Role of Non-Invasive Hemodynamic Forces through Four-Dimensional-Flow Magnetic Resonance Imaging (4D-Flow MRI) in Evaluating Mitral Regurgitation with Preserved Ejection Fraction: Seeking Novel Biomarkers
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ethics and Registry
2.3. Severity Classification of Mitral Regurgitation
2.4. 4D-Flow Magnetic Resonance Imaging Protocol
2.5. Semi-Automated Hemodynamic Force Analysis
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Study Population
3.2. Navigating Hemodynamic Forces: Unveiling Trends in Healthy Controls vs. MR Patients with Preserved EF
3.3. Unraveling Distinctive Patterns in Hemodynamic Forces and LV Function across Controls and MR Severities
3.4. Understanding the Physiological Pattern of Hemodynamic Forces with LV Volume among Controls and MR Severities
3.5. Revealing Dynamic Correlations between LV Function and Hemodynamic Forces in the Systole and Diastole
3.6. Examining Correlation with MR Severity
3.7. Multivariate Linear Regression Analysis of Factors Influencing MR Severity Grades
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geeraert, P.; Kim, H.; Ali, I.; Hudani, A.; Aliabadi, S.; Srabanti, G.; Jamalidinan, H.; Garcia, J. Four-Dimensional Flow Magnetic Resonance Imaging and Applications in Cardiology. Available online: www.intechopen.com (accessed on 27 October 2023).
- Maganti, K.; Rigolin, V.H.; Sarano, M.E.; Bonow, R.O. Valvular heart disease: Diagnosis and management. Mayo Clin. Proc. 2010, 85, 483–500. [Google Scholar] [CrossRef] [PubMed]
- Srabanti, M.G.; Garcia, J. Quadratic Stratification of Left Ventricular Hypertrophy and Association with Mitral Insufficiency Grading: A Retrospective Study Using Cardiac Magnetic Resonance. Cardiovasc. Diagn. Ther. 2023, 14, 589–608. Available online: https://cdt.amegroups.com/article/view/127415/html (accessed on 13 August 2024). [CrossRef] [PubMed]
- Enriquez-Sarano, M.; Akins, C.W.; Vahanian, A. Mitral Regurgitation. Lancet 2009, 373, 1382–1394. Available online: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(09)60692-9/abstract (accessed on 27 October 2023). [CrossRef] [PubMed]
- Feneis, J.F.; Kyubwa, E.; Atianzar, K.; Cheng, J.Y.; Alley, M.T.; Vasanawala, S.S.; Demaria, A.N.; Hsiao, A. 4D flow MRI quantification of mitral and tricuspid regurgitation: Reproducibility and consistency relative to conventional MRI. J. Magn. Reson. Imaging 2018, 48, 1147–1158. [Google Scholar] [CrossRef]
- Apostolidou, E.; Maslow, A.D.; Poppas, A. Primary mitral valve regurgitation: Update and review. Glob. Cardiol. Sci. Pract. 2017, 2017, e201703. [Google Scholar]
- Kagiyama, N.; Shrestha, S. Echocardiographic assessment of mitral regurgitation. J. Med. Ultrason. 2020, 47, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Stankovic, Z.; Allen, B.D.; Garcia, J.; Jarvis, K. 4D flow imaging with MRI Flow Assessment of Tetralogy of Fallot View project Hemodynamic Assessment of Valve Disease View project. Cardiovasc. Diagn. Ther. 2014, 4, 173–192. Available online: www.thecdt.org (accessed on 27 October 2023).
- Markl, M.; Frydrychowicz, A.; Kozerke, S.; Hope, M.; Wieben, O. 4D flow MRI. J. Magn. Reson. Imaging 2012, 36, 1015–1036. [Google Scholar] [CrossRef]
- Eriksson, J.; Bolger, A.F.; Ebbers, T.; Carlhäll, C.J. Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 417–424. [Google Scholar] [CrossRef]
- Per, X.; Arvidsson, M.; Töger, J.; Pedrizzetti, G.; Heiberg, E.; Borgquist, R.; Carlsson, X.M.; Arheden, H. Hemodynamic Forces Using Four-Dimensional Flow MRI: An Independent Biomarker of Cardiac Function in Heart Failure with Left Ventricular Dyssynchrony? Am. J. Physiol. Heart Circ. Physiol. 2018, 315, 1627–1639. [Google Scholar]
- Loke, Y.H.; Capuano, F.; Kollar, S.; Cibis, M.; Kitslaar, P.; Balaras, E.; Reiber, J.H.C.; Pedrizzetti, G.; Olivieri, L. Abnormal Diastolic Hemodynamic Forces: A Link Between Right Ventricular Wall Motion, Intracardiac Flow, and Pulmonary Regurgitation in Repaired Tetralogy of Fallot. Front. Cardiovasc. Med. 2022, 9, 929470. [Google Scholar] [CrossRef] [PubMed]
- Vairo, A.; Zaccaro, L.; Ballatore, A.; Airale, L.; D’Ascenzo, F.; Alunni, G.; Conrotto, F.; Scudeler, L.; Mascaretti, D.; Miccoli, D.; et al. Acute Modification of Hemodynamic Forces in Patients with Severe Aortic Stenosis after Transcatheter Aortic Valve Implantation. J. Clin. Med. 2023, 12, 1218. [Google Scholar] [CrossRef] [PubMed]
- Laenens, D.; van der Bijl, P.; Stassen, J.; Rossi, A.C.; Pedrizzetti, G.; Reiber, J.H.C.; Marsan, N.A.; Bax, J.J. Introduction to hemodynamic forces by echocardiography. Int. J. Cardiol. 2023, 370, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Vallelonga, F.; Airale, L.; Tonti, G.; Argulian, E.; Milan, A.; Narula, J.; Pedrizzetti, G. Introduction to Hemodynamic Forces Analysis: Moving Into the New Frontier of Cardiac Deformation Analysis. J. Am. Heart Assoc. 2021, 10, e023417. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.; Bolger, A.F.; Ebbers, T.; Carlhall, C.J. Left ventricular hemodynamic forces are altered in patients with dilated cardiomyopathy. J. Cardiovasc. Magn. Reson. 2015, 17, 282. [Google Scholar] [CrossRef]
- Pedrizzetti, G.; Martiniello, A.R.; Bianchi, V.; D’Onofrio, A.; Caso, P.; Tonti, G. Cardiac fluid dynamics anticipates heart adaptation. J. Biomech. 2015, 48, 388–391. [Google Scholar] [CrossRef]
- Wu, V.C.C.; Takeuchi, M. Three-dimensional echocardiography: Current status and real-life applications. Acta Cardiol. Sin. 2017, 33, 107–118. [Google Scholar]
- Backhaus, S.J.; Uzun, H.; Rösel, S.F.; Schulz, A.; Lange, T.; Crawley, R.J.; Evertz, R.; Hasenfuß, G.; Schuster, A. Hemodynamic Force Assessment by Cardiovascular Magnetic Resonance in HFpEF: A Case-Control Substudy from the HFpEF Stress Trial. 2022. Available online: https://pubmed.ncbi.nlm.nih.gov/36423376/ (accessed on 27 October 2023).
- Laenens, D.; van der Bijl, P.; Galloo, X.; Rossi, A.C.; Tonti, G.; Reiber, J.H.; Pedrizzetti, G.; Ajmone, M.N.; Bax, J.J. Evolution of Echocardiography-Derived Hemodynamic Force Parameters After Cardiac Resynchronization Therapy. Am. J. Cardiol. 2023, 209, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Töger, J.; Arvidsson, P.M.; Bock, J.; Kanski, M.; Pedrizzetti, G.; Carlsson, M.; Arheden, H.; Heiberg, E. Hemodynamic forces in the left and right ventricles of the human heart using 4D flow magnetic resonance imaging: Phantom validation, reproducibility, sensitivity to respiratory gating and free analysis software. PLoS ONE 2018, 13, e0195597. [Google Scholar] [CrossRef]
- Pola, K.; Roijer, A.; Borgquist, R.; Ostenfeld, E.; Carlsson, M.; Bakos, Z.; Arheden, H.; Arvidsson, P.M. Hemodynamic forces from 4D flow magnetic resonance imaging predict left ventricular remodeling following cardiac resynchronization therapy. J. Cardiovasc. Magn. Reson. 2023, 25, 45. [Google Scholar] [CrossRef]
- Uretsky, S.; Argulian, E.; Narula, J.; Wolff, S.D. Use of Cardiac Magnetic Resonance Imaging in Assessing Mitral Regurgitation: Current Evidence. J. Am. Coll. Cardiol. 2018, 71, 547–563. [Google Scholar] [CrossRef] [PubMed]
- Vermes, E.; Iacuzio, L.; Levy, F.; Bohbot, Y.; Renard, C.; Gerber, B.; Maréchaux, S.; Tribouilloy, C. Role of Cardiovascular Magnetic Resonance in Native Valvular Regurgitation: A Comprehensive Review of Protocols, Grading of Severity, and Prediction of Valve Surgery. Front. Cardiovasc. Med. 2022, 9, 881141. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Rwin, J.P.; Gentile, F.; Jneid, H.; Krieger, R.V.; Mack, M.; McLeod, C. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e72–e227. [Google Scholar] [PubMed]
- Lang, R.M.; Badano, L.P.; Victor, M.A.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 233–271. [Google Scholar] [CrossRef] [PubMed]
- Gelfand, E.V.; Hughes, S.; Hauser, T.H.; Yeon, S.B.; Goepfert, L.; Kissinger, K.V.; Rofsky, N.M.; Manning, W.J. Severity of mitral and aortic regurgitation as assessed by cardiovascular magnetic resonance: Optimizing correlation with Doppler echocardiography. J. Cardiovasc. Magn. Reson. 2006, 8, 503–507. [Google Scholar] [CrossRef]
- Gupta, A.N.; Avery, R.; Soulat, G.; Allen, B.D.; Collins, J.D.; Choudhury, L.; Bonow, R.O.; Carr, J.; Markl, M.; Elbaz, M.S.M. Direct mitral regurgitation quantification in hypertrophic cardiomyopathy using 4D flow CMR jet tracking: Evaluation in comparison to conventional CMR. J. Cardiovasc. Magn. Reson. 2021, 23, 138. [Google Scholar] [CrossRef]
- Uretsky, S.; Supariwala, A.; Nidadovolu, P.; Khokhar, S.S.; Comeau, C.; Shubayev, O.; Campanile, F.; Wolff, S.D. Quantification of Left Ventricular Remodeling in Response to Isolated Aortic or Mitral Regurgitation. J. Cardiovasc. Magn. Reson. 2010, 12, 32. Available online: http://www.jcmr-online.com/content/12/1/32 (accessed on 15 March 2024). [CrossRef]
- Gorecka, M.; Cole, C.; Bissell, M.M.; Craven, T.P.; Chew, P.G.; Dobson, L.E.; Brown, L.A.E.; Paton, M.F.; Higgins, D.M.; Thirunavukarasu, S.; et al. 4D Flow Cardiac MR in Primary Mitral Regurgitation. J. Magn. Reson. Imaging 2024, in press. [Google Scholar] [CrossRef]
- Apostolakis, E.E.; Baikoussis, N.G. Methods of estimation of mitral valve regurgitation for the cardiac surgeon. J. Cardiothorac. Surg. 2009, 4, 34. [Google Scholar] [CrossRef]
- Fidock, B.; Barker, N.; Balasubramanian, N.; Archer, G.; Fent, G.; Al-Mohammad, A.; Richardson, J.; O’Toole, L.; Briffa, N.; Rothman, A.; et al. A Systematic Review of 4D-Flow MRI Derived Mitral Regurgitation Quantification Methods. Front. Cardiovasc. Med. 2019, 6, 103. [Google Scholar] [CrossRef]
- Schulz-Menger, J.; Bluemke, D.A.; Bremerich, J.; Flamm, S.D.; Fogel, M.A.; Friedrich, M.G.; Kim, R.; Von Knobelsdorff-Brenkenhoff, F.; Kramer, C.M.; Pennell, D.J.; et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance—2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J. Cardiovasc. Magn. Reson. 2020, 22, 19. [Google Scholar] [CrossRef]
- Krieger, E.V.; Lee, J.; Branch, K.R.; Hamilton-Craig, C. Quantitation of mitral regurgitation with cardiac magnetic resonance imaging: A systematic review. Heart 2016, 102, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.; Zisserman, A.; Munoz, X. Image Classification using Random Forests and Ferns. In Proceedings of the IEEE 11th International Conference on Computer Vision, 2007: ICCV 2007, Rio de Janeiro, Brazil, 14–21 October 2007; IEEE Computer Society: Washington, DC, USA, 2007. [Google Scholar]
- Eriksson, J.; Bolger, A.F.; Ebbers, T.; Carlhäll, C.J. Assessment of left ventricular hemodynamic forces in healthy subjects and patients with dilated cardiomyopathy using 4D flow MRI. Physiol. Rep. 2016, 4, e12685. [Google Scholar] [CrossRef] [PubMed]
- Arvidsson, P.M.; Nelsson, A.; Magnusson, M.; Smith, J.G.; Carlsson, M.; Arheden, H. Hemodynamic force analysis is not ready for clinical trials on HFpEF. Sci. Rep. 2022, 12, 4017. [Google Scholar] [CrossRef] [PubMed]
- Ebbers, T.; Farnebäck, G. Improving computation of cardiovascular relative pressure fields from velocity MRI. J. Magn. Reson. Imaging 2009, 30, 54–61. [Google Scholar] [CrossRef]
- Robinson, J.D.; Rose, M.J.; Joh, M.; Jarvis, K.; Schnell, S.; Barker, A.J.; Rigsby, C. Markl, M. 4-D flow magnetic-resonance-imaging-derived energetic biomarkers are abnormal in children with repaired tetralogy of Fallot and associated with disease severity. Pediatr. Radiol. 2019, 49, 308–317. [Google Scholar] [CrossRef]
- Eriksson, J.; Zajac, J.; Alehagen, U.; Bolger, A.F.; Ebbers, T.; Carlhäll, C.J. Left ventricular hemodynamic forces as a marker of mechanical dyssynchrony in heart failure patients with left bundle branch block. Sci. Rep. 2017, 7, 2971. [Google Scholar] [CrossRef]
- Patel, J.B.; Borgeson, D.D.; Barnes, M.E.; Rihal, C.S.; Daly, R.C.; Redfield, M.M. Mitral regurgitation in patients with advanced systolic heart failure. J. Card. Fail. 2004, 10, 285–291. [Google Scholar] [CrossRef]
- Srabanti, M.; Garcia, J. Quadratic Stratification of Left Ventricular Hypertrophy and Relationship with Mitral Insufficiency Grading: A Retrospective Study Using Cardiac Magnetic Resonance. J. Cardiovasc. Magn. Reson. 2024, 26, 100756. [Google Scholar] [CrossRef]
- Enriquez-Sarano, M.; Avierinos, J.-F.; Messika-Zeitoun, D.; Detaint, D.; Capps, M.; Nkomo, V.; Scott, C.; Schaff, H.V.; Tajik, A.J. Quantitative Determinants of the Outcome of Asymptomatic Mitral Regurgitation from the Divisions of Cardiovascular Diseases and Internal Medicine. 2005. Available online: https://pubmed.ncbi.nlm.nih.gov/15745978/ (accessed on 11 June 2024).
- Grayburn, P.A.; Smith, R.L. Left ventricular ejection fraction in mitral regurgitation because of flail leaflet. Circ. Cardiovasc. Imaging 2014, 7, 220–221. [Google Scholar] [CrossRef]
- Gaasch, W.H.; Meyer, T.E. Left ventricular response to mitral regurgitation implications for management. Circulation 2008, 118, 2298–2303. [Google Scholar] [CrossRef]
- Stein, E.J.; Fearon, W.F.; Elmariah, S.; Kim, J.B.; Kapadia, S.; Kumbhani, D.J.; Gillam, L.; Whisenant, B.; Quader, N.; Zajarias, A.; et al. Left Ventricular Hypertrophy and Biomarkers of Cardiac Damage and Stress in Aortic Stenosis. J. Am. Heart Assoc. 2022, 11, e023466. [Google Scholar] [CrossRef] [PubMed]
- Song, B.G.; Park, S.J.; Jeon, E.S.; Choi, S.H.; On, Y.K.; Choi, J.O.; Lee, S.; Park, S.W.; Kim, D.K.; Oh, J.K. Preoperative N-terminal pro-B type natriuretic peptide level can predict the regression of left ventricular mass after valvular surgery in patients with chronic severe mitral regurgitation: One-year follow-up. Int. J. Cardiol. 2010, 145, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Gjini, P.; Kenes, J.F.; Chandrasekhar, M.; Hansen, R.; Dharod, A.; Smith, S.C.; Pu, M.; Upadhya, B.; Stacey, R.B. Prevalence and clinical associations of mitral and aortic regurgitation in patients with aortic stenosis. Echocardiography 2023, 40, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Gona, P.N.; Salton, C.J.; Chuang, M.L.; Levy, D.; Manning, W.J.; O’Donnell, C. Left ventricular structure and risk of cardiovascular events: A framingham heart study cardiac magnetic resonance study. J. Am. Heart Assoc. 2015, 4, e002188. [Google Scholar] [CrossRef]
- Bissell, M.M.; Raimondi, F.; Ait Ali, L.; Allen, B.D.; Barker, A.J.; Bolger, A.; Burris, N.; Carhäll, C.J.; Collins, J.D.; Ebbers, T.; et al. 4D Flow cardiovascular magnetic resonance consensus statement: 2023 update. J. Cardiovasc. Magn. Reson. 2023, 25, 40. [Google Scholar] [CrossRef]
- Demir, A.; Wiesemann, S.; Erley, J.; Schmitter, S.; Trauzeddel, R.F.; Pieske, B.; Hansmann, J.; Kelle, S.; Schulz-Menger, J. Traveling Volunteers: A Multi-Vendor, Multi-Center Study on Reproducibility and Comparability of 4D Flow Derived Aortic Hemodynamics in Cardiovascular Magnetic Resonance. J. Magn. Reson. Imaging 2022, 55, 211–222. [Google Scholar] [CrossRef]
- Doyle, C.M.; Orr, J.; Greenwood, J.P.; Plein, S.; Tsoumpas, C.; Bissell, M.M. Four-Dimensional Flow Magnetic Resonance Imaging in the Assessment of Blood Flow in the Heart and Great Vessels: A Systematic Review. J. Magn. Reson. Imaging 2022, 55, 1301–1321. [Google Scholar] [CrossRef]
- Oechtering, T.H.; Nowak, A.; Sieren, M.M.; Stroth, A.M.; Kirschke, N.; Wegner, F.; Balks, M.; König, I.R.; Jin, N.; Graessner, J.; et al. Repeatability and reproducibility of various 4D Flow MRI postprocessing software programs in a multi-software and multi-vendor cross-over comparison study. J. Cardiovasc. Magn. Reson. 2023, 25, 22. [Google Scholar] [CrossRef]
- Thomsen, H.S.; Morcos, S.K.; Dawson, P. Is there a causal relation between the administration of gadolinium based contrast media and the development of nephrogenic systemic fibrosis (NSF)? Clin. Radiol. 2006, 61, 905–906. [Google Scholar] [CrossRef]
- Lai, L.M.; Cheng, J.Y.; Alley, M.T.; Zhang, T.; Lustig, M.; Vasanawala, S.S. Feasibility of ferumoxytol-enhanced neonatal and young infant cardiac MRI without general anesthesia. J. Magn. Reson. Imaging 2017, 45, 1407–1418. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Hanneman, K.; Zhang, T.; Alley, M.T.; Lai, P.; Tamir, J.I.; Uecker, M.; Pauly, J.M.; Lustig, M.; Vasanawala, S.S. Comprehensive motion-compensated highly accelerated 4D flow MRI with ferumoxytol enhancement for pediatric congenital heart disease. J. Magn. Reson. Imaging 2016, 43, 1355–1368. [Google Scholar] [CrossRef] [PubMed]
- Morbiducci, U.; Ponzini, R.; Gallo, D.; Bignardi, C.; Rizzo, G. Inflow boundary conditions for image-based computational hemodynamics: Impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 2013, 46, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Bozzi, S.; Morbiducci, U.; Gallo, D.; Ponzini, R.; Rizzo, G.; Bignardi, C.; Passoni, G. Uncertainty propagation of phase contrast-MRI derived inlet boundary conditions in computational hemodynamics models of thoracic aorta. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, A.; Boccadifuoco, A.; Celi, S.; Salvetti, M.V. Hemodynamics and stresses in numerical simulations of the thoracic aorta: Stochastic sensitivity analysis to inlet flow-rate waveform. Comput. Fluids 2021, 230, 105123. [Google Scholar] [CrossRef]
- Campbell, I.C.; Ries, J.; Dhawan, S.S.; Quyyumi, A.A.; Taylor, W.R.; Oshinski, J.N. Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation. J. Biomech. Eng. 2012, 134, 051001–0510018. [Google Scholar] [CrossRef]
Parameters | Details |
---|---|
Scan Technique | Free-breathing retrospective ECG-gated technique |
Flip angle (FA) | 15° |
Velocity encoding range in all directions (VENC) | 1.5–2.0 m/s |
Spatial resolution | 2.0–3.6 × 2.0–3.0 × 2.5–3.5 mm3 |
Temporal resolution | 25–35 ms |
Number of phases | 30 |
Bandwidth (BW) | 455–495 Hz/Pixel |
Echo time (TE) | 2.01–2.35 ms |
Pulse repetition time (TR) | 4.53–5.07 ms |
Controls (n = 15) | MR Patients (n = 26) | p-Value | |
---|---|---|---|
Baseline characteristics | |||
Sex | F = 7 (47%), M = 8 (53%) | F = 12 (46%), M = 14 (54%) | |
Age (years) | 33 (20) | 61.50 (15) | <0.001 *** |
HR (beats/minute) | 68.48 ± 11.53 | 67.85 ± 13.85 | 0.88 |
SBP (mmHg) | 108.20 ± 11.90 | 116.54 ± 15.51 | 0.06 |
DBP (mmHg) | 61.22 ± 10.45 | 69.04 ± 11.07 | 0.03 * |
BSA (m2) | 1.86 ± 0.32 | 1.92 ± 0.24 | 0.53 |
LV function | |||
LVEDV (mL) | 143 (78) | 168 (94) | 0.032 * |
LVESV (mL) | 51 (41) | 68.50 (48) | 0.037 * |
LVM (g) | - | 115 (49) | - |
LVEDVI (mL/m2) | 80 (21) | 87.80 (43) | 0.025 * |
LVESVI (mL/m2) | 27.84 (14) | 36.65 (21) | 0.045 * |
LVMI (g/m2) | - | 56.65 (22) | - |
LVEF (%) | 59.20 (7.8) | 57.95 (8.5) | 0.449 |
HDF | Controls (n = 15) | MR Patients (n = 26) | p-Value |
---|---|---|---|
AVG Systole S-L | 0.55 (0.22) | 0.33 (0.33) [40%ꜜ] | 0.007 ** |
AVG Systole B-A | 0.49 (0.26) | 0.26 (0.25) [46.9%ꜜ] | 0.001 ** |
RMS Systole I-A | 0.34 ± 0.12 | 0.46 ± 0.19 [35.3%ꜛ] | 0.023 * |
RMS Systole B-A | 1.37 (0.30) | 0.93 (0.66) [32.1%ꜜ] | 0.001 *** |
RMS Diastole I-A | 0.07 (0.07) | 0.16 (0.23) [56.3%ꜛ] | 0.007 ** |
AVG HDF S-L | 0.25 (0.15) | 0.19 (0.22) [24%ꜜ] | 0.04 * |
AVG HDF B-A | 0.50 ± 0.14 | 0.37 ± 0.28 [26%ꜜ] | 0.039* |
RMS Ratio (Systole) | 0.65 (0.18) | 0.86 (0.65) [32.3%ꜛ] | 0.001 *** |
RMS Ratio (Diastole) | 0.33 (0.19) | 0.57 (0.37) [72.7%ꜛ] | 0.003 ** |
Controls (n = 15) | Trivial–Mild (n = 9) | Mild–Moderate (n = 11) | Moderate–Severe (n = 6) | p-Value | ||
---|---|---|---|---|---|---|
HDF | Direction | |||||
AVG (mN/mL) | Systole S-L | 0.55 (0.22) ●■ | 0.35 (0.8) | 0.30 (0.33) ● | 0.25 (0.39) ■ | 0.048 * |
Systole B-A | 0.49 (0.26) ▲● | 0.25 (0.31) ▲ | 0.24 (0.13) ● | 0.42 (0.67) | 0.002 ** | |
HDF B-A | 0.50 ± 0.14 | 0.27 ± 0.23 □ | 0.30 ±0.26 ○ | 0.63 ± 0.26 □○ | 0.003 ** | |
RMS (mN/mL) | Systole I-A | 0.34 ± 0.12 ■ | 0.42 ± 0.21 | 0.41 ± 0.13 | 0.59 ± 0.22 ■ | 0.025 * |
Systole B-A | 1.41 ± 0.27 ▲● | 0.80 ± 0.47 □▲ | 0.83 ± 0.35 ○● | 1.37 ± 0.24 □○ | 0.000 *** | |
Diastole S-L | 0.08 (0.06) ●■ | 0.06 (0.12) □ | 0.14 (0.12) ● | 0.21 (0.63) ■□ | 0.028 * | |
Diastole I-A | 0.07 (0.07) ●■ | 0.15 (0.27) | 0.11 (0.09) ●○ | 0.29 (0.42) ■○ | 0.007 ** | |
Ratio | Systole | 0.65 (0.18) ▲● | 1.21 (1.04) ▲ | 0.85 (0.61) ● | 0.83 (0.40) | 0.006 ** |
Diastole | 0.33 (0.19) ●■ | 0.55 (0.36) | 0.64 (0.66) ● | 0.58 (0.44) ■ | 0.029 * | |
LV function | ||||||
LVESV (mL) LVEDV (mL) LVEDVI (mL/m2) LVM (g) LVMI (g/m2) | 51 (41) ●■ | 67 (25) | 89 (62) ● | 87 (98) ■ | 0.048 * | |
143 (78) ●■ | 148 (40) ▌□ | 222 (96) ●▌ | 237 (123) ■□ | 0.009 ** | ||
80.34 (21) | 83.4 (29) ▌□ | 116.9 (44) ▌ | 124.6 (67) □ | 0.020 * | ||
- | 96 (28) □ | 123 (73) | 133.5 (38) □ | 0.024 * | ||
- | 48.2 (8) □ | 56.7 (33) | 69.7 (15) □ | 0.01 ** |
Controls (n = 15) | Trivial–Mild (n = 9) | Mild–Moderate (n = 11) | Moderate–Severe (n = 6) | ||
---|---|---|---|---|---|
HDF | Direction | r (p-Value) | r (p-Value) | r (p-Value) | r (p-Value) |
5.1 Systole: Volume (mL) and HDF (mN/mL) | |||||
AVG | S-L | 0.571 (0.021) * | −0.533 (0.140) | −0.101 (0.767) | −0.526 (0.044) * |
B-A | −0.491 (0.044) * | −0.298 (0.437) | 0.121 (0.724) | −0.404 (0.136) | |
Ratio | Systole | 0.502 (0.04) * | −0.824 (0.006) ** | −0.053 (0.877) | −0.467 (0.079) |
5.2 Diastole: Volume (mL) and HDF (mN/mL) | |||||
RMS | S-L | −0.173 (0.287) | −0.469 (0.202) | −0.201 (0.554) | 0.801 (0.05) * |
B-A | 0.119 (0.349) | 0.029 (0.942) | −0.465 (0.150) | 0.848 (0.033) * | |
5.3 LVEF (%) and HDF (mN/mL) | |||||
AVG | S-L | −0.039 (0.890) | 0.823 (0.006) ** | −0.229 (0.498) | −0.002 (0.998) |
Systole S-L | −0.02 (0.943) | 0.716 (0.03) * | −0.054 (0.874) | 0.369 (0.471) | |
RMS | Systole S-L | −0.079 (0.779) | 0.701 (0.035) * | 0.303 (0.365) | −0.226 (0.667) |
5.4 LVM (g) and HDF (mN/mL) | |||||
AVG | I-A | - | 0.782 (0.013) * | −0.225 (0.507) | −0.142 (0.788) |
RMS | Systole S-L | - | 0.605 (0.084) | −0.132 (0.698) | 0.808 (0.052) * |
Systole I-A | - | 0.753 (0.019) * | 0.221 (0.514) | 0.551 (0.257) | |
Systole B-A | - | 0.722 (0.028) * | −0.152 (0.655) | −0.189 (0.720) | |
Ratio | Systole | - | −0.331 (0.384) | 0.053 (0.877) | 0.924 (0.008) ** |
Spearman’s Rho | p-Value | |
---|---|---|
HDF (mN/mL) | ||
RMS Systole B-A | 0.621 | <0.001 ** |
RMS Systole Ratio | −0.543 | <0.001 *** |
RMS Diastole Ratio | −0.350 | 0.025 * |
AVG HDF B-A | 0.457 | 0.003 ** |
AVG SystoleS-L | 0.318 | 0.043 * |
AVG Systole B-A | 0.555 | <0.001 *** |
AVG Diastole B-A | 0.317 | 0.043 * |
LV function | ||
LVEDV (mL) | 0.554 | 0.003 ** |
LVEDVI (mL/m2) | 0.538 | 0.005 ** |
LVM (g) | 0.547 | 0.004 ** |
LVMI (g/m2) | 0.602 | 0.001 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srabanti, M.G.; Adams, C.; Kadem, L.; Garcia, J. Role of Non-Invasive Hemodynamic Forces through Four-Dimensional-Flow Magnetic Resonance Imaging (4D-Flow MRI) in Evaluating Mitral Regurgitation with Preserved Ejection Fraction: Seeking Novel Biomarkers. Appl. Sci. 2024, 14, 8577. https://doi.org/10.3390/app14198577
Srabanti MG, Adams C, Kadem L, Garcia J. Role of Non-Invasive Hemodynamic Forces through Four-Dimensional-Flow Magnetic Resonance Imaging (4D-Flow MRI) in Evaluating Mitral Regurgitation with Preserved Ejection Fraction: Seeking Novel Biomarkers. Applied Sciences. 2024; 14(19):8577. https://doi.org/10.3390/app14198577
Chicago/Turabian StyleSrabanti, Monisha Ghosh, Corey Adams, Lyes Kadem, and Julio Garcia. 2024. "Role of Non-Invasive Hemodynamic Forces through Four-Dimensional-Flow Magnetic Resonance Imaging (4D-Flow MRI) in Evaluating Mitral Regurgitation with Preserved Ejection Fraction: Seeking Novel Biomarkers" Applied Sciences 14, no. 19: 8577. https://doi.org/10.3390/app14198577
APA StyleSrabanti, M. G., Adams, C., Kadem, L., & Garcia, J. (2024). Role of Non-Invasive Hemodynamic Forces through Four-Dimensional-Flow Magnetic Resonance Imaging (4D-Flow MRI) in Evaluating Mitral Regurgitation with Preserved Ejection Fraction: Seeking Novel Biomarkers. Applied Sciences, 14(19), 8577. https://doi.org/10.3390/app14198577