano, T.K. Techniques of Chemistry. In Organic Solvents, 4th ed.; John Wiley and Sons: New York, NY, USA, 1985; Volume 2, p. 196. [Google Scholar]
- Daubert, T.E. Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation; Design Institute for Physical Property Data (DIPPR): New York, NY, USA, 1989. [Google Scholar]
- Kumagai, R.Y.; Hirata, R.; Pereira, P.N.R.; Reis, A.F. Moist vs Over-Dried Etched Dentin: FE-SEM/TEM and Bond Strength Evaluation of Resin-Dentin Interfaces Produced by Universal Adhesives. J. Esthet. Restor. Dent. 2020, 32, 325–332. [Google Scholar] [CrossRef] [PubMed]
- de Solventes, C.A. Adhesive Systems: Considerations about Solvents. Int. J. Odontostomat. 2009, 3, 119–124. [Google Scholar]
- Tanaka, J.; Shintani, H.; Hattori, M.; Yoshida, K.; Shibata, S.; Iwasaki, M. Effect of inorganic-organic composite additives on dental adhesive systems. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 95, 143–149. [Google Scholar]
- Ivanov, V.V.; Bushueva, A.A.; Ivanova, L.A.; Klimov, V.V. Adhesive systems with inorganic-organic modifiers for dental composites. Russ. J. Appl. Chem. 2013, 86, 815–824. [Google Scholar]
- de Geus, J.L.; Maran, B.M.; Cabral, K.A.; Dávila-Sánchez, A.; Tardem, C.; Barceleiro, M.O.; Heintze, S.D.; Reis, A.; Loguercio, A.D. Clinical Performance of Filled/Nanofilled Versus Nonfilled Adhesive Systems in Noncarious Cervical Lesions: A Systematic Review and Meta-Analysis. Oper. Dent. 2021, 46, E34–E59. [Google Scholar] [CrossRef]
- Frankenberger, R.; Lopes, M.; Perdigão, J.; Ambrose, W.W.; Rosa, B.T. The Use of Flowable Composites as Filled Adhesives. Dent. Mater. 2002, 18, 227–238. [Google Scholar] [CrossRef]
- Labella, R.; Lambrechts, P.; Van Meerbeek, B.; Vanherle, G. Polymerization Shrinkage and Elasticity of Flowable Composites and Filled Adhesives. Dent. Mater. 1999, 15, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Perdigão, J.; Lambrechts, P.; Van Meerbeek, B.; Braem, M.; Yildiz, E.; Yücel, T.; Vanherle, G. The Interaction of Adhesive Systems with Human Dentin. Am. J. Dent. 1996, 9, 167–173. [Google Scholar]
- van Dijken, J.W. A Prospective 8-Year Evaluation of a Mild Two-Step Self-Etching Adhesive and a Heavily Filled Two-Step Etch-and-Rinse System in Non-Carious Cervical Lesions. Dent. Mater. 2010, 26, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Belli, R.; Kreppel, S.; Petschelt, A.; Hornberger, H.; Boccaccini, A.R.; Lohbauer, U. Strengthening of Dental Adhesives via Particle Reinforcement. J. Mech. Behav. Biomed. Mater. 2014, 37, 100–108. [Google Scholar] [CrossRef]
- Peumans, M.; De Munck, J.; Mine, A.; Van Meerbeek, B. Clinical Effectiveness of Contemporary Adhesives for the Restoration of Non-Carious Cervical Lesions. A Systematic Review. Dent. Mater. 2014, 30, 1089–1103. [Google Scholar] [CrossRef]
- Tay, F.R.; Moulding, K.M.; Pashley, D.H. Distribution of Nanofillers from a Simplified-Step Adhesive in Acid-Conditioned Dentin. J. Adhes. Dent. 1999, 1, 103–117. [Google Scholar]
- Tay, F.R.; Pashley, D.H.; Yiu, C.; Cheong, C.; Hashimoto, M.; Itou, K.; Yoshiyama, M.; King, N.M. Nanoleakage Types and Potential Implications: Evidence from Unfilled and Filled Adhesives with the Same Resin Composition. Am. J. Dent. 2004, 17, 182–190. [Google Scholar] [PubMed]
- Schmalz, G.; Hickel, R.; van Landuyt, K.L.; Reichl, F.X. Nanoparticles in Dentistry. Dent. Mater. 2017, 33, 1298–1314. [Google Scholar] [CrossRef]
- Giannini, M.; Liberti, M.S.; Arrais, C.A.; Reis, A.F.; Mettenburg, D.; Rueggeberg, F.A. Influence of Filler Addition, Storage Medium and Evaluation Time on Biaxial Flexure Strength and Modulus of Adhesive Systems. Acta Odontol. Scand. 2012, 70, 478–484. [Google Scholar] [CrossRef]
- Giannini, M.; Mettenburg, D.; Arrais, C.A.; Rueggeberg, F.A. The Effect of Filler Addition on Biaxial Flexure Strength and Modulus of Commercial Dentin Bonding Systems. Quintessence Int. 2011, 42, e39–e43. [Google Scholar]
- Lee, Y.; Pinzon, L.M.; O’Keefe, K.L.; Powers, J.M. Effect of Filler Addition on the Bonding Parameters of Dentin Bonding Adhesives Bonded to Human Dentin. Am. J. Dent. 2006, 19, 23. [Google Scholar] [PubMed]
- Kaaden, C.; Powers, J.M.; Friedl, K.H.; Schmalz, G. Bond Strength of Self-Etching Adhesives to Dental Hard Tissues. Clin. Oral Investig. 2002, 6, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Kim, H.Y.; Shin, S.M.; Lee, C.O.; Kim, D.S.; Choi, K.K.; Kim, S.Y. Clinical Effectiveness of Different Polishing Systems and Self-Etch Adhesives in Class V Composite Resin Restorations: Two-Year Randomized Controlled Clinical Trial. Oper. Dent. 2017, 42, 19–29. [Google Scholar] [CrossRef]
- Perdigão, J.; Dutra-Corrêa, M.; Saraceni, C.H.; Ciaramicoli, M.T.; Kiyan, V.H.; Queiroz, C.S. Randomized Clinical Trial of Four Adhesion Strategies: 18-Month Results. Oper. Dent. 2012, 37, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Guchait, A.; Saxena, A.; Chattopadhyay, S.; Mondal, T. Influence of Nanofillers on Adhesion Properties of Polymeric Composites. ACS Omega 2022, 7, 3844–3859. [Google Scholar] [CrossRef]
- Conde, M.C.; Zanchi, C.H.; Rodrigues-Junior, S.A.; Carreno, N.L.; Ogliari, F.A.; Piva, E. Nanofiller Loading Level: Influence on Selected Properties of an Adhesive Resin. J. Dent. 2009, 37, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Amin, F.; Fareed, M.A.; Zafar, M.S.; Khurshid, Z.; Palma, P.J.; Kumar, N. Degradation and Stabilization of Resin-Dentine Interfaces in Polymeric Dental Adhesives: An Updated Review. Coatings 2022, 12, 1094. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; De Munck, J.; Yoshida, Y.; Inoue, S.; Vargas, M.; Vijay, P.; Van Landuyt, K.; Lambrechts, P.; Vanherle, G. Buonocore Memorial Lecture. Adhesion to Enamel and Dentin: Current Status and Future Challenges. Oper. Dent. 2003, 28, 215–235. [Google Scholar]
- Tavares, F.V.; Maciel, C.M.; Watanabe, M.U.; Vieira-Junior, W.F.; França, F.M.; Turssi, C.P.; Basting, R.T. Influence of Adhesive Systems Containing Different Functional Monomers on the Longevity of Bond Strength at Different Dentin Depths. Int. J. Adhes. Adhes. 2024, 132, 103723. [Google Scholar] [CrossRef]
- Yurevna, C.V. Adhesive Systems and Their Classification. J. Mod. Educ. Achiev. 2023, 8, 198–201. [Google Scholar]
- Sauro, S.; Pashley, D.H. Strategies to Stabilize Dentine-Bonded Interfaces through Remineralizing Operative Approaches—State of The Art. Int. J. Adhes. Adhes. 2016, 69, 39–57. [Google Scholar] [CrossRef]
- Breschi, L.; Mazzoni, A.; Ruggeri, A.; Cadenaro, M.; Di Lenarda, R.; De Stefano Dorigo, E. Dental Adhesion Review: Aging and Stability of the Bonded Interface. Dent. Mater. 2008, 24, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Moodley, D.; Grobler, S.R. Dentine Bonding Agents—A Review of Adhesion to Dentine. SADJ J. S. Afr. Dent. Assoc. Tydskr. Suid-Afr. Tandheelkd. Ver. 2002, 57, 234–238. [Google Scholar]
- Tay, F.R.; Gwinnett, A.J.; Wei, S.H. The Overwet Phenomenon: An Optical, Micromorphological Study of Surface Moisture in the Acid-Conditioned, Resin-Dentin Interface. Am. J. Dent. 1996, 9, 43–48. [Google Scholar] [PubMed]
- Kanca, J. Wet Bonding: Effect of Drying Time and Distance. Am. J. Dent. 1996, 9, 273–276. [Google Scholar] [PubMed]
- De Goes, M.F.; Pachane, G.C.; García-Godoy, F. Resin Bond Strength with Different Methods to Remove Excess Water from the Dentin. Am. J. Dent. 1997, 10, 298–301. [Google Scholar]
- Costa, D.M.; Somacal, D.C.; Borges, G.A.; Spohr, A.M. Bond Capability of Universal Adhesive Systems to Dentin in Self-Etch Mode after Short-Term Storage and Cyclic Loading. Open Dent. J. 2017, 11, 276–283. [Google Scholar] [CrossRef]
- Breschi, L.; Prati, C.; Gobbi, P.; Pashley, D.; Mazzoti, G.; Teti, G.; Perdigão, J. Immunohistochemical Analysis of Collagen Fibrils within the Hybrid Layer: A FEISEM Study. Oper. Dent. 2004, 29, 538–546. [Google Scholar]
- Tani, C.; Finger, W.J. Effect of Smear Layer Thickness on Bond Strength Mediated by Three All-in-One Self-Etching Priming Adhesives. J. Adhes. Dent. 2002, 4, 283–289. [Google Scholar]
- Li, F.; Zhang, L.; Weir, M.D.; Cheng, L.; Zhang, K.; Xu, H.H.K. Understanding the Chemistry and Improving the Durability of Dental Resin-Dentin Bonded Interface. In Material-Tissue Interfacial Phenomena; Woodhead Publishing: Sawston, UK, 2017; pp. 147–180. [Google Scholar]
- Cuevas-Suárez, C.E.; da Rosa, W.L.O.; Lund, R.G.; da Silva, A.F.; Piva, E. Bonding Performance of Universal Adhesives: An Updated Systematic Review and Meta-Analysis. J. Adhes. Dent. 2019, 21, 7–26. [Google Scholar]
- Sezinando, A. Looking for the Ideal Adhesive—A Review. Rev. Port. Estomatol. 2014, 55, 194–206. [Google Scholar] [CrossRef]
- Alex, G. Adhesive Considerations in the Placement of Direct Composite Restorations. Oral Health 2008, 98, 109–119. [Google Scholar]
- Fabianelli, A.; Vichi, A.; Kugel, G.; Ferrari, M. Influence of Self-Etching-Priming Bonding Systems on Sealing Ability of Class II Restorations: Leakage and SEM Evaluations. In Proceedings of the Annual Meeting of the International Association for Dental Research, Washington, DC, USA, 5–8 April 2000. [Google Scholar]
- Lührs, A.K.; Guhr, S.; Schilke, R.; Borchers, L.; Geurtsen, W.; Günay, H. Shear Bond Strength of Self-Etch Adhesives to Enamel with Additional Phosphoric Acid Etching. Oper. Dent. 2008, 33, 155–162. [Google Scholar] [CrossRef]
- Manuja, N.; Nagpal, R.; Pandit, I.K. Dental Adhesion: Mechanism, Techniques, and Durability. J. Clin. Pediatr. Dent. 2012, 36, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, S.M.; Subba Reddy, V.V. Comparative Evaluation of Shear Bond Strength of Two Self-Etching Adhesives (Sixth and Seventh Generation) on Dentin of Primary and Permanent Teeth: An In Vitro Study. J. Indian Soc. Pedod. Prev. Dent. 2009, 27, 33–38. [Google Scholar] [CrossRef]
- Chersoni, S.; Suppa, P.; Grandini, S.; Goracci, C.; Monticelli, F.; Yiu, C.; Huang, C.; Prati, C.; Breschi, L.; Ferrari, M.; et al. In Vivo and In Vitro Permeability of One-Step Self-Etch Adhesives. J. Dent. Res. 2004, 83, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Chersoni, S.; Suppa, P.; Breschi, L.; Ferrari, M.; Tay, F.R.; Pashley, D.H.; Prati, C. Water Movement in the Hybrid Layer after Different Dentin Treatments. Dent. Mater. 2004, 20, 796–803. [Google Scholar] [CrossRef]
- Sanares, A.M.E.; Itthagarun, A.; King, N.M.; Tay, F.R.; Pashley, D.H. Adverse Surface Interactions Between One-Bottle Light-Cured Adhesives and Chemical-Cured Composites. Dent. Mater. 2001, 17, 542–556. [Google Scholar] [CrossRef]
- Tay, F.R.; Suh, B.I.; Pashley, D.H.; Prati, C.; Chuang, S.-F.; Li, F. Factors Contributing to the Incompatibility Between Simplified-Step Adhesives and Self-Cured or Dual-Cured Composites. Part II. Single-Bottle, Total-Etch Adhesive. J. Adhes. Dent. 2003, 5, 91–105. [Google Scholar]
- Suh, B.; Feng, L.; Pashley, D.; Tay, F. Factors Contributing to the Incompatibility Between Simplified-Step Adhesives and Chemically-Cured or Dual-Cured Composites. Part III. Effect of Acidic Resin Monomers. J. Adhes. Dent. 2003, 5, 267–282. [Google Scholar]
- Tay, F.R.; Pashley, D.; Yiu, C.; Sanares, A.M.E.; Wei, S.H.Y. Factors Contributing to the Incompatibility Between Simplified-Step Adhesives and Chemically-Cured or Dual-Cured Composites. Part I. Single-Step Self-Etching Adhesive. J. Adhes. Dent. 2003, 5, 27–40. [Google Scholar] [PubMed]
- Sebold, M.; André, C.B.; Sahadi, B.O.; Breschi, L.; Giannini, M. Chronological History and Current Advancements of Dental Adhesive Systems Development: A Narrative Review. J. Adhes. Sci. Technol. 2021, 35, 1941–1967. [Google Scholar] [CrossRef]
- Isolan, C.P.; Valente, L.L.; Münchow, E.A.; Basso, G.R.; Pimentel, A.H.; Schwantz, J.K.; da Silva, A.V.; Moraes, R.R. Bond Strength of a Universal Bonding Agent and Other Contemporary Dental Adhesives Applied on Enamel, Dentin, Composite, and Porcelain. Appl. Adhes. Sci. 2014, 2, 25. [Google Scholar] [CrossRef]
- Tang, C.; Mercelis, B.; Yoshihara, K.; Peumans, M.; Van Meerbeek, B. Does the Universal Adhesive’s Film Thickness Affect Dentin-Bonding Effectiveness? Clin. Oral Investig. 2024, 28, 150. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, A.; Mine, A.; Matsumoto, M.; Hagino, R.; Yumitate, M.; Ban, S.; Ishida, M.; Miura, J.; Van Meerbeek, B.; Yatani, H. Back to the Multi-Step Adhesive System: A Next-Generation Two-Step System with Hydrophobic Bonding Agent Improves Bonding Effectiveness. Dent. Mater. J. 2021, 40, 928–933. [Google Scholar] [CrossRef]
- Wang, L.; Bai, X.; Liu, Y.; Islam, R.; Hoshika, S.; Sano, H.; Yang, F. The Effect of an Extra Hydrophobic Resin Layer on the Bond Strength and Durability of One-Step Universal Adhesives Used as a Primer. J. Dent. 2023, 135, 104568. [Google Scholar] [CrossRef]
- Tang, C.; Ahmed, M.H.; Yao, C.; Mercelis, B.; Yoshihara, K.; Peumans, M.; Van Meerbeek, B. Experimental Two-Step Universal Adhesives Bond Durably in a Challenging High C-Factor Cavity Model. Dent. Mater. 2023, 39, 70–85. [Google Scholar] [CrossRef]
- Cuevas-Suárez, C.E.; de Oliveira da Rosa, W.L.; Vitti, R.P.; da Silva, A.F.; Piva, E. Bonding Strength of Universal Adhesives to Indirect Substrates: A Meta-Analysis of In Vitro Studies. J. Prosthodont. 2020, 29, 298–308. [Google Scholar] [CrossRef]
- Schittly, E.; Bouter, D.; Le Goff, S.; Degrange, M.; Attal, J.P. Compatibility of Five Self-Etching Adhesive Systems with Two Resin Luting Cements. J. Adhes. Dent. 2010, 12, 137–142. [Google Scholar]
- Suh, B.I. Principles of Adhesive Dentistry: A Theoretical and Clinical Guide for Dentists; Aegis Publications LLC: Newtown, PA, USA, 2013. [Google Scholar]
- Suh, B.I. Universal Adhesives: The Evolution of Adhesive Solutions Continues. Compend. Contin. Educ. Dent. 2014, 35, 278. [Google Scholar]
- Brkanović, S.; Sever, E.K.; Vukelja, J.; Ivica, A.; Miletić, I.; Krmek, S.J. Comparison of Different Universal Adhesive Systems on Dentin Bond Strength. Materials 2023, 16, 1530. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.B.W.; Silva, A.F.; da Rosa, W.L.; Piva, E.; Duarte, R.M.; De Souza, G.M. Bonding Efficacy of Universal Resin Adhesives to Zirconia Substrates: Systematic Review and Meta-Analysis. J. Adhes. Dent. 2023, 25, 51–62. [Google Scholar] [CrossRef]
- Dos Santos, R.A.; de Lima, E.A.; Mendonça, L.S.; de Oliveira, J.E.; Rizuto, A.V.; de Araújo Silva Tavares, Á.F.; Braz da Silva, R. Can universal adhesive systems bond to zirconia? J. Esthet. Restor. Dent. 2019, 31, 589–594. [Google Scholar] [CrossRef]
- de Lucena Pereira, L.; Campos, F.; Dal Piva, A.M.; Gondim, L.D.; de Assunção Souza, R.O.; Oezcan, M. Can application of universal primers alone be a substitute for airborne-particle abrasion to improve adhesion of resin cement to zirconia. J. Adhes. Dent. 2015, 17, 169–174. [Google Scholar]
- Amaral, M.; Belli, R.; Cesar, P.F.; Valandro, L.F.; Petschelt, A.; Lohbauer, U. The Potential of Novel Primers and Universal Adhesives to Bond to Zirconia. J. Dent. 2014, 42, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Makishi, P.; André, C.B.; Silva, J.P.L.E.; Bacelar-Sá, R.; Correr-Sobrinho, L.; Giannini, M. Effect of Storage Time on Bond Strength Performance of Multimode Adhesives to Indirect Resin Composite and Lithium Disilicate Glass Ceramic. Oper. Dent. 2016, 41, 541–551. [Google Scholar] [CrossRef]
- Lima, R.B.; Muniz, I.D.; Murillo-Gómez, F.; de Andrade, A.K.; Duarte, R.M.; de Souza, G.M. Effect of universal adhesives and self-etch ceramic primers on bond strength to glass-ceramics: A systematic review and meta-analysis of in vitro studies. J. Prosthet. Dent. 2024, 131, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.R.; Kim, J.H.; Son, S.A.; Park, J.K. Effect of Silane-Containing Universal Adhesives on the Bonding Strength of Lithium Disilicate. Materials 2021, 14, 3976. [Google Scholar] [CrossRef]
- Kalavacharla, V.K.; Lawson, N.C.; Ramp, L.C.; Burgess, J.O. Influence of Etching Protocol and Silane Treatment with a Universal Adhesive on Lithium Disilicate Bond Strength. Oper. Dent. 2015, 40, 372–378. [Google Scholar] [CrossRef]
- Tsujimoto, A.; Shimatani, Y.; Nojiri, K.; Barkmeier, W.W.; Markham, M.D.; Takamizawa, T.; Latta, M.A.; Miyazaki, M. Influence of surface wetness on bonding effectiveness of universal adhesives in etch-and-rinse mode. Eur. J. Oral Sci. 2019, 127, 162–169. [Google Scholar] [CrossRef]
- Alex, G. Preparing Porcelain Surfaces for Optimal Bonding. Compend. Contin. Educ. Dent. 2008, 29, 324–336. [Google Scholar]
- Awad, M.M.; Albedaiwi, L.; Almahdy, A.; Khan, R.; Silikas, N.; Hatamleh, M.M.; Alkhtani, F.M.; Alrahlah, A. Effect of universal adhesives on microtensile bond strength to hybrid ceramic. BMC Oral Health 2019, 19, 178. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Lin, J.-C.; Kang, L.-L.; Li, C.-L.; Hou, S.-S.; Lee, T.-L.; Chuang, S.-F. Investigations of silane-MDP interaction in universal adhesives: A ToF-SIMS analysis. Dent. Mater. 2022, 38, 183–193. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Sonoda, A.; Maruo, Y.; Makita, Y.; Okihara, T.; Irie, M.; Yoshida, Y.; Van Meerbeek, B. Effectiveness and stability of silane coupling agent incorporated in ‘universal’ adhesives. Dent. Mater. 2016, 32, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, A.; Fischer, N.G.; Barkmeier, W.W.; Latta, M.A. Bond Durability of Two-Step HEMA-Free Universal Adhesive. J. Funct. Biomater. 2022, 13, 134. [Google Scholar] [CrossRef]
- Katsuki, S.; Takamizawa, T.; Yokoyama, M.; Sai, K.; Tamura, T.; Ishii, R.; Kamimoto, A.; Miyazaki, M. Influence of Bonding Agent Application Method on the Dentin Bond Durability of a Two-Step Adhesive Utilizing a Universal-Adhesive-Derived Primer. Eur. J. Oral Sci. 2022, 130, e12868. [Google Scholar] [CrossRef] [PubMed]
- Takamizawa, T.; Hirokane, E.; Sai, K.; Ishii, R.; Aoki, R.; Barkmeier, W.W.; Latta, M.A.; Miyazaki, M. Bond Durability of a Two-Step Adhesive with a Universal-Adhesive-Derived Primer in Different Etching Modes Under Different Degradation Conditions. Dent. Mater. J. 2023, 42, 121–132. [Google Scholar] [CrossRef]
- Takamizawa, T.; Barkmeier, W.W.; Tsujimoto, A.; Berry, T.P.; Watanabe, H.; Erickson, R.L.; Latta, M.A.; Miyazaki, M. Influence of different etching modes on bond strength and fatigue strength to dentin using universal adhesive systems. Dent. Mater. 2016, 32, e9–e21. [Google Scholar] [CrossRef]
- Triani, F.; Pereira da Silva, L.; Ferreira Lemos, B.; Domingues, J.; Teixeira, L.; Manarte-Monteiro, P. Universal Adhesives: Evaluation of the Relationship Between Bond Strength and Application Strategies—A Systematic Review and Meta-Analyses. Coatings 2022, 12, 1501. [Google Scholar] [CrossRef]
- Da Rosa, W.L.D.O.; Piva, E.; Da Silva, A.F. Bond Strength of Universal Adhesives: A Systematic Review and Meta-Analysis. J. Dent. 2015, 43, 765–776. [Google Scholar] [CrossRef]
- Pongprueksa, P.; Miletic, V.; De Munck, J.; Brooks, N.; Meersman, F.; Nies, E.; Van Meerbeek, B.; Van Landuyt, K. Effect of Evaporation on the Shelf Life of a Universal Adhesive. Oper. Dent. 2014, 39, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Sundfeld, R.H.; da Silva, A.M.J.D.; Croll, T.P.; de Oliveira, C.H.; Briso, A.L.F.; de Alexandre, R.S.; Sundefeld, M.L.M.M. The Effect of Temperature on Self-Etching Adhesive Penetration. Compend. Contin. Educ. Dent. 2006, 27, 552–556, 581. [Google Scholar] [PubMed]
- Antoniazzi, B.F.; Nicoloso, G.F.; Lenzi, T.L.; Soares, F.Z.; Rocha, R.D.O. Selective Acid Etching Improves the Bond Strength of Universal Adhesive to Sound and Demineralized Enamel of Primary Teeth. J. Adhes. Dent. 2016, 18, 311–316. [Google Scholar]
- Chang, B.J.; Lawson, N.C.; Burgess, J.O. Effect of Adhesive Coats and Solvents on Bond Strength. J. Dent. Res. 2015, 94, 3385. [Google Scholar]
- Elkaffas, A.A.; Hamama, H.H.; Mahmoud, S.H.; Fawzy, A.S. Effect of Acid Etching on Dentin Bond Strength of Ultra-Mild Self-Etch Adhesives. Int. J. Adhes. Adhes. 2020, 99, 102567. [Google Scholar] [CrossRef]
- Burke, F.T.; Mackenzie, L. Bonding to Dentine: An Update on Universal Adhesives. Dent. Update 2021, 48, 620–631. [Google Scholar] [CrossRef]
- Loguercio, A.D.; Muñoz, M.A.; Luque-Martinez, I.; Hass, V.; Reis, A.; Perdigão, J. Does Active Application of Universal Adhesives to Enamel in Self-Etch Mode Improve Their Performance? J. Dent. 2015, 43, 1060–1070. [Google Scholar] [CrossRef]
- de Siqueira, F.S.; Pinto, T.F.; Carvalho, E.M.; Bauer, J.; Gonçalves, L.M.; Szesz, A.L.; Reis, A.; Cardenas, A.F.; Loguercio, A.D. Influence of Dentinal Moisture on the Properties of Universal Adhesives. Int. J. Adhes. Adhes. 2020, 101, 102633. [Google Scholar] [CrossRef]
- Chen, C.; Niu, L.N.; Xie, H.; Zhang, Z.Y.; Zhou, L.Q.; Jiao, K.; Chen, J.H.; Pashley, D.H.; Tay, F.R. Bonding of universal adhesives to dentine—Old wine in new bottles? J. Dent. 2015, 43, 525–536. [Google Scholar] [CrossRef]
- Burke, F.T.; Sands, P.; Crisp, R.J. A practice-based clinical evaluation of a novel two-bottle dentine adhesive system. Dent. Update 2022, 49, 112–116. [Google Scholar] [CrossRef]
- Van de Sande, F.H.; Collares, K.; Correa, M.B.; Cenci, M.S.; Demarco, F.F.; Opdam, N.J.M. Restoration Survival: Revisiting Patients’ Risk Factors through a Systematic Literature Review. Oper. Dent. 2016, 41, S7–S26. [Google Scholar] [CrossRef] [PubMed]
- Frankenberger, R.; Tay, F.R. Self-etch, Bonding. Self-etch, total-etch, and selective enamel etch adhesives in clinical dentistry. Oper. Dent. 2021, 46, E330–E345. [Google Scholar]
- Malaquias, P.; da Silva, L.P.; Lemos, B.F.; Domingues, J.; Teixeira, L.; Monteiro, P.M. Universal adhesives and dual-cured core buildup composite material: Adhesive properties. J. Appl. Oral Sci. 2020, 28, e20200121. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.F.; de Assis, D.R.; Fugolin, A.P.; Scheffel, D.L.; Giannini, M.; Reis, A.; Loguercio, A.D. Effect of self-curing activators and curing protocols on adhesive properties of universal adhesives bonded to dual-cured composites. Dent. Mater. 2017, 33, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Lawson, N.C.; Robles, A.; Fu, C.; Lin, C.P.; Sawlani, K.; Burgess, J.O. Two-year clinical trial of a universal adhesive in total-etch and self-etch mode in non-carious cervical lesions. J. Dent. 2016, 51, 78–83. [Google Scholar] [CrossRef]
- Luque-Martinez, I.V.; Perdigão, J.; Muñoz, M.A.; Sezinando, A.; Reis, A.; Loguercio, A.D. Effects of solvent evaporation time on immediate adhesive properties of universal adhesives to dentin. Dent. Mater. 2014, 30, 1126–1135. [Google Scholar] [CrossRef]
- Manauta, J.; Salat, A.; Putignano, A.; Devoto, W.; Paolone, G.; Hardan, L.S. Stratification in Anterior Teeth Using One Dentine Shade and a Predefined Thickness of Enamel: A New Concept in Composite Layering—Part I. Odontostomatol. Trop. 2014, 9, 12–25. [Google Scholar]
- Manauta, J.; Salat, A.; Putignano, A.; Devoto, W.; Paolone, G.; Hardan, L.S. Stratification in Anterior Teeth Using One Dentine Shade and a Predefined Thickness of Enamel: A New Concept in Composite Layering—Part II. Odontostomatol. Trop. 2014, 9, 12–25. [Google Scholar]
- Paolone, G. Direct Composites in Anteriors: A Matter of Substrate. Int. J. Esthet. Dent. 2017, 12, 468–481. [Google Scholar]
- Comba, A.; Baldi, A.; Carossa, M.; Michelotto Tempesta, R.; Garino, E.; Llubani, X.; Rozzi, D.; Mikonis, J.; Paolone, G.; Scotti, N. Post-Fatigue Fracture Resistance of Lithium Disilicate and Polymer-Infiltrated Ceramic Network Indirect Restorations over Endodontically-Treated Molars with Different Preparation Designs: An In-Vitro Study. Polymers 2022, 14, 5084. [Google Scholar] [CrossRef]
- Vichi, A.; Zhao, Z.; Paolone, G.; Scotti, N.; Mutahar, M.; Goracci, C.; Louca, C. Factory Crystallized Silicates for Monolithic Metal-Free Restorations: A Flexural Strength and Translucency Comparison Test. Materials 2022, 15, 7834. [Google Scholar] [CrossRef]
- Samartzi, T.K.; Papalexopoulos, D.; Sarafianou, A.; Kourtis, S. Immediate Dentin Sealing: A Literature Review. Clin. Cosmet. Investig. Dent. 2021, 13, 233–256. [Google Scholar] [CrossRef] [PubMed]
- Hardan, L.; Devoto, W.; Bourgi, R.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Fernández-Barrera, M.Á.; Cornejo-Ríos, E.; Monteiro, P.; Zarow, M.; Jakubowicz, N.; et al. Immediate dentin sealing for adhesive cementation of indirect restorations: A systematic review and meta-analysis. Gels 2022, 8, 175. [Google Scholar] [CrossRef] [PubMed]
- Ozer, F.; Batu Eken, Z.; Hao, J.; Tuloglu, N.; Blatz, M.B. Effect of Immediate Dentin Sealing on the Bonding Performance of Indirect Restorations: A Systematic Review. Biomimetics 2024, 9, 182. [Google Scholar] [CrossRef] [PubMed]
Solvent | Dipole Moment (D) | Dielectric Constant | Boiling Point (°C) | Vapor Pressure (mmHg 25 °C) | Ability to Form Hydrogen Bonds |
---|---|---|---|---|---|
Water | 1.85 | 80 | 100 | 23.8 | High |
Ethanol | 1.69 | 24.3 | 78.5 | 54.1 | Medium |
Acetone | 2.88 | 20.7 | 56.2 | 200 | Low |
Tert-Butanol | 1.7 | 12.5 | 82.4 | 46 | Medium |
Solvent | Advantages | Disadvantages |
---|---|---|
Acetone/Ketones [204,217,218] | - Low intrinsic viscosity - Easy removal | - Undesired solvent loss - Risk of interaction with other components |
Ethanol/Primary Alcohols [204,221,222,223] | - Sufficient penetration - Evaporation/removal | - Side reactions (e.g., Michael-addition) - Low stability with acids |
Water [204,230] | - Best dentinal compatibility - Essential for etching | - Lowers evaporation rate |
Tert-Butanol/Secondary/Tertiary Alcohols [204,234] | - Limited/no side reactions - Acrylate compatibility - High stability with acids | - Increased matrix viscosity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourgi, R.; Kharouf, N.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Haikel, Y.; Hardan, L. A Literature Review of Adhesive Systems in Dentistry: Key Components and Their Clinical Applications. Appl. Sci. 2024, 14, 8111. https://doi.org/10.3390/app14188111
Bourgi R, Kharouf N, Cuevas-Suárez CE, Lukomska-Szymanska M, Haikel Y, Hardan L. A Literature Review of Adhesive Systems in Dentistry: Key Components and Their Clinical Applications. Applied Sciences. 2024; 14(18):8111. https://doi.org/10.3390/app14188111
Chicago/Turabian StyleBourgi, Rim, Naji Kharouf, Carlos Enrique Cuevas-Suárez, Monika Lukomska-Szymanska, Youssef Haikel, and Louis Hardan. 2024. "A Literature Review of Adhesive Systems in Dentistry: Key Components and Their Clinical Applications" Applied Sciences 14, no. 18: 8111. https://doi.org/10.3390/app14188111
APA StyleBourgi, R., Kharouf, N., Cuevas-Suárez, C. E., Lukomska-Szymanska, M., Haikel, Y., & Hardan, L. (2024). A Literature Review of Adhesive Systems in Dentistry: Key Components and Their Clinical Applications. Applied Sciences, 14(18), 8111. https://doi.org/10.3390/app14188111