Skeletal Muscle Energetics in Heart Failure Assessed Using 31P Magnetic Resonance Spectroscopy—A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
- SkM ratios (PCr/Pi and/or PCr/ATP) measured at rest (If applicable).
- The relationship between quantified SkM energetics and sarcopenia.
- The prevalence of sarcopenia in HFpEF and HFrEF.
- Disease-specific quality of life measures (either using the Kansas City Cardiomyopathy Questionnaire [KCCQ] or the Minnesota Living with Heart Failure questionnaire [MLWHF]).
2.1. Eligibility Criteria
2.2. Literature Search
2.3. Data Extraction
2.4. Data Quality Assessment
2.5. Synthesis Methods
3. Results
3.1. Study Selection
3.2. Quality Assessment
3.2.1. Participant Characteristics
3.2.2. 31P MRS Methodological Characteristics
3.3. SkM PCr Recovery Time
3.4. Secondary Outcomes
3.4.1. Resting Relative Phosphocreatine
3.4.2. Sarcopenia-Related Outcomes, HF Subtyping, and Symptoms
3.5. Publication Bias
4. Discussion
4.1. Study Differences and Limitations
4.2. Disparities among Heart Failure Populations
4.3. Strengths and Limitations
4.4. Implications for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
31P MRS | 31Phosphorus magnetic resonance spectroscopy |
ATP | Adenosine triphosphate |
HF | Heart failure |
HFpEF | Heart failure with preserved ejection fraction |
HFrEF | Heart failure with reduced ejection fraction |
JBI | Joanna Briggs Institute |
PCr | Phosphocreatine |
Pi | Inorganic phosphate |
SkM | Skeletal muscle |
References
- Shahim, B.; Kapelios, C.J.; Savarese, G.; Cosentino, F.; Seferovic, P.; Maggioni, A.P.; McDonagh, T.A.; Lund, L.H.; Rossignol, P.; Metra, M. Global Public Health Burden of Heart Failure: An Updated Review. Card. Fail. Rev. 2023, 9, e11. [Google Scholar] [CrossRef]
- Del Buono, M.G.; Arena, R.; Borlaug, B.A.; Carbone, S.; Canada, J.M.; Kirkman, D.L.; Garten, R.; Rodriguez-Miguelez, P.; Guazzi, M.; Lavie, C.J. Exercise Intolerance in Patients with Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 2209–2225. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Land, F.; Rolland, Y.; Sayer, A.A. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Fülster, S.; Tacke, M.; Sandek, A.; Ebner, N.; Tschöpe, C.; Doehner, W.; Anker, S.D.; von Haehling, S.; Valentova, M.; Jarius, A. Muscle wasting in patients with chronic heart failure: Results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur. Heart J. 2013, 34, 512–519. [Google Scholar] [CrossRef]
- Lanza, I.R.; Bhagra, S.; Nair, K.S.; Port, J.D.; Grothus, J.E.; Dalla Man, C.; Basu, R.; Jensen, M.D.; Basu, A.; Carter, R.E. Measurement of human skeletal muscle oxidative capacity by 31P-MR spectroscopy: A cross-validation with in vitro measurements. J. Magn. Reson. Imaging 2011, 34, 1143–1150. [Google Scholar] [CrossRef]
- Chandrashekhar Iyer, L.; Vaishali, K.; Babu, A.S. Prevalence of sarcopenia in heart failure: A systematic review. Indian. Heart J. 2023, 75, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Prokopidis, K.; Isanejad, M.; Akpan, A.; Stefil, M.; Tajik, B.; Giannos, P.; Venturelli, M.; Sankaranarayanan, R.; Gray, S.R.; Wilkinson, D.J. Exercise and nutritional interventions on sarcopenia and frailty in heart failure: A narrative review of systematic reviews and meta-analyses. ESC Heart Fail. 2022, 9, 2787–2799. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Ni, W.; Yuan, X.; Zhang, H.; Li, P.; Wang, Q.; Zeng, L.; Li, T.; Gong, M. Sarcopenia in heart failure: A systematic review and meta-analysis. ESC Heart Fail. 2021, 8, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Lu, X.; Qian, Z.; Xu, W.; Zhou, X.; Xu, J.; Li, W.; He, Y.; Chen, Y.; Wang, H. New insights into the pathogenesis and treatment of sarcopenia in chronic heart failure. Theranostics 2019, 9, 4019–4029. [Google Scholar] [CrossRef]
- Wong, A.; Frishman, W. Sarcopenia and Cardiac Dysfunction. Cardiol. Rev. 2020, 28, 197–202. [Google Scholar] [CrossRef]
- Curcio, F.; Liguori, I.; Cellurale, M.; Sasso, G.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Ferrara, N.; Rengo, G. Sarcopenia and Heart Failure. Nutrients 2020, 12, 211. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hu, S.; Zhang, F.; Liu, J.; Mao, Y. Correlation between sarcopenia and left ventricular myocardial mass in chronic heart failure patients. Aging Med. 2020, 3, 138–141. [Google Scholar] [CrossRef]
- Kirkman, D.L.; Billingsley, H.E.; Franco, R.L.; Canada, J.M.; Carbone, S.; Elagizi, A.; Lavie, C.J.; Arena, R. Sarcopenic Obesity in Heart Failure with Preserved Ejection Fraction. Front. Endocrinol. 2020, 11, 558271. [Google Scholar] [CrossRef] [PubMed]
- Beltrami, M.; Fumagalli, C.; Milli, M. Frailty, sarcopenia and cachexia in heart failure patients: Different clinical entities of the same painting. World J. Cardiol. 2021, 13, 1–10. [Google Scholar] [CrossRef]
- Sato, R.; Arai, Y.; Takata, Y.; Hoshino, K.; Hayashi, M.; Naito, K.; Kudo, T.; Kawai, M.; Aizawa, N.; Ueda, K. Sarcopenia and Frailty in Heart Failure: Is There a Biomarker Signature? Curr. Heart Fail. Rep. 2022, 19, 400–411. [Google Scholar] [CrossRef]
- Chen, R.; Xu, J.; Wang, Y.; Jiang, B.; Xu, X.; Lan, Y. Prevalence of sarcopenia and its association with clinical outcomes in heart failure: An updated meta-analysis and systematic review. Clin. Cardiol. 2023, 46, 260–268. [Google Scholar] [CrossRef]
- Zuo, X.; Li, X.; Tang, K.; Zhao, R.; Wu, M.; Wang, Y.; Li, T. Sarcopenia and cardiovascular diseases: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2023, 14, 1183–1198. [Google Scholar] [CrossRef]
- Mirzai, S.; Eck, B.L.; Chen, P.H.; Estep, J.D.; Tang, W.H.W. Current Approach to the Diagnosis of Sarcopenia in Heart Failure: A Narrative Review on the Role of Clinical and Imaging Assessments. Circ. Heart Fail. 2022, 15, e009322. [Google Scholar] [CrossRef]
- Hinkley, J.M.; Cornnell, H.H.; Standley, R.A.; Chen, E.Y.; Narain, N.R.; Greenwood, B.P.; Bussberg, V.; Tolstikov, V.V.; Kiebish, M.A.; Yi, F.; et al. Older adults with sarcopenia have distinct skeletal muscle phosphodiester, phosphocreatine, and phospholipid profiles. Aging Cell 2020, 19, e13135. [Google Scholar] [CrossRef]
- Andreux, P.A.; van Diemen, M.P.J.; Heezen, M.R.; Auwerx, J.; Rinsch, C.; Groeneveld, J.; Singhal, A.; de Jong, N. Mitochondrial function is impaired in the skeletal muscle of pre-frail elderly. Sci. Rep. 2018, 8, 8548. [Google Scholar] [CrossRef]
- Pandey, A.; Shah, S.J.; Butler, J.; Kellogg, D.L.; Lewis, G.D.; Forman, D.E.; Mentz, R.J.; Borlaug, B.A.; Simon, M.A.; Chirinos, J.A. Exercise Intolerance in Older Adults with Heart Failure with Preserved Ejection Fraction: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 1166–1187. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2020, 12, 55–61. [Google Scholar] [CrossRef]
- Bhella, P.S.; Prasad, A.; Heinicke, K.; Hastings, J.L.; Arbab-Zadeh, A.; Adams-Huet, B.; Pacini, E.L.; Shibata, S.; Palmer, M.D.; Newcomer, B.R. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2011, 13, 1296–1304. [Google Scholar] [CrossRef]
- Weiss, K.; Schär, M.; Panjrath, G.S.; Zhang, Y.; Sharma, K.; Bottomley, P.A.; Golozar, A.; Steinberg, A.; Gerstenblith, G.; Russell, S.D.; et al. Fatigability, Exercise Intolerance, and Abnormal Skeletal Muscle Energetics in Heart Failure. Circ. Heart Fail. 2017, 10, e004129. [Google Scholar] [CrossRef]
- Chati, Z.; Zannad, F.; Robin-Lherbier, B.; Escanye, J.M.; Jeandel, C.; Ghandour, H.; Deharo, J.C. Contribution of specific skeletal muscle metabolic abnormalities to limitation of exercise capacity in patients with chronic heart failure: A phosphorus 31 nuclear magnetic resonance study. Am. Heart J. 1994, 128, 781–792. [Google Scholar] [CrossRef]
- Okita, K.; Tsuji, Y.; Akimoto, K.; Doi, K.; Takahashi, S.; Hirata, K.; Nakagawa, Y.; Kihara, Y.; Yamamoto, K.; Matsuda, H. Skeletal Muscle Metabolism Limits Exercise Capacity in Patients with Chronic Heart Failure. Circulation 1998, 98, 1886–1891. [Google Scholar] [CrossRef]
- Ternovoi, S.K.; Veselova, T.N.; Sinitsin, V.E. Potential of phosphorus nuclear magnetic resonance spectroscopy in studies of the energy metabolism of skeletal muscles. Neurosci. Behav. Physiol. 2003, 33, 723–727. [Google Scholar] [CrossRef]
- Massie, B.M.; Conway, M.; Yonge, R.; Frostick, S.; Sleight, P.; Ledingham, J.; Radda, G.K. 31P nuclear magnetic resonance evidence of abnormal skeletal muscle metabolism in patients with congestive heart failure. Am. J. Cardiol. 1987, 60, 309–315. [Google Scholar] [CrossRef]
- Chati, Z.; Zannad, F.; Jeandel, C.; Lherbier, B.; Escanye, J.M.; Robin-Lherbier, B. Physical deconditioning may be a mechanism for the skeletal muscle energy phosphate metabolism abnormalities in chronic heart failure. Am. Heart J. 1996, 131, 560–566. [Google Scholar] [CrossRef]
- Rajagopalan, B.; Conway, M.A.; Massie, B.; Radda, G.K. Alterations of skeletal muscle metabolism in humans studied by phosphorus 31 magnetic resonance spectroscopy in congestive heart failure. Am. J. Cardiol. 1988, 62, 53e–57e. [Google Scholar] [CrossRef] [PubMed]
- Mancini, D.M.; Ferraro, N.; Tuchler, M.; Chance, B.; Wilson, J.R. Detection of abnormal calf muscle metabolism in patients with heart failure using phosphorus-31 nuclear magnetic resonance. Am. J. Cardiol. 1988, 62, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.G.; Xia, D.; Katz, S.D.; Regatte, R.R. Dynamic 31P-MRI and 31P-MRS of lower leg muscles in heart failure patients. Sci. Rep. 2021, 11, 7412. [Google Scholar] [CrossRef] [PubMed]
- Hanada, A.; Okita, K.; Yonezawa, K.; Ohtsubo, M.; Kohya, T.; Murakami, T.; Aizawa, K.; Tanaka, M.; Yoshida, K.; Hori, Y. Dissociation between muscle metabolism and oxygen kinetics during recovery from exercise in patients with chronic heart failure. Heart 2000, 83, 161–166. [Google Scholar] [CrossRef]
- Meyerspeer, M.; Schmid, A.I.; Moser, E.; Gruber, S.; Rüdisühli, D.; Schmitt, B.; Krammer, E.; Moser, M.; Weidinger, F. 31P magnetic resonance spectroscopy in skeletal muscle: Experts’ consensus recommendations. NMR Biomed. 2020, 34, e4246. [Google Scholar] [CrossRef]
Author and Year | Sample Size | HF Age | HC Age | HF patient Sex (M/F) | Control Sex (M/F) | NYHA Class (n) | EF (%) | HF Diagnosis/ EF Measure | HF Aetiology (n) | Comorbidities (n) | Medication (n) |
---|---|---|---|---|---|---|---|---|---|---|---|
Massie 1987 [29] | HF: 11 HC: 7 | 57 ± 7 | 56 ± 8 | 11/0 | 7/0 | II: 5 III: 4 IV:2 | 16 ± 3 | Congestive HF NR | NR DCM: 5 | CAD: 6 | NR |
Rajagopalan 1988 [31] | HF: 22 HC: 33 | 58 ± 8 | 58 ± 8 | 22/0 | 33/0 | NR | NR | Congestive HF NR | NR | NR | NR |
Mancini 1988 [32] | HF: 20 HC: 9 | 47 ± 6 | 47 + 6 | NR | 9/0 | II | 20 ± 5 | Congestive HF NR | CAD: 8 DCM: 12 | NR | Digoxin:20 Diuretics:20 |
Chati 1996 [30] | HF: 14 HC: 7 | 55 ± 3 | 58 ± 7 | 12/2 | NR | II: 7 III: 7 | 29 ± 2 | Congestive HF LVEF <40%: radionuclide | Ischaemic heart disease: 8 DCM: 6 | NR | Diuretics:14 Nitrates:14, ACEi: 10 Calcium antagonists: 6 Digoxin: 8 |
Hanada 2000 [34] | HF: 13 HC: 15 | 58 ± 8 | 49 ± 11 | NR | NR | II: 8 III: 7 | 29 ± 13 | Congestive HF Radionuclide | DCM: 13 | NR | Diuretics:13, BB:8 ACEi:11 Digitalis:6 |
Menon 2021 [33] | HF: 6 HC: 5 | 56 ± 7 | 35 ± 7 | 4/2 | 5/0 | II: NR III: NR | 30 ± 15 | Congestive HF NR | NR | NR | NR |
Author and Year | Muscle Group | MR Field Strength (T) | Surface Coil Diameter | Localisation Method | Voxel Size | Flip Angle (°) | TR (msec) | Rest Duration | Exercise Duration (Minutes) | Recovery Duration (Minutes) | Time Points of MRS (n) | PCr Ratio Investigated | Strength Assessed |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Massie 1987 [29] | Flexor digitorum superficialis muscle of dominant arm | 1.89 | 2.5 cm | NR | NR | NR | NR | 256 s | 7.5 | 10 | 1 spectrum per 1–2 min exercise | [PCr]/([PCr] + [Pi]) | Forearm resistance |
Rajagopalan 1988 [31] | Flexor digitorum superficialis muscle of dominant arm | 1.9 | 2.5 cm | NR | NR | NR | NR | 4 min and 27 s | 5 | 10 | Spectra per 1 minute’s exercise and during recovery | [PCr]/([PCr] + [Pi]) | Forearm resistance |
Mancini 1988 [32] | Calf muscle groups | 1.9 | 4.5 cm | Metabolic Freeze method | NR | NR | NR | 10 min | 3 | 5 | RF pulse applied every 5 s | [PCr]/([PCr] + [Pi]) | Plantar flexion |
Chati 1996 [30] | Left calf muscle | 2.4 | 5 cm | Unlocalised: FID Single pulse sequence and cyclops four-phase cycling | NA | 71 | 1000 | 3 min | 3 | NR | Exercise spectra from last 25 s of each workload. final increment: 5 spectra for recovery phase. | [PCr]/([PCr] + [Pi]) | Plantar flexion |
Hanada 2000 [34] | Right calf muscle | 1.5 | 80 mm | NR | NR | NR | 1000 | NR | 6 | 6 | 40 scans averaged per spectrum | [PCr]/([PCr] + [Pi]) | Calf muscle supine plantar flexion |
Menon 2021 [33] | Gastrocnemius and soleus muscles | 3 | 31P/1H quadrature volume knee coil with inner diameter of 22 cm | Unlocalised: FID | NA | NR | 6000 | 1–2 min | 1 | Remainder of 10 min scan | 100 FID measurements in 10 min | PCr/ATP [PCr]/([PCr] + [Pi]) | Flexion |
Study | Controls | Heart Failure | ||||||
---|---|---|---|---|---|---|---|---|
Resting | Recovery | Resting | Recovery | |||||
PCr/Pi Mean ± SD | PCr/ATP Mean ± SD | PCr Index | Recovery Mean ± SD (s) | PCr/Pi Mean ± SD | PCr/ATP Mean ± SD | PCr Index | Recovery Mean ± SD (s) | |
Massie 1987 [29] | 0.9 ± 0.01 | 2.7 ± 0.1 | T ½ (s) | 0.86 ± 0.4 | 0.87 ± 0.03 | 2.8 ± 0.4 | T ½ | 1.72 ± 1.5 |
Rajagopalan 1988 [31] | 0.9 ± 0.01 | NR | T ½ (s) | 42 ± 18 | 0.89 ± 0.02 | NR | T ½ | 75 ± 52 |
Mancini 1988 [32] | 0.21 ± 0.06 | NR | Recovery time (s) | 2.1 ± 0.5 | 0.21 ± 0.07 | NR | Recovery Time | 3.3 ± 0.8 |
Chati 1996 [30] | 0.098 ± 0.01 | NR | Recovery Rate (s) | 0.27 ± 0.026 | 0.159 ± 0.03 | NR | Recovery Time | 0.273 ± 0.028 |
Hanada 2000 [34] | 0.95 ± 0.02 | NR | ô PCr (s) | 36.5 ± 5.8 | 0.91 ± 0.05 | NR | ô PCr | 76.3 ± 30.2 |
Menon 2021 [33] | 0.1 ± 0.02 | 7.93 ± 1.7 | Recovery Rate (s) | 26.73 ± 4.49 | 0.12 ± 0.03 | 8.43 ± 1.39 | Recovery Time | 50.1 ± 8.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suleman, S.A.; Bilak, J.; Puranik, A.; McCann, G.P.; Squire, I.B. Skeletal Muscle Energetics in Heart Failure Assessed Using 31P Magnetic Resonance Spectroscopy—A Systematic Review and Meta-Analysis. Appl. Sci. 2024, 14, 9218. https://doi.org/10.3390/app14209218
Suleman SA, Bilak J, Puranik A, McCann GP, Squire IB. Skeletal Muscle Energetics in Heart Failure Assessed Using 31P Magnetic Resonance Spectroscopy—A Systematic Review and Meta-Analysis. Applied Sciences. 2024; 14(20):9218. https://doi.org/10.3390/app14209218
Chicago/Turabian StyleSuleman, Safiyyah A., Joanna Bilak, Amitha Puranik, Gerry P. McCann, and Iain B. Squire. 2024. "Skeletal Muscle Energetics in Heart Failure Assessed Using 31P Magnetic Resonance Spectroscopy—A Systematic Review and Meta-Analysis" Applied Sciences 14, no. 20: 9218. https://doi.org/10.3390/app14209218
APA StyleSuleman, S. A., Bilak, J., Puranik, A., McCann, G. P., & Squire, I. B. (2024). Skeletal Muscle Energetics in Heart Failure Assessed Using 31P Magnetic Resonance Spectroscopy—A Systematic Review and Meta-Analysis. Applied Sciences, 14(20), 9218. https://doi.org/10.3390/app14209218